1999-04-16 01:35:26 +00:00
|
|
|
|
/* Get info from stack frames;
|
|
|
|
|
convert between frames, blocks, functions and pc values.
|
|
|
|
|
Copyright 1986, 87, 88, 89, 91, 94, 95, 96, 97, 1998
|
1999-07-07 20:19:36 +00:00
|
|
|
|
Free Software Foundation, Inc.
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
1999-07-07 20:19:36 +00:00
|
|
|
|
This file is part of GDB.
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
1999-07-07 20:19:36 +00:00
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
|
|
|
it under the terms of the GNU General Public License as published by
|
|
|
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
|
|
|
(at your option) any later version.
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
1999-07-07 20:19:36 +00:00
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
|
GNU General Public License for more details.
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
1999-07-07 20:19:36 +00:00
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
|
|
|
along with this program; if not, write to the Free Software
|
|
|
|
|
Foundation, Inc., 59 Temple Place - Suite 330,
|
|
|
|
|
Boston, MA 02111-1307, USA. */
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
|
|
|
|
#include "defs.h"
|
|
|
|
|
#include "symtab.h"
|
|
|
|
|
#include "bfd.h"
|
|
|
|
|
#include "symfile.h"
|
|
|
|
|
#include "objfiles.h"
|
|
|
|
|
#include "frame.h"
|
|
|
|
|
#include "gdbcore.h"
|
|
|
|
|
#include "value.h" /* for read_register */
|
|
|
|
|
#include "target.h" /* for target_has_stack */
|
|
|
|
|
#include "inferior.h" /* for read_pc */
|
|
|
|
|
#include "annotate.h"
|
|
|
|
|
|
|
|
|
|
/* Prototypes for exported functions. */
|
|
|
|
|
|
1999-08-23 22:40:00 +00:00
|
|
|
|
void _initialize_blockframe (void);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
|
|
|
|
/* A default FRAME_CHAIN_VALID, in the form that is suitable for most
|
|
|
|
|
targets. If FRAME_CHAIN_VALID returns zero it means that the given
|
|
|
|
|
frame is the outermost one and has no caller. */
|
|
|
|
|
|
|
|
|
|
int
|
2000-07-30 01:48:28 +00:00
|
|
|
|
file_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
return ((chain) != 0
|
1999-12-14 01:06:04 +00:00
|
|
|
|
&& !inside_entry_file (FRAME_SAVED_PC (thisframe)));
|
1999-04-16 01:35:26 +00:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Use the alternate method of avoiding running up off the end of the
|
|
|
|
|
frame chain or following frames back into the startup code. See
|
|
|
|
|
the comments in objfiles.h. */
|
1999-07-07 20:19:36 +00:00
|
|
|
|
|
1999-04-16 01:35:26 +00:00
|
|
|
|
int
|
2000-07-30 01:48:28 +00:00
|
|
|
|
func_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
return ((chain) != 0
|
1999-12-14 01:06:04 +00:00
|
|
|
|
&& !inside_main_func ((thisframe)->pc)
|
|
|
|
|
&& !inside_entry_func ((thisframe)->pc));
|
1999-04-16 01:35:26 +00:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* A very simple method of determining a valid frame */
|
1999-07-07 20:19:36 +00:00
|
|
|
|
|
1999-04-16 01:35:26 +00:00
|
|
|
|
int
|
2000-07-30 01:48:28 +00:00
|
|
|
|
nonnull_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
return ((chain) != 0);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Is ADDR inside the startup file? Note that if your machine
|
|
|
|
|
has a way to detect the bottom of the stack, there is no need
|
|
|
|
|
to call this function from FRAME_CHAIN_VALID; the reason for
|
|
|
|
|
doing so is that some machines have no way of detecting bottom
|
|
|
|
|
of stack.
|
|
|
|
|
|
|
|
|
|
A PC of zero is always considered to be the bottom of the stack. */
|
|
|
|
|
|
|
|
|
|
int
|
2000-07-30 01:48:28 +00:00
|
|
|
|
inside_entry_file (CORE_ADDR addr)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
if (addr == 0)
|
|
|
|
|
return 1;
|
|
|
|
|
if (symfile_objfile == 0)
|
|
|
|
|
return 0;
|
1999-04-26 18:34:20 +00:00
|
|
|
|
if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
|
|
|
|
|
{
|
|
|
|
|
/* Do not stop backtracing if the pc is in the call dummy
|
1999-07-07 20:19:36 +00:00
|
|
|
|
at the entry point. */
|
1999-04-26 18:34:20 +00:00
|
|
|
|
/* FIXME: Won't always work with zeros for the last two arguments */
|
1999-07-07 20:19:36 +00:00
|
|
|
|
if (PC_IN_CALL_DUMMY (addr, 0, 0))
|
1999-04-26 18:34:20 +00:00
|
|
|
|
return 0;
|
|
|
|
|
}
|
1999-07-07 20:19:36 +00:00
|
|
|
|
return (addr >= symfile_objfile->ei.entry_file_lowpc &&
|
|
|
|
|
addr < symfile_objfile->ei.entry_file_highpc);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Test a specified PC value to see if it is in the range of addresses
|
|
|
|
|
that correspond to the main() function. See comments above for why
|
|
|
|
|
we might want to do this.
|
|
|
|
|
|
|
|
|
|
Typically called from FRAME_CHAIN_VALID.
|
|
|
|
|
|
|
|
|
|
A PC of zero is always considered to be the bottom of the stack. */
|
|
|
|
|
|
|
|
|
|
int
|
2000-07-30 01:48:28 +00:00
|
|
|
|
inside_main_func (CORE_ADDR pc)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
if (pc == 0)
|
|
|
|
|
return 1;
|
|
|
|
|
if (symfile_objfile == 0)
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
|
|
/* If the addr range is not set up at symbol reading time, set it up now.
|
|
|
|
|
This is for FRAME_CHAIN_VALID_ALTERNATE. I do this for coff, because
|
|
|
|
|
it is unable to set it up and symbol reading time. */
|
|
|
|
|
|
1999-07-07 20:19:36 +00:00
|
|
|
|
if (symfile_objfile->ei.main_func_lowpc == INVALID_ENTRY_LOWPC &&
|
|
|
|
|
symfile_objfile->ei.main_func_highpc == INVALID_ENTRY_HIGHPC)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
struct symbol *mainsym;
|
|
|
|
|
|
|
|
|
|
mainsym = lookup_symbol ("main", NULL, VAR_NAMESPACE, NULL, NULL);
|
1999-07-07 20:19:36 +00:00
|
|
|
|
if (mainsym && SYMBOL_CLASS (mainsym) == LOC_BLOCK)
|
|
|
|
|
{
|
|
|
|
|
symfile_objfile->ei.main_func_lowpc =
|
1999-04-16 01:35:26 +00:00
|
|
|
|
BLOCK_START (SYMBOL_BLOCK_VALUE (mainsym));
|
1999-07-07 20:19:36 +00:00
|
|
|
|
symfile_objfile->ei.main_func_highpc =
|
1999-04-16 01:35:26 +00:00
|
|
|
|
BLOCK_END (SYMBOL_BLOCK_VALUE (mainsym));
|
1999-07-07 20:19:36 +00:00
|
|
|
|
}
|
1999-04-16 01:35:26 +00:00
|
|
|
|
}
|
1999-07-07 20:19:36 +00:00
|
|
|
|
return (symfile_objfile->ei.main_func_lowpc <= pc &&
|
|
|
|
|
symfile_objfile->ei.main_func_highpc > pc);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Test a specified PC value to see if it is in the range of addresses
|
|
|
|
|
that correspond to the process entry point function. See comments
|
|
|
|
|
in objfiles.h for why we might want to do this.
|
|
|
|
|
|
|
|
|
|
Typically called from FRAME_CHAIN_VALID.
|
|
|
|
|
|
|
|
|
|
A PC of zero is always considered to be the bottom of the stack. */
|
|
|
|
|
|
|
|
|
|
int
|
2000-07-30 01:48:28 +00:00
|
|
|
|
inside_entry_func (CORE_ADDR pc)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
if (pc == 0)
|
|
|
|
|
return 1;
|
|
|
|
|
if (symfile_objfile == 0)
|
|
|
|
|
return 0;
|
1999-04-26 18:34:20 +00:00
|
|
|
|
if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
|
|
|
|
|
{
|
|
|
|
|
/* Do not stop backtracing if the pc is in the call dummy
|
1999-07-07 20:19:36 +00:00
|
|
|
|
at the entry point. */
|
1999-04-26 18:34:20 +00:00
|
|
|
|
/* FIXME: Won't always work with zeros for the last two arguments */
|
|
|
|
|
if (PC_IN_CALL_DUMMY (pc, 0, 0))
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
1999-07-07 20:19:36 +00:00
|
|
|
|
return (symfile_objfile->ei.entry_func_lowpc <= pc &&
|
|
|
|
|
symfile_objfile->ei.entry_func_highpc > pc);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Info about the innermost stack frame (contents of FP register) */
|
|
|
|
|
|
|
|
|
|
static struct frame_info *current_frame;
|
|
|
|
|
|
|
|
|
|
/* Cache for frame addresses already read by gdb. Valid only while
|
|
|
|
|
inferior is stopped. Control variables for the frame cache should
|
|
|
|
|
be local to this module. */
|
|
|
|
|
|
|
|
|
|
static struct obstack frame_cache_obstack;
|
|
|
|
|
|
|
|
|
|
void *
|
2000-07-30 01:48:28 +00:00
|
|
|
|
frame_obstack_alloc (unsigned long size)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
return obstack_alloc (&frame_cache_obstack, size);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void
|
2000-07-30 01:48:28 +00:00
|
|
|
|
frame_saved_regs_zalloc (struct frame_info *fi)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
1999-07-07 20:19:36 +00:00
|
|
|
|
fi->saved_regs = (CORE_ADDR *)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
frame_obstack_alloc (SIZEOF_FRAME_SAVED_REGS);
|
|
|
|
|
memset (fi->saved_regs, 0, SIZEOF_FRAME_SAVED_REGS);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* Return the innermost (currently executing) stack frame. */
|
|
|
|
|
|
|
|
|
|
struct frame_info *
|
2000-07-30 01:48:28 +00:00
|
|
|
|
get_current_frame (void)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
if (current_frame == NULL)
|
|
|
|
|
{
|
|
|
|
|
if (target_has_stack)
|
|
|
|
|
current_frame = create_new_frame (read_fp (), read_pc ());
|
|
|
|
|
else
|
|
|
|
|
error ("No stack.");
|
|
|
|
|
}
|
|
|
|
|
return current_frame;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void
|
2000-07-30 01:48:28 +00:00
|
|
|
|
set_current_frame (struct frame_info *frame)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
current_frame = frame;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Create an arbitrary (i.e. address specified by user) or innermost frame.
|
|
|
|
|
Always returns a non-NULL value. */
|
|
|
|
|
|
|
|
|
|
struct frame_info *
|
2000-07-30 01:48:28 +00:00
|
|
|
|
create_new_frame (CORE_ADDR addr, CORE_ADDR pc)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
struct frame_info *fi;
|
|
|
|
|
char *name;
|
|
|
|
|
|
|
|
|
|
fi = (struct frame_info *)
|
|
|
|
|
obstack_alloc (&frame_cache_obstack,
|
|
|
|
|
sizeof (struct frame_info));
|
|
|
|
|
|
|
|
|
|
/* Arbitrary frame */
|
|
|
|
|
fi->saved_regs = NULL;
|
|
|
|
|
fi->next = NULL;
|
|
|
|
|
fi->prev = NULL;
|
|
|
|
|
fi->frame = addr;
|
|
|
|
|
fi->pc = pc;
|
1999-07-07 20:19:36 +00:00
|
|
|
|
find_pc_partial_function (pc, &name, (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
fi->signal_handler_caller = IN_SIGTRAMP (fi->pc, name);
|
|
|
|
|
|
|
|
|
|
#ifdef INIT_EXTRA_FRAME_INFO
|
|
|
|
|
INIT_EXTRA_FRAME_INFO (0, fi);
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
return fi;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Return the frame that FRAME calls (NULL if FRAME is the innermost
|
|
|
|
|
frame). */
|
|
|
|
|
|
|
|
|
|
struct frame_info *
|
2000-07-30 01:48:28 +00:00
|
|
|
|
get_next_frame (struct frame_info *frame)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
return frame->next;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Flush the entire frame cache. */
|
|
|
|
|
|
|
|
|
|
void
|
2000-07-30 01:48:28 +00:00
|
|
|
|
flush_cached_frames (void)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
/* Since we can't really be sure what the first object allocated was */
|
|
|
|
|
obstack_free (&frame_cache_obstack, 0);
|
|
|
|
|
obstack_init (&frame_cache_obstack);
|
|
|
|
|
|
1999-07-07 20:19:36 +00:00
|
|
|
|
current_frame = NULL; /* Invalidate cache */
|
1999-04-16 01:35:26 +00:00
|
|
|
|
select_frame (NULL, -1);
|
|
|
|
|
annotate_frames_invalid ();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Flush the frame cache, and start a new one if necessary. */
|
|
|
|
|
|
|
|
|
|
void
|
2000-07-30 01:48:28 +00:00
|
|
|
|
reinit_frame_cache (void)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
flush_cached_frames ();
|
|
|
|
|
|
|
|
|
|
/* FIXME: The inferior_pid test is wrong if there is a corefile. */
|
|
|
|
|
if (inferior_pid != 0)
|
|
|
|
|
{
|
|
|
|
|
select_frame (get_current_frame (), 0);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Return nonzero if the function for this frame lacks a prologue. Many
|
|
|
|
|
machines can define FRAMELESS_FUNCTION_INVOCATION to just call this
|
|
|
|
|
function. */
|
|
|
|
|
|
|
|
|
|
int
|
2000-07-30 01:48:28 +00:00
|
|
|
|
frameless_look_for_prologue (struct frame_info *frame)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
CORE_ADDR func_start, after_prologue;
|
1999-08-23 22:40:00 +00:00
|
|
|
|
|
1999-04-16 01:35:26 +00:00
|
|
|
|
func_start = get_pc_function_start (frame->pc);
|
|
|
|
|
if (func_start)
|
|
|
|
|
{
|
|
|
|
|
func_start += FUNCTION_START_OFFSET;
|
1999-08-23 22:40:00 +00:00
|
|
|
|
/* This is faster, since only care whether there *is* a
|
|
|
|
|
prologue, not how long it is. */
|
2000-04-29 08:55:45 +00:00
|
|
|
|
return PROLOGUE_FRAMELESS_P (func_start);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
}
|
|
|
|
|
else if (frame->pc == 0)
|
1999-08-23 22:40:00 +00:00
|
|
|
|
/* A frame with a zero PC is usually created by dereferencing a
|
|
|
|
|
NULL function pointer, normally causing an immediate core dump
|
|
|
|
|
of the inferior. Mark function as frameless, as the inferior
|
|
|
|
|
has no chance of setting up a stack frame. */
|
1999-04-16 01:35:26 +00:00
|
|
|
|
return 1;
|
|
|
|
|
else
|
|
|
|
|
/* If we can't find the start of the function, we don't really
|
|
|
|
|
know whether the function is frameless, but we should be able
|
|
|
|
|
to get a reasonable (i.e. best we can do under the
|
|
|
|
|
circumstances) backtrace by saying that it isn't. */
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Default a few macros that people seldom redefine. */
|
|
|
|
|
|
|
|
|
|
#if !defined (INIT_FRAME_PC)
|
|
|
|
|
#define INIT_FRAME_PC(fromleaf, prev) \
|
|
|
|
|
prev->pc = (fromleaf ? SAVED_PC_AFTER_CALL (prev->next) : \
|
|
|
|
|
prev->next ? FRAME_SAVED_PC (prev->next) : read_pc ());
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#ifndef FRAME_CHAIN_COMBINE
|
|
|
|
|
#define FRAME_CHAIN_COMBINE(chain, thisframe) (chain)
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
/* Return a structure containing various interesting information
|
|
|
|
|
about the frame that called NEXT_FRAME. Returns NULL
|
|
|
|
|
if there is no such frame. */
|
|
|
|
|
|
|
|
|
|
struct frame_info *
|
2000-07-30 01:48:28 +00:00
|
|
|
|
get_prev_frame (struct frame_info *next_frame)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
CORE_ADDR address = 0;
|
|
|
|
|
struct frame_info *prev;
|
|
|
|
|
int fromleaf = 0;
|
|
|
|
|
char *name;
|
|
|
|
|
|
|
|
|
|
/* If the requested entry is in the cache, return it.
|
|
|
|
|
Otherwise, figure out what the address should be for the entry
|
|
|
|
|
we're about to add to the cache. */
|
|
|
|
|
|
|
|
|
|
if (!next_frame)
|
|
|
|
|
{
|
|
|
|
|
#if 0
|
|
|
|
|
/* This screws value_of_variable, which just wants a nice clean
|
1999-07-07 20:19:36 +00:00
|
|
|
|
NULL return from block_innermost_frame if there are no frames.
|
|
|
|
|
I don't think I've ever seen this message happen otherwise.
|
|
|
|
|
And returning NULL here is a perfectly legitimate thing to do. */
|
1999-04-16 01:35:26 +00:00
|
|
|
|
if (!current_frame)
|
|
|
|
|
{
|
|
|
|
|
error ("You haven't set up a process's stack to examine.");
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
return current_frame;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* If we have the prev one, return it */
|
|
|
|
|
if (next_frame->prev)
|
|
|
|
|
return next_frame->prev;
|
|
|
|
|
|
|
|
|
|
/* On some machines it is possible to call a function without
|
|
|
|
|
setting up a stack frame for it. On these machines, we
|
|
|
|
|
define this macro to take two args; a frameinfo pointer
|
|
|
|
|
identifying a frame and a variable to set or clear if it is
|
|
|
|
|
or isn't leafless. */
|
1999-05-25 18:09:09 +00:00
|
|
|
|
|
1999-04-16 01:35:26 +00:00
|
|
|
|
/* Still don't want to worry about this except on the innermost
|
|
|
|
|
frame. This macro will set FROMLEAF if NEXT_FRAME is a
|
|
|
|
|
frameless function invocation. */
|
|
|
|
|
if (!(next_frame->next))
|
|
|
|
|
{
|
1999-05-25 18:09:09 +00:00
|
|
|
|
fromleaf = FRAMELESS_FUNCTION_INVOCATION (next_frame);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
if (fromleaf)
|
|
|
|
|
address = FRAME_FP (next_frame);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (!fromleaf)
|
|
|
|
|
{
|
|
|
|
|
/* Two macros defined in tm.h specify the machine-dependent
|
1999-07-07 20:19:36 +00:00
|
|
|
|
actions to be performed here.
|
|
|
|
|
First, get the frame's chain-pointer.
|
|
|
|
|
If that is zero, the frame is the outermost frame or a leaf
|
|
|
|
|
called by the outermost frame. This means that if start
|
|
|
|
|
calls main without a frame, we'll return 0 (which is fine
|
|
|
|
|
anyway).
|
|
|
|
|
|
|
|
|
|
Nope; there's a problem. This also returns when the current
|
|
|
|
|
routine is a leaf of main. This is unacceptable. We move
|
|
|
|
|
this to after the ffi test; I'd rather have backtraces from
|
|
|
|
|
start go curfluy than have an abort called from main not show
|
|
|
|
|
main. */
|
1999-04-16 01:35:26 +00:00
|
|
|
|
address = FRAME_CHAIN (next_frame);
|
|
|
|
|
if (!FRAME_CHAIN_VALID (address, next_frame))
|
|
|
|
|
return 0;
|
|
|
|
|
address = FRAME_CHAIN_COMBINE (address, next_frame);
|
|
|
|
|
}
|
|
|
|
|
if (address == 0)
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
|
|
prev = (struct frame_info *)
|
|
|
|
|
obstack_alloc (&frame_cache_obstack,
|
|
|
|
|
sizeof (struct frame_info));
|
|
|
|
|
|
2000-12-11 21:10:15 +00:00
|
|
|
|
/* Zero all fields by default. */
|
2000-12-11 21:34:27 +00:00
|
|
|
|
memset (prev, 0, sizeof (struct frame_info));
|
2000-12-11 21:10:15 +00:00
|
|
|
|
|
1999-04-16 01:35:26 +00:00
|
|
|
|
if (next_frame)
|
|
|
|
|
next_frame->prev = prev;
|
|
|
|
|
prev->next = next_frame;
|
|
|
|
|
prev->frame = address;
|
|
|
|
|
|
|
|
|
|
/* This change should not be needed, FIXME! We should
|
|
|
|
|
determine whether any targets *need* INIT_FRAME_PC to happen
|
|
|
|
|
after INIT_EXTRA_FRAME_INFO and come up with a simple way to
|
|
|
|
|
express what goes on here.
|
|
|
|
|
|
1999-07-07 20:19:36 +00:00
|
|
|
|
INIT_EXTRA_FRAME_INFO is called from two places: create_new_frame
|
|
|
|
|
(where the PC is already set up) and here (where it isn't).
|
|
|
|
|
INIT_FRAME_PC is only called from here, always after
|
|
|
|
|
INIT_EXTRA_FRAME_INFO.
|
|
|
|
|
|
1999-04-16 01:35:26 +00:00
|
|
|
|
The catch is the MIPS, where INIT_EXTRA_FRAME_INFO requires the PC
|
|
|
|
|
value (which hasn't been set yet). Some other machines appear to
|
|
|
|
|
require INIT_EXTRA_FRAME_INFO before they can do INIT_FRAME_PC. Phoo.
|
|
|
|
|
|
|
|
|
|
We shouldn't need INIT_FRAME_PC_FIRST to add more complication to
|
|
|
|
|
an already overcomplicated part of GDB. gnu@cygnus.com, 15Sep92.
|
|
|
|
|
|
|
|
|
|
Assuming that some machines need INIT_FRAME_PC after
|
|
|
|
|
INIT_EXTRA_FRAME_INFO, one possible scheme:
|
|
|
|
|
|
|
|
|
|
SETUP_INNERMOST_FRAME()
|
1999-07-07 20:19:36 +00:00
|
|
|
|
Default version is just create_new_frame (read_fp ()),
|
|
|
|
|
read_pc ()). Machines with extra frame info would do that (or the
|
|
|
|
|
local equivalent) and then set the extra fields.
|
1999-04-16 01:35:26 +00:00
|
|
|
|
SETUP_ARBITRARY_FRAME(argc, argv)
|
1999-07-07 20:19:36 +00:00
|
|
|
|
Only change here is that create_new_frame would no longer init extra
|
|
|
|
|
frame info; SETUP_ARBITRARY_FRAME would have to do that.
|
1999-04-16 01:35:26 +00:00
|
|
|
|
INIT_PREV_FRAME(fromleaf, prev)
|
1999-07-07 20:19:36 +00:00
|
|
|
|
Replace INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC. This should
|
|
|
|
|
also return a flag saying whether to keep the new frame, or
|
|
|
|
|
whether to discard it, because on some machines (e.g. mips) it
|
|
|
|
|
is really awkward to have FRAME_CHAIN_VALID called *before*
|
|
|
|
|
INIT_EXTRA_FRAME_INFO (there is no good way to get information
|
|
|
|
|
deduced in FRAME_CHAIN_VALID into the extra fields of the new frame).
|
1999-04-16 01:35:26 +00:00
|
|
|
|
std_frame_pc(fromleaf, prev)
|
1999-07-07 20:19:36 +00:00
|
|
|
|
This is the default setting for INIT_PREV_FRAME. It just does what
|
|
|
|
|
the default INIT_FRAME_PC does. Some machines will call it from
|
|
|
|
|
INIT_PREV_FRAME (either at the beginning, the end, or in the middle).
|
|
|
|
|
Some machines won't use it.
|
1999-04-16 01:35:26 +00:00
|
|
|
|
kingdon@cygnus.com, 13Apr93, 31Jan94, 14Dec94. */
|
|
|
|
|
|
|
|
|
|
#ifdef INIT_FRAME_PC_FIRST
|
|
|
|
|
INIT_FRAME_PC_FIRST (fromleaf, prev);
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#ifdef INIT_EXTRA_FRAME_INFO
|
1999-07-07 20:19:36 +00:00
|
|
|
|
INIT_EXTRA_FRAME_INFO (fromleaf, prev);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
/* This entry is in the frame queue now, which is good since
|
|
|
|
|
FRAME_SAVED_PC may use that queue to figure out its value
|
|
|
|
|
(see tm-sparc.h). We want the pc saved in the inferior frame. */
|
1999-07-07 20:19:36 +00:00
|
|
|
|
INIT_FRAME_PC (fromleaf, prev);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
|
|
|
|
/* If ->frame and ->pc are unchanged, we are in the process of getting
|
|
|
|
|
ourselves into an infinite backtrace. Some architectures check this
|
|
|
|
|
in FRAME_CHAIN or thereabouts, but it seems like there is no reason
|
|
|
|
|
this can't be an architecture-independent check. */
|
|
|
|
|
if (next_frame != NULL)
|
|
|
|
|
{
|
|
|
|
|
if (prev->frame == next_frame->frame
|
|
|
|
|
&& prev->pc == next_frame->pc)
|
|
|
|
|
{
|
|
|
|
|
next_frame->prev = NULL;
|
|
|
|
|
obstack_free (&frame_cache_obstack, prev);
|
|
|
|
|
return NULL;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
find_pc_partial_function (prev->pc, &name,
|
1999-07-07 20:19:36 +00:00
|
|
|
|
(CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
if (IN_SIGTRAMP (prev->pc, name))
|
|
|
|
|
prev->signal_handler_caller = 1;
|
|
|
|
|
|
|
|
|
|
return prev;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
CORE_ADDR
|
2000-07-30 01:48:28 +00:00
|
|
|
|
get_frame_pc (struct frame_info *frame)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
return frame->pc;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#ifdef FRAME_FIND_SAVED_REGS
|
|
|
|
|
/* XXX - deprecated. This is a compatibility function for targets
|
|
|
|
|
that do not yet implement FRAME_INIT_SAVED_REGS. */
|
|
|
|
|
/* Find the addresses in which registers are saved in FRAME. */
|
|
|
|
|
|
|
|
|
|
void
|
2000-07-30 01:48:28 +00:00
|
|
|
|
get_frame_saved_regs (struct frame_info *frame,
|
|
|
|
|
struct frame_saved_regs *saved_regs_addr)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
if (frame->saved_regs == NULL)
|
|
|
|
|
{
|
1999-07-07 20:19:36 +00:00
|
|
|
|
frame->saved_regs = (CORE_ADDR *)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
frame_obstack_alloc (SIZEOF_FRAME_SAVED_REGS);
|
|
|
|
|
}
|
|
|
|
|
if (saved_regs_addr == NULL)
|
|
|
|
|
{
|
|
|
|
|
struct frame_saved_regs saved_regs;
|
|
|
|
|
FRAME_FIND_SAVED_REGS (frame, saved_regs);
|
|
|
|
|
memcpy (frame->saved_regs, &saved_regs, SIZEOF_FRAME_SAVED_REGS);
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
FRAME_FIND_SAVED_REGS (frame, *saved_regs_addr);
|
|
|
|
|
memcpy (frame->saved_regs, saved_regs_addr, SIZEOF_FRAME_SAVED_REGS);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
/* Return the innermost lexical block in execution
|
|
|
|
|
in a specified stack frame. The frame address is assumed valid. */
|
|
|
|
|
|
|
|
|
|
struct block *
|
2000-07-30 01:48:28 +00:00
|
|
|
|
get_frame_block (struct frame_info *frame)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
CORE_ADDR pc;
|
|
|
|
|
|
|
|
|
|
pc = frame->pc;
|
|
|
|
|
if (frame->next != 0 && frame->next->signal_handler_caller == 0)
|
|
|
|
|
/* We are not in the innermost frame and we were not interrupted
|
|
|
|
|
by a signal. We need to subtract one to get the correct block,
|
|
|
|
|
in case the call instruction was the last instruction of the block.
|
|
|
|
|
If there are any machines on which the saved pc does not point to
|
|
|
|
|
after the call insn, we probably want to make frame->pc point after
|
|
|
|
|
the call insn anyway. */
|
|
|
|
|
--pc;
|
|
|
|
|
return block_for_pc (pc);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
struct block *
|
2000-07-30 01:48:28 +00:00
|
|
|
|
get_current_block (void)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
return block_for_pc (read_pc ());
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
CORE_ADDR
|
2000-07-30 01:48:28 +00:00
|
|
|
|
get_pc_function_start (CORE_ADDR pc)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
register struct block *bl;
|
|
|
|
|
register struct symbol *symbol;
|
|
|
|
|
register struct minimal_symbol *msymbol;
|
|
|
|
|
CORE_ADDR fstart;
|
|
|
|
|
|
|
|
|
|
if ((bl = block_for_pc (pc)) != NULL &&
|
|
|
|
|
(symbol = block_function (bl)) != NULL)
|
|
|
|
|
{
|
|
|
|
|
bl = SYMBOL_BLOCK_VALUE (symbol);
|
|
|
|
|
fstart = BLOCK_START (bl);
|
|
|
|
|
}
|
|
|
|
|
else if ((msymbol = lookup_minimal_symbol_by_pc (pc)) != NULL)
|
|
|
|
|
{
|
|
|
|
|
fstart = SYMBOL_VALUE_ADDRESS (msymbol);
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
fstart = 0;
|
|
|
|
|
}
|
|
|
|
|
return (fstart);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Return the symbol for the function executing in frame FRAME. */
|
|
|
|
|
|
|
|
|
|
struct symbol *
|
2000-07-30 01:48:28 +00:00
|
|
|
|
get_frame_function (struct frame_info *frame)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
register struct block *bl = get_frame_block (frame);
|
|
|
|
|
if (bl == 0)
|
|
|
|
|
return 0;
|
|
|
|
|
return block_function (bl);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* Return the blockvector immediately containing the innermost lexical block
|
|
|
|
|
containing the specified pc value and section, or 0 if there is none.
|
|
|
|
|
PINDEX is a pointer to the index value of the block. If PINDEX
|
|
|
|
|
is NULL, we don't pass this information back to the caller. */
|
|
|
|
|
|
|
|
|
|
struct blockvector *
|
2000-07-30 01:48:28 +00:00
|
|
|
|
blockvector_for_pc_sect (register CORE_ADDR pc, struct sec *section,
|
|
|
|
|
int *pindex, struct symtab *symtab)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
register struct block *b;
|
|
|
|
|
register int bot, top, half;
|
|
|
|
|
struct blockvector *bl;
|
|
|
|
|
|
1999-07-07 20:19:36 +00:00
|
|
|
|
if (symtab == 0) /* if no symtab specified by caller */
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
/* First search all symtabs for one whose file contains our pc */
|
|
|
|
|
if ((symtab = find_pc_sect_symtab (pc, section)) == 0)
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
bl = BLOCKVECTOR (symtab);
|
|
|
|
|
b = BLOCKVECTOR_BLOCK (bl, 0);
|
|
|
|
|
|
|
|
|
|
/* Then search that symtab for the smallest block that wins. */
|
|
|
|
|
/* Use binary search to find the last block that starts before PC. */
|
|
|
|
|
|
|
|
|
|
bot = 0;
|
|
|
|
|
top = BLOCKVECTOR_NBLOCKS (bl);
|
|
|
|
|
|
|
|
|
|
while (top - bot > 1)
|
|
|
|
|
{
|
|
|
|
|
half = (top - bot + 1) >> 1;
|
|
|
|
|
b = BLOCKVECTOR_BLOCK (bl, bot + half);
|
|
|
|
|
if (BLOCK_START (b) <= pc)
|
|
|
|
|
bot += half;
|
|
|
|
|
else
|
|
|
|
|
top = bot + half;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Now search backward for a block that ends after PC. */
|
|
|
|
|
|
|
|
|
|
while (bot >= 0)
|
|
|
|
|
{
|
|
|
|
|
b = BLOCKVECTOR_BLOCK (bl, bot);
|
1999-07-12 11:15:22 +00:00
|
|
|
|
if (BLOCK_END (b) > pc)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
if (pindex)
|
|
|
|
|
*pindex = bot;
|
|
|
|
|
return bl;
|
|
|
|
|
}
|
|
|
|
|
bot--;
|
|
|
|
|
}
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Return the blockvector immediately containing the innermost lexical block
|
|
|
|
|
containing the specified pc value, or 0 if there is none.
|
|
|
|
|
Backward compatibility, no section. */
|
|
|
|
|
|
|
|
|
|
struct blockvector *
|
2000-07-30 01:48:28 +00:00
|
|
|
|
blockvector_for_pc (register CORE_ADDR pc, int *pindex)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
return blockvector_for_pc_sect (pc, find_pc_mapped_section (pc),
|
|
|
|
|
pindex, NULL);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Return the innermost lexical block containing the specified pc value
|
|
|
|
|
in the specified section, or 0 if there is none. */
|
|
|
|
|
|
|
|
|
|
struct block *
|
2000-07-30 01:48:28 +00:00
|
|
|
|
block_for_pc_sect (register CORE_ADDR pc, struct sec *section)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
register struct blockvector *bl;
|
|
|
|
|
int index;
|
|
|
|
|
|
|
|
|
|
bl = blockvector_for_pc_sect (pc, section, &index, NULL);
|
|
|
|
|
if (bl)
|
|
|
|
|
return BLOCKVECTOR_BLOCK (bl, index);
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Return the innermost lexical block containing the specified pc value,
|
|
|
|
|
or 0 if there is none. Backward compatibility, no section. */
|
|
|
|
|
|
|
|
|
|
struct block *
|
2000-07-30 01:48:28 +00:00
|
|
|
|
block_for_pc (register CORE_ADDR pc)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
return block_for_pc_sect (pc, find_pc_mapped_section (pc));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Return the function containing pc value PC in section SECTION.
|
|
|
|
|
Returns 0 if function is not known. */
|
|
|
|
|
|
|
|
|
|
struct symbol *
|
2000-07-30 01:48:28 +00:00
|
|
|
|
find_pc_sect_function (CORE_ADDR pc, struct sec *section)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
register struct block *b = block_for_pc_sect (pc, section);
|
|
|
|
|
if (b == 0)
|
|
|
|
|
return 0;
|
|
|
|
|
return block_function (b);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Return the function containing pc value PC.
|
|
|
|
|
Returns 0 if function is not known. Backward compatibility, no section */
|
|
|
|
|
|
|
|
|
|
struct symbol *
|
2000-07-30 01:48:28 +00:00
|
|
|
|
find_pc_function (CORE_ADDR pc)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
return find_pc_sect_function (pc, find_pc_mapped_section (pc));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* These variables are used to cache the most recent result
|
|
|
|
|
* of find_pc_partial_function. */
|
|
|
|
|
|
1999-07-07 20:19:36 +00:00
|
|
|
|
static CORE_ADDR cache_pc_function_low = 0;
|
|
|
|
|
static CORE_ADDR cache_pc_function_high = 0;
|
|
|
|
|
static char *cache_pc_function_name = 0;
|
1999-04-16 01:35:26 +00:00
|
|
|
|
static struct sec *cache_pc_function_section = NULL;
|
|
|
|
|
|
|
|
|
|
/* Clear cache, e.g. when symbol table is discarded. */
|
|
|
|
|
|
|
|
|
|
void
|
2000-07-30 01:48:28 +00:00
|
|
|
|
clear_pc_function_cache (void)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
cache_pc_function_low = 0;
|
|
|
|
|
cache_pc_function_high = 0;
|
1999-07-07 20:19:36 +00:00
|
|
|
|
cache_pc_function_name = (char *) 0;
|
1999-04-16 01:35:26 +00:00
|
|
|
|
cache_pc_function_section = NULL;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Finds the "function" (text symbol) that is smaller than PC but
|
|
|
|
|
greatest of all of the potential text symbols in SECTION. Sets
|
|
|
|
|
*NAME and/or *ADDRESS conditionally if that pointer is non-null.
|
|
|
|
|
If ENDADDR is non-null, then set *ENDADDR to be the end of the
|
|
|
|
|
function (exclusive), but passing ENDADDR as non-null means that
|
|
|
|
|
the function might cause symbols to be read. This function either
|
|
|
|
|
succeeds or fails (not halfway succeeds). If it succeeds, it sets
|
|
|
|
|
*NAME, *ADDRESS, and *ENDADDR to real information and returns 1.
|
|
|
|
|
If it fails, it sets *NAME, *ADDRESS, and *ENDADDR to zero and
|
|
|
|
|
returns 0. */
|
|
|
|
|
|
|
|
|
|
int
|
2000-07-30 01:48:28 +00:00
|
|
|
|
find_pc_sect_partial_function (CORE_ADDR pc, asection *section, char **name,
|
|
|
|
|
CORE_ADDR *address, CORE_ADDR *endaddr)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
struct partial_symtab *pst;
|
1999-07-07 20:19:36 +00:00
|
|
|
|
struct symbol *f;
|
1999-04-16 01:35:26 +00:00
|
|
|
|
struct minimal_symbol *msymbol;
|
|
|
|
|
struct partial_symbol *psb;
|
1999-07-07 20:19:36 +00:00
|
|
|
|
struct obj_section *osect;
|
1999-04-16 01:35:26 +00:00
|
|
|
|
int i;
|
|
|
|
|
CORE_ADDR mapped_pc;
|
|
|
|
|
|
|
|
|
|
mapped_pc = overlay_mapped_address (pc, section);
|
|
|
|
|
|
1999-07-07 20:19:36 +00:00
|
|
|
|
if (mapped_pc >= cache_pc_function_low &&
|
1999-04-16 01:35:26 +00:00
|
|
|
|
mapped_pc < cache_pc_function_high &&
|
|
|
|
|
section == cache_pc_function_section)
|
|
|
|
|
goto return_cached_value;
|
|
|
|
|
|
|
|
|
|
/* If sigtramp is in the u area, it counts as a function (especially
|
|
|
|
|
important for step_1). */
|
|
|
|
|
#if defined SIGTRAMP_START
|
1999-07-07 20:19:36 +00:00
|
|
|
|
if (IN_SIGTRAMP (mapped_pc, (char *) NULL))
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
1999-07-07 20:19:36 +00:00
|
|
|
|
cache_pc_function_low = SIGTRAMP_START (mapped_pc);
|
|
|
|
|
cache_pc_function_high = SIGTRAMP_END (mapped_pc);
|
|
|
|
|
cache_pc_function_name = "<sigtramp>";
|
1999-04-16 01:35:26 +00:00
|
|
|
|
cache_pc_function_section = section;
|
|
|
|
|
goto return_cached_value;
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
msymbol = lookup_minimal_symbol_by_pc_section (mapped_pc, section);
|
|
|
|
|
pst = find_pc_sect_psymtab (mapped_pc, section);
|
|
|
|
|
if (pst)
|
|
|
|
|
{
|
|
|
|
|
/* Need to read the symbols to get a good value for the end address. */
|
|
|
|
|
if (endaddr != NULL && !pst->readin)
|
|
|
|
|
{
|
|
|
|
|
/* Need to get the terminal in case symbol-reading produces
|
|
|
|
|
output. */
|
|
|
|
|
target_terminal_ours_for_output ();
|
|
|
|
|
PSYMTAB_TO_SYMTAB (pst);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (pst->readin)
|
|
|
|
|
{
|
|
|
|
|
/* Checking whether the msymbol has a larger value is for the
|
|
|
|
|
"pathological" case mentioned in print_frame_info. */
|
|
|
|
|
f = find_pc_sect_function (mapped_pc, section);
|
|
|
|
|
if (f != NULL
|
|
|
|
|
&& (msymbol == NULL
|
|
|
|
|
|| (BLOCK_START (SYMBOL_BLOCK_VALUE (f))
|
|
|
|
|
>= SYMBOL_VALUE_ADDRESS (msymbol))))
|
|
|
|
|
{
|
1999-07-07 20:19:36 +00:00
|
|
|
|
cache_pc_function_low = BLOCK_START (SYMBOL_BLOCK_VALUE (f));
|
|
|
|
|
cache_pc_function_high = BLOCK_END (SYMBOL_BLOCK_VALUE (f));
|
|
|
|
|
cache_pc_function_name = SYMBOL_NAME (f);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
cache_pc_function_section = section;
|
|
|
|
|
goto return_cached_value;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
/* Now that static symbols go in the minimal symbol table, perhaps
|
|
|
|
|
we could just ignore the partial symbols. But at least for now
|
|
|
|
|
we use the partial or minimal symbol, whichever is larger. */
|
|
|
|
|
psb = find_pc_sect_psymbol (pst, mapped_pc, section);
|
|
|
|
|
|
|
|
|
|
if (psb
|
|
|
|
|
&& (msymbol == NULL ||
|
|
|
|
|
(SYMBOL_VALUE_ADDRESS (psb)
|
|
|
|
|
>= SYMBOL_VALUE_ADDRESS (msymbol))))
|
|
|
|
|
{
|
|
|
|
|
/* This case isn't being cached currently. */
|
|
|
|
|
if (address)
|
|
|
|
|
*address = SYMBOL_VALUE_ADDRESS (psb);
|
|
|
|
|
if (name)
|
|
|
|
|
*name = SYMBOL_NAME (psb);
|
|
|
|
|
/* endaddr non-NULL can't happen here. */
|
|
|
|
|
return 1;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Not in the normal symbol tables, see if the pc is in a known section.
|
|
|
|
|
If it's not, then give up. This ensures that anything beyond the end
|
|
|
|
|
of the text seg doesn't appear to be part of the last function in the
|
|
|
|
|
text segment. */
|
|
|
|
|
|
|
|
|
|
osect = find_pc_sect_section (mapped_pc, section);
|
|
|
|
|
|
|
|
|
|
if (!osect)
|
|
|
|
|
msymbol = NULL;
|
|
|
|
|
|
|
|
|
|
/* Must be in the minimal symbol table. */
|
|
|
|
|
if (msymbol == NULL)
|
|
|
|
|
{
|
|
|
|
|
/* No available symbol. */
|
|
|
|
|
if (name != NULL)
|
|
|
|
|
*name = 0;
|
|
|
|
|
if (address != NULL)
|
|
|
|
|
*address = 0;
|
|
|
|
|
if (endaddr != NULL)
|
|
|
|
|
*endaddr = 0;
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
1999-07-07 20:19:36 +00:00
|
|
|
|
cache_pc_function_low = SYMBOL_VALUE_ADDRESS (msymbol);
|
|
|
|
|
cache_pc_function_name = SYMBOL_NAME (msymbol);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
cache_pc_function_section = section;
|
|
|
|
|
|
|
|
|
|
/* Use the lesser of the next minimal symbol in the same section, or
|
|
|
|
|
the end of the section, as the end of the function. */
|
1999-07-07 20:19:36 +00:00
|
|
|
|
|
1999-04-16 01:35:26 +00:00
|
|
|
|
/* Step over other symbols at this same address, and symbols in
|
|
|
|
|
other sections, to find the next symbol in this section with
|
|
|
|
|
a different address. */
|
|
|
|
|
|
1999-07-07 20:19:36 +00:00
|
|
|
|
for (i = 1; SYMBOL_NAME (msymbol + i) != NULL; i++)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
1999-07-07 20:19:36 +00:00
|
|
|
|
if (SYMBOL_VALUE_ADDRESS (msymbol + i) != SYMBOL_VALUE_ADDRESS (msymbol)
|
|
|
|
|
&& SYMBOL_BFD_SECTION (msymbol + i) == SYMBOL_BFD_SECTION (msymbol))
|
1999-04-16 01:35:26 +00:00
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (SYMBOL_NAME (msymbol + i) != NULL
|
|
|
|
|
&& SYMBOL_VALUE_ADDRESS (msymbol + i) < osect->endaddr)
|
|
|
|
|
cache_pc_function_high = SYMBOL_VALUE_ADDRESS (msymbol + i);
|
|
|
|
|
else
|
|
|
|
|
/* We got the start address from the last msymbol in the objfile.
|
|
|
|
|
So the end address is the end of the section. */
|
|
|
|
|
cache_pc_function_high = osect->endaddr;
|
|
|
|
|
|
1999-07-07 20:19:36 +00:00
|
|
|
|
return_cached_value:
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
|
|
|
|
if (address)
|
|
|
|
|
{
|
|
|
|
|
if (pc_in_unmapped_range (pc, section))
|
1999-07-07 20:19:36 +00:00
|
|
|
|
*address = overlay_unmapped_address (cache_pc_function_low, section);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
else
|
1999-07-07 20:19:36 +00:00
|
|
|
|
*address = cache_pc_function_low;
|
1999-04-16 01:35:26 +00:00
|
|
|
|
}
|
1999-07-07 20:19:36 +00:00
|
|
|
|
|
1999-04-16 01:35:26 +00:00
|
|
|
|
if (name)
|
|
|
|
|
*name = cache_pc_function_name;
|
|
|
|
|
|
|
|
|
|
if (endaddr)
|
|
|
|
|
{
|
|
|
|
|
if (pc_in_unmapped_range (pc, section))
|
1999-07-07 20:19:36 +00:00
|
|
|
|
{
|
1999-04-16 01:35:26 +00:00
|
|
|
|
/* Because the high address is actually beyond the end of
|
|
|
|
|
the function (and therefore possibly beyond the end of
|
|
|
|
|
the overlay), we must actually convert (high - 1)
|
|
|
|
|
and then add one to that. */
|
|
|
|
|
|
1999-07-07 20:19:36 +00:00
|
|
|
|
*endaddr = 1 + overlay_unmapped_address (cache_pc_function_high - 1,
|
1999-04-16 01:35:26 +00:00
|
|
|
|
section);
|
1999-07-07 20:19:36 +00:00
|
|
|
|
}
|
1999-04-16 01:35:26 +00:00
|
|
|
|
else
|
1999-07-07 20:19:36 +00:00
|
|
|
|
*endaddr = cache_pc_function_high;
|
1999-04-16 01:35:26 +00:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return 1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Backward compatibility, no section argument */
|
|
|
|
|
|
|
|
|
|
int
|
2000-07-30 01:48:28 +00:00
|
|
|
|
find_pc_partial_function (CORE_ADDR pc, char **name, CORE_ADDR *address,
|
|
|
|
|
CORE_ADDR *endaddr)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
1999-07-07 20:19:36 +00:00
|
|
|
|
asection *section;
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
|
|
|
|
section = find_pc_overlay (pc);
|
|
|
|
|
return find_pc_sect_partial_function (pc, section, name, address, endaddr);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Return the innermost stack frame executing inside of BLOCK,
|
|
|
|
|
or NULL if there is no such frame. If BLOCK is NULL, just return NULL. */
|
|
|
|
|
|
|
|
|
|
struct frame_info *
|
2000-07-30 01:48:28 +00:00
|
|
|
|
block_innermost_frame (struct block *block)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
struct frame_info *frame;
|
|
|
|
|
register CORE_ADDR start;
|
|
|
|
|
register CORE_ADDR end;
|
|
|
|
|
|
|
|
|
|
if (block == NULL)
|
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
|
|
start = BLOCK_START (block);
|
|
|
|
|
end = BLOCK_END (block);
|
|
|
|
|
|
|
|
|
|
frame = NULL;
|
|
|
|
|
while (1)
|
|
|
|
|
{
|
|
|
|
|
frame = get_prev_frame (frame);
|
|
|
|
|
if (frame == NULL)
|
|
|
|
|
return NULL;
|
|
|
|
|
if (frame->pc >= start && frame->pc < end)
|
|
|
|
|
return frame;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Return the full FRAME which corresponds to the given CORE_ADDR
|
|
|
|
|
or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
|
|
|
|
|
|
|
|
|
|
struct frame_info *
|
2000-07-30 01:48:28 +00:00
|
|
|
|
find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
struct frame_info *frame = NULL;
|
|
|
|
|
|
1999-07-07 20:19:36 +00:00
|
|
|
|
if (frame_addr == (CORE_ADDR) 0)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
|
|
while (1)
|
|
|
|
|
{
|
|
|
|
|
frame = get_prev_frame (frame);
|
|
|
|
|
if (frame == NULL)
|
|
|
|
|
return NULL;
|
|
|
|
|
if (FRAME_FP (frame) == frame_addr)
|
|
|
|
|
return frame;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#ifdef SIGCONTEXT_PC_OFFSET
|
|
|
|
|
/* Get saved user PC for sigtramp from sigcontext for BSD style sigtramp. */
|
|
|
|
|
|
|
|
|
|
CORE_ADDR
|
2000-07-30 01:48:28 +00:00
|
|
|
|
sigtramp_saved_pc (struct frame_info *frame)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
CORE_ADDR sigcontext_addr;
|
2000-08-09 20:09:01 +00:00
|
|
|
|
char *buf;
|
1999-04-16 01:35:26 +00:00
|
|
|
|
int ptrbytes = TARGET_PTR_BIT / TARGET_CHAR_BIT;
|
|
|
|
|
int sigcontext_offs = (2 * TARGET_INT_BIT) / TARGET_CHAR_BIT;
|
|
|
|
|
|
2000-08-09 20:09:01 +00:00
|
|
|
|
buf = alloca (ptrbytes);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
/* Get sigcontext address, it is the third parameter on the stack. */
|
|
|
|
|
if (frame->next)
|
|
|
|
|
sigcontext_addr = read_memory_integer (FRAME_ARGS_ADDRESS (frame->next)
|
|
|
|
|
+ FRAME_ARGS_SKIP
|
|
|
|
|
+ sigcontext_offs,
|
|
|
|
|
ptrbytes);
|
|
|
|
|
else
|
|
|
|
|
sigcontext_addr = read_memory_integer (read_register (SP_REGNUM)
|
1999-07-07 20:19:36 +00:00
|
|
|
|
+ sigcontext_offs,
|
1999-04-16 01:35:26 +00:00
|
|
|
|
ptrbytes);
|
|
|
|
|
|
|
|
|
|
/* Don't cause a memory_error when accessing sigcontext in case the stack
|
|
|
|
|
layout has changed or the stack is corrupt. */
|
|
|
|
|
target_read_memory (sigcontext_addr + SIGCONTEXT_PC_OFFSET, buf, ptrbytes);
|
|
|
|
|
return extract_unsigned_integer (buf, ptrbytes);
|
|
|
|
|
}
|
|
|
|
|
#endif /* SIGCONTEXT_PC_OFFSET */
|
|
|
|
|
|
1999-04-26 18:34:20 +00:00
|
|
|
|
|
|
|
|
|
/* Are we in a call dummy? The code below which allows DECR_PC_AFTER_BREAK
|
|
|
|
|
below is for infrun.c, which may give the macro a pc without that
|
|
|
|
|
subtracted out. */
|
|
|
|
|
|
|
|
|
|
extern CORE_ADDR text_end;
|
|
|
|
|
|
|
|
|
|
int
|
2000-07-30 01:48:28 +00:00
|
|
|
|
pc_in_call_dummy_before_text_end (CORE_ADDR pc, CORE_ADDR sp,
|
|
|
|
|
CORE_ADDR frame_address)
|
1999-04-26 18:34:20 +00:00
|
|
|
|
{
|
|
|
|
|
return ((pc) >= text_end - CALL_DUMMY_LENGTH
|
|
|
|
|
&& (pc) <= text_end + DECR_PC_AFTER_BREAK);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
int
|
2000-07-30 01:48:28 +00:00
|
|
|
|
pc_in_call_dummy_after_text_end (CORE_ADDR pc, CORE_ADDR sp,
|
|
|
|
|
CORE_ADDR frame_address)
|
1999-04-26 18:34:20 +00:00
|
|
|
|
{
|
|
|
|
|
return ((pc) >= text_end
|
|
|
|
|
&& (pc) <= text_end + CALL_DUMMY_LENGTH + DECR_PC_AFTER_BREAK);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Is the PC in a call dummy? SP and FRAME_ADDRESS are the bottom and
|
|
|
|
|
top of the stack frame which we are checking, where "bottom" and
|
|
|
|
|
"top" refer to some section of memory which contains the code for
|
|
|
|
|
the call dummy. Calls to this macro assume that the contents of
|
|
|
|
|
SP_REGNUM and FP_REGNUM (or the saved values thereof), respectively,
|
|
|
|
|
are the things to pass.
|
|
|
|
|
|
|
|
|
|
This won't work on the 29k, where SP_REGNUM and FP_REGNUM don't
|
|
|
|
|
have that meaning, but the 29k doesn't use ON_STACK. This could be
|
|
|
|
|
fixed by generalizing this scheme, perhaps by passing in a frame
|
|
|
|
|
and adding a few fields, at least on machines which need them for
|
|
|
|
|
PC_IN_CALL_DUMMY.
|
|
|
|
|
|
|
|
|
|
Something simpler, like checking for the stack segment, doesn't work,
|
|
|
|
|
since various programs (threads implementations, gcc nested function
|
|
|
|
|
stubs, etc) may either allocate stack frames in another segment, or
|
|
|
|
|
allocate other kinds of code on the stack. */
|
|
|
|
|
|
|
|
|
|
int
|
2000-07-30 01:48:28 +00:00
|
|
|
|
pc_in_call_dummy_on_stack (CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address)
|
1999-04-26 18:34:20 +00:00
|
|
|
|
{
|
|
|
|
|
return (INNER_THAN ((sp), (pc))
|
|
|
|
|
&& (frame_address != 0)
|
|
|
|
|
&& INNER_THAN ((pc), (frame_address)));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
int
|
2000-07-30 01:48:28 +00:00
|
|
|
|
pc_in_call_dummy_at_entry_point (CORE_ADDR pc, CORE_ADDR sp,
|
|
|
|
|
CORE_ADDR frame_address)
|
1999-04-26 18:34:20 +00:00
|
|
|
|
{
|
|
|
|
|
return ((pc) >= CALL_DUMMY_ADDRESS ()
|
|
|
|
|
&& (pc) <= (CALL_DUMMY_ADDRESS () + DECR_PC_AFTER_BREAK));
|
|
|
|
|
}
|
|
|
|
|
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* GENERIC DUMMY FRAMES
|
|
|
|
|
*
|
|
|
|
|
* The following code serves to maintain the dummy stack frames for
|
|
|
|
|
* inferior function calls (ie. when gdb calls into the inferior via
|
|
|
|
|
* call_function_by_hand). This code saves the machine state before
|
2000-09-01 23:39:11 +00:00
|
|
|
|
* the call in host memory, so we must maintain an independent stack
|
1999-04-16 01:35:26 +00:00
|
|
|
|
* and keep it consistant etc. I am attempting to make this code
|
|
|
|
|
* generic enough to be used by many targets.
|
|
|
|
|
*
|
|
|
|
|
* The cheapest and most generic way to do CALL_DUMMY on a new target
|
|
|
|
|
* is probably to define CALL_DUMMY to be empty, CALL_DUMMY_LENGTH to
|
|
|
|
|
* zero, and CALL_DUMMY_LOCATION to AT_ENTRY. Then you must remember
|
|
|
|
|
* to define PUSH_RETURN_ADDRESS, because no call instruction will be
|
|
|
|
|
* being executed by the target. Also FRAME_CHAIN_VALID as
|
1999-12-14 01:06:04 +00:00
|
|
|
|
* generic_{file,func}_frame_chain_valid and FIX_CALL_DUMMY as
|
1999-06-07 19:19:32 +00:00
|
|
|
|
* generic_fix_call_dummy. */
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
1999-04-26 18:34:20 +00:00
|
|
|
|
/* Dummy frame. This saves the processor state just prior to setting
|
|
|
|
|
up the inferior function call. Older targets save the registers
|
2000-04-26 02:53:02 +00:00
|
|
|
|
on the target stack (but that really slows down function calls). */
|
1999-04-26 18:34:20 +00:00
|
|
|
|
|
|
|
|
|
struct dummy_frame
|
|
|
|
|
{
|
|
|
|
|
struct dummy_frame *next;
|
|
|
|
|
|
|
|
|
|
CORE_ADDR pc;
|
|
|
|
|
CORE_ADDR fp;
|
|
|
|
|
CORE_ADDR sp;
|
1999-07-05 17:58:44 +00:00
|
|
|
|
CORE_ADDR top;
|
1999-04-26 18:34:20 +00:00
|
|
|
|
char *registers;
|
|
|
|
|
};
|
|
|
|
|
|
1999-04-16 01:35:26 +00:00
|
|
|
|
static struct dummy_frame *dummy_frame_stack = NULL;
|
|
|
|
|
|
|
|
|
|
/* Function: find_dummy_frame(pc, fp, sp)
|
|
|
|
|
Search the stack of dummy frames for one matching the given PC, FP and SP.
|
|
|
|
|
This is the work-horse for pc_in_call_dummy and read_register_dummy */
|
|
|
|
|
|
1999-07-07 20:19:36 +00:00
|
|
|
|
char *
|
2000-07-30 01:48:28 +00:00
|
|
|
|
generic_find_dummy_frame (CORE_ADDR pc, CORE_ADDR fp)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
1999-07-07 20:19:36 +00:00
|
|
|
|
struct dummy_frame *dummyframe;
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
|
|
|
|
if (pc != entry_point_address ())
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
|
|
for (dummyframe = dummy_frame_stack; dummyframe != NULL;
|
|
|
|
|
dummyframe = dummyframe->next)
|
1999-07-05 17:58:44 +00:00
|
|
|
|
if (fp == dummyframe->fp
|
|
|
|
|
|| fp == dummyframe->sp
|
|
|
|
|
|| fp == dummyframe->top)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
/* The frame in question lies between the saved fp and sp, inclusive */
|
1999-04-26 18:34:20 +00:00
|
|
|
|
return dummyframe->registers;
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Function: pc_in_call_dummy (pc, fp)
|
|
|
|
|
Return true if this is a dummy frame created by gdb for an inferior call */
|
|
|
|
|
|
|
|
|
|
int
|
2000-07-30 01:48:28 +00:00
|
|
|
|
generic_pc_in_call_dummy (CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR fp)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
/* if find_dummy_frame succeeds, then PC is in a call dummy */
|
1999-04-26 18:34:20 +00:00
|
|
|
|
/* Note: SP and not FP is passed on. */
|
|
|
|
|
return (generic_find_dummy_frame (pc, sp) != 0);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Function: read_register_dummy
|
|
|
|
|
Find a saved register from before GDB calls a function in the inferior */
|
|
|
|
|
|
|
|
|
|
CORE_ADDR
|
2000-07-30 01:48:28 +00:00
|
|
|
|
generic_read_register_dummy (CORE_ADDR pc, CORE_ADDR fp, int regno)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
char *dummy_regs = generic_find_dummy_frame (pc, fp);
|
|
|
|
|
|
|
|
|
|
if (dummy_regs)
|
|
|
|
|
return extract_address (&dummy_regs[REGISTER_BYTE (regno)],
|
1999-07-07 20:19:36 +00:00
|
|
|
|
REGISTER_RAW_SIZE (regno));
|
1999-04-16 01:35:26 +00:00
|
|
|
|
else
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Save all the registers on the dummy frame stack. Most ports save the
|
|
|
|
|
registers on the target stack. This results in lots of unnecessary memory
|
|
|
|
|
references, which are slow when debugging via a serial line. Instead, we
|
|
|
|
|
save all the registers internally, and never write them to the stack. The
|
|
|
|
|
registers get restored when the called function returns to the entry point,
|
|
|
|
|
where a breakpoint is laying in wait. */
|
|
|
|
|
|
|
|
|
|
void
|
2000-07-30 01:48:28 +00:00
|
|
|
|
generic_push_dummy_frame (void)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
struct dummy_frame *dummy_frame;
|
|
|
|
|
CORE_ADDR fp = (get_current_frame ())->frame;
|
|
|
|
|
|
|
|
|
|
/* check to see if there are stale dummy frames,
|
|
|
|
|
perhaps left over from when a longjump took us out of a
|
|
|
|
|
function that was called by the debugger */
|
|
|
|
|
|
|
|
|
|
dummy_frame = dummy_frame_stack;
|
|
|
|
|
while (dummy_frame)
|
|
|
|
|
if (INNER_THAN (dummy_frame->fp, fp)) /* stale -- destroy! */
|
|
|
|
|
{
|
|
|
|
|
dummy_frame_stack = dummy_frame->next;
|
2000-12-15 01:01:51 +00:00
|
|
|
|
xfree (dummy_frame->registers);
|
|
|
|
|
xfree (dummy_frame);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
dummy_frame = dummy_frame_stack;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
dummy_frame = dummy_frame->next;
|
|
|
|
|
|
|
|
|
|
dummy_frame = xmalloc (sizeof (struct dummy_frame));
|
1999-04-26 18:34:20 +00:00
|
|
|
|
dummy_frame->registers = xmalloc (REGISTER_BYTES);
|
|
|
|
|
|
* gdbarch.sh (POINTER_TO_ADDRESS, ADDRESS_TO_POINTER): Two new
functions which architectures can redefine, defaulting to
generic_pointer_to_address and generic_address_to_pointer.
* findvar.c (extract_typed_address, store_typed_address,
generic_pointer_to_address, generic_address_to_pointer): New
functions.
(POINTER_TO_ADDRESS, ADDRESS_TO_POINTER): Provide default
definitions.
(extract_address, store_address): Doc fixes.
* values.c (value_as_pointer): Doc fix.
(value_from_pointer): New function.
* defs.h (extract_typed_address, store_typed_address): New
declarations.
* inferior.h (generic_address_to_pointer,
generic_pointer_to_address): New declarations.
* value.h (value_from_pointer): New declaration.
* ax-gdb.c (const_var_ref): Use value_from_pointer, not
value_from_longest.
* blockframe.c (generic_push_dummy_frame): Use read_pc and
read_sp, not read_register.
* c-valprint.c (c_val_print): Use extract_typed_address instead of
extract_address to extract vtable entries and references.
* cp-valprint.c (cp_print_value_fields): Use value_from_pointer
instead of value_from_longest to extract the vtable's address.
* eval.c (evaluate_subexp_standard): Use value_from_pointer
instead of value_from_longest to compute `this', and for doing
pointer-to-member dereferencing.
* findvar.c (read_register): Use extract_unsigned_integer, not
extract_address.
(read_var_value): Use store_typed_address instead of store_address
for building label values.
(locate_var_value): Use value_from_pointer instead of
value_from_longest.
* hppa-tdep.c (find_stub_with_shl_get): Use value_from_pointer,
instead of value_from_longest, to build arguments to __d_shl_get.
* printcmd.c (set_next_address): Use value_from_pointer, not
value_from_longest.
(x_command): Use value_from_pointer, not value_from_longest.
* tracepoint.c (set_traceframe_context): Use value_from_pointer,
not value_from_longest.
* valarith.c (value_add, value_sub): Use value_from_pointer, not
value_from_longest.
* valops.c (find_function_in_inferior, value_coerce_array,
value_coerce_function, value_addr, hand_function_call): Same.
* value.h (COERCE_REF): Use unpack_pointer, not unpack_long.
* values.c (unpack_long): Use extract_typed_address to produce
addresses from pointers and references, not extract_address.
(value_from_longest): Use store_typed_address instead of
store_address to produce pointer and reference values.
2000-04-14 18:43:41 +00:00
|
|
|
|
dummy_frame->pc = read_pc ();
|
|
|
|
|
dummy_frame->sp = read_sp ();
|
1999-07-07 20:19:36 +00:00
|
|
|
|
dummy_frame->top = dummy_frame->sp;
|
|
|
|
|
dummy_frame->fp = fp;
|
1999-04-26 18:34:20 +00:00
|
|
|
|
read_register_bytes (0, dummy_frame->registers, REGISTER_BYTES);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
dummy_frame->next = dummy_frame_stack;
|
|
|
|
|
dummy_frame_stack = dummy_frame;
|
|
|
|
|
}
|
|
|
|
|
|
1999-07-05 17:58:44 +00:00
|
|
|
|
void
|
2000-07-30 01:48:28 +00:00
|
|
|
|
generic_save_dummy_frame_tos (CORE_ADDR sp)
|
1999-07-05 17:58:44 +00:00
|
|
|
|
{
|
|
|
|
|
dummy_frame_stack->top = sp;
|
|
|
|
|
}
|
|
|
|
|
|
1999-12-22 21:45:38 +00:00
|
|
|
|
/* Restore the machine state from either the saved dummy stack or a
|
1999-04-16 01:35:26 +00:00
|
|
|
|
real stack frame. */
|
|
|
|
|
|
|
|
|
|
void
|
1999-12-22 21:45:38 +00:00
|
|
|
|
generic_pop_current_frame (void (*popper) (struct frame_info * frame))
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
struct frame_info *frame = get_current_frame ();
|
1999-12-22 21:45:38 +00:00
|
|
|
|
|
1999-07-07 20:19:36 +00:00
|
|
|
|
if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
|
1999-04-16 01:35:26 +00:00
|
|
|
|
generic_pop_dummy_frame ();
|
|
|
|
|
else
|
1999-12-22 21:45:38 +00:00
|
|
|
|
(*popper) (frame);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Function: pop_dummy_frame
|
|
|
|
|
Restore the machine state from a saved dummy stack frame. */
|
|
|
|
|
|
|
|
|
|
void
|
2000-07-30 01:48:28 +00:00
|
|
|
|
generic_pop_dummy_frame (void)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
struct dummy_frame *dummy_frame = dummy_frame_stack;
|
|
|
|
|
|
|
|
|
|
/* FIXME: what if the first frame isn't the right one, eg..
|
|
|
|
|
because one call-by-hand function has done a longjmp into another one? */
|
|
|
|
|
|
|
|
|
|
if (!dummy_frame)
|
|
|
|
|
error ("Can't pop dummy frame!");
|
|
|
|
|
dummy_frame_stack = dummy_frame->next;
|
1999-04-26 18:34:20 +00:00
|
|
|
|
write_register_bytes (0, dummy_frame->registers, REGISTER_BYTES);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
flush_cached_frames ();
|
1999-04-26 18:34:20 +00:00
|
|
|
|
|
2000-12-15 01:01:51 +00:00
|
|
|
|
xfree (dummy_frame->registers);
|
|
|
|
|
xfree (dummy_frame);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Function: frame_chain_valid
|
|
|
|
|
Returns true for a user frame or a call_function_by_hand dummy frame,
|
|
|
|
|
and false for the CRT0 start-up frame. Purpose is to terminate backtrace */
|
1999-07-07 20:19:36 +00:00
|
|
|
|
|
1999-04-16 01:35:26 +00:00
|
|
|
|
int
|
2000-07-30 01:48:28 +00:00
|
|
|
|
generic_file_frame_chain_valid (CORE_ADDR fp, struct frame_info *fi)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
1999-07-07 20:19:36 +00:00
|
|
|
|
if (PC_IN_CALL_DUMMY (FRAME_SAVED_PC (fi), fp, fp))
|
|
|
|
|
return 1; /* don't prune CALL_DUMMY frames */
|
|
|
|
|
else /* fall back to default algorithm (see frame.h) */
|
1999-04-16 01:35:26 +00:00
|
|
|
|
return (fp != 0
|
|
|
|
|
&& (INNER_THAN (fi->frame, fp) || fi->frame == fp)
|
1999-07-07 20:19:36 +00:00
|
|
|
|
&& !inside_entry_file (FRAME_SAVED_PC (fi)));
|
1999-04-16 01:35:26 +00:00
|
|
|
|
}
|
1999-07-07 20:19:36 +00:00
|
|
|
|
|
1999-12-14 01:06:04 +00:00
|
|
|
|
int
|
2000-07-30 01:48:28 +00:00
|
|
|
|
generic_func_frame_chain_valid (CORE_ADDR fp, struct frame_info *fi)
|
1999-12-14 01:06:04 +00:00
|
|
|
|
{
|
|
|
|
|
if (PC_IN_CALL_DUMMY ((fi)->pc, fp, fp))
|
|
|
|
|
return 1; /* don't prune CALL_DUMMY frames */
|
|
|
|
|
else /* fall back to default algorithm (see frame.h) */
|
|
|
|
|
return (fp != 0
|
|
|
|
|
&& (INNER_THAN (fi->frame, fp) || fi->frame == fp)
|
|
|
|
|
&& !inside_main_func ((fi)->pc)
|
|
|
|
|
&& !inside_entry_func ((fi)->pc));
|
|
|
|
|
}
|
|
|
|
|
|
1999-06-07 19:19:32 +00:00
|
|
|
|
/* Function: fix_call_dummy
|
|
|
|
|
Stub function. Generic dumy frames typically do not need to fix
|
|
|
|
|
the frame being created */
|
|
|
|
|
|
|
|
|
|
void
|
2000-07-30 01:48:28 +00:00
|
|
|
|
generic_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
|
|
|
|
|
struct value **args, struct type *type, int gcc_p)
|
1999-06-07 19:19:32 +00:00
|
|
|
|
{
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
|
1999-04-16 01:35:26 +00:00
|
|
|
|
/* Function: get_saved_register
|
|
|
|
|
Find register number REGNUM relative to FRAME and put its (raw,
|
|
|
|
|
target format) contents in *RAW_BUFFER.
|
|
|
|
|
|
|
|
|
|
Set *OPTIMIZED if the variable was optimized out (and thus can't be
|
|
|
|
|
fetched). Note that this is never set to anything other than zero
|
|
|
|
|
in this implementation.
|
|
|
|
|
|
|
|
|
|
Set *LVAL to lval_memory, lval_register, or not_lval, depending on
|
|
|
|
|
whether the value was fetched from memory, from a register, or in a
|
|
|
|
|
strange and non-modifiable way (e.g. a frame pointer which was
|
|
|
|
|
calculated rather than fetched). We will use not_lval for values
|
|
|
|
|
fetched from generic dummy frames.
|
|
|
|
|
|
2001-01-12 20:43:35 +00:00
|
|
|
|
Set *ADDRP to the address, either in memory or as a REGISTER_BYTE
|
1999-04-16 01:35:26 +00:00
|
|
|
|
offset into the registers array. If the value is stored in a dummy
|
|
|
|
|
frame, set *ADDRP to zero.
|
|
|
|
|
|
|
|
|
|
To use this implementation, define a function called
|
|
|
|
|
"get_saved_register" in your target code, which simply passes all
|
|
|
|
|
of its arguments to this function.
|
|
|
|
|
|
|
|
|
|
The argument RAW_BUFFER must point to aligned memory. */
|
|
|
|
|
|
|
|
|
|
void
|
2000-07-30 01:48:28 +00:00
|
|
|
|
generic_get_saved_register (char *raw_buffer, int *optimized, CORE_ADDR *addrp,
|
|
|
|
|
struct frame_info *frame, int regnum,
|
|
|
|
|
enum lval_type *lval)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
if (!target_has_registers)
|
|
|
|
|
error ("No registers.");
|
|
|
|
|
|
|
|
|
|
/* Normal systems don't optimize out things with register numbers. */
|
|
|
|
|
if (optimized != NULL)
|
|
|
|
|
*optimized = 0;
|
|
|
|
|
|
1999-07-07 20:19:36 +00:00
|
|
|
|
if (addrp) /* default assumption: not found in memory */
|
1999-04-16 01:35:26 +00:00
|
|
|
|
*addrp = 0;
|
|
|
|
|
|
|
|
|
|
/* Note: since the current frame's registers could only have been
|
|
|
|
|
saved by frames INTERIOR TO the current frame, we skip examining
|
|
|
|
|
the current frame itself: otherwise, we would be getting the
|
|
|
|
|
previous frame's registers which were saved by the current frame. */
|
|
|
|
|
|
|
|
|
|
while (frame && ((frame = frame->next) != NULL))
|
|
|
|
|
{
|
|
|
|
|
if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
|
|
|
|
|
{
|
1999-07-07 20:19:36 +00:00
|
|
|
|
if (lval) /* found it in a CALL_DUMMY frame */
|
1999-04-16 01:35:26 +00:00
|
|
|
|
*lval = not_lval;
|
|
|
|
|
if (raw_buffer)
|
1999-07-07 20:19:36 +00:00
|
|
|
|
memcpy (raw_buffer,
|
|
|
|
|
generic_find_dummy_frame (frame->pc, frame->frame) +
|
1999-04-16 01:35:26 +00:00
|
|
|
|
REGISTER_BYTE (regnum),
|
|
|
|
|
REGISTER_RAW_SIZE (regnum));
|
1999-07-07 20:19:36 +00:00
|
|
|
|
return;
|
1999-04-16 01:35:26 +00:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
FRAME_INIT_SAVED_REGS (frame);
|
|
|
|
|
if (frame->saved_regs != NULL
|
|
|
|
|
&& frame->saved_regs[regnum] != 0)
|
|
|
|
|
{
|
1999-07-07 20:19:36 +00:00
|
|
|
|
if (lval) /* found it saved on the stack */
|
1999-04-16 01:35:26 +00:00
|
|
|
|
*lval = lval_memory;
|
|
|
|
|
if (regnum == SP_REGNUM)
|
|
|
|
|
{
|
1999-07-07 20:19:36 +00:00
|
|
|
|
if (raw_buffer) /* SP register treated specially */
|
|
|
|
|
store_address (raw_buffer, REGISTER_RAW_SIZE (regnum),
|
1999-04-16 01:35:26 +00:00
|
|
|
|
frame->saved_regs[regnum]);
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
1999-07-07 20:19:36 +00:00
|
|
|
|
if (addrp) /* any other register */
|
1999-04-16 01:35:26 +00:00
|
|
|
|
*addrp = frame->saved_regs[regnum];
|
|
|
|
|
if (raw_buffer)
|
1999-07-07 20:19:36 +00:00
|
|
|
|
read_memory (frame->saved_regs[regnum], raw_buffer,
|
1999-04-16 01:35:26 +00:00
|
|
|
|
REGISTER_RAW_SIZE (regnum));
|
|
|
|
|
}
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* If we get thru the loop to this point, it means the register was
|
|
|
|
|
not saved in any frame. Return the actual live-register value. */
|
|
|
|
|
|
1999-07-07 20:19:36 +00:00
|
|
|
|
if (lval) /* found it in a live register */
|
1999-04-16 01:35:26 +00:00
|
|
|
|
*lval = lval_register;
|
|
|
|
|
if (addrp)
|
|
|
|
|
*addrp = REGISTER_BYTE (regnum);
|
|
|
|
|
if (raw_buffer)
|
|
|
|
|
read_register_gen (regnum, raw_buffer);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void
|
1999-08-23 22:40:00 +00:00
|
|
|
|
_initialize_blockframe (void)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
obstack_init (&frame_cache_obstack);
|
|
|
|
|
}
|