darling-gdb/gdb/alpha-nat.c

273 lines
7.6 KiB
C
Raw Normal View History

/* Low level Alpha interface, for GDB when running native.
Copyright 1993, 1995, 1996, 1998, 1999, 2000, 2001, 2003
2001-03-06 08:22:02 +00:00
Free Software Foundation, Inc.
1999-07-07 20:19:36 +00:00
This file is part of GDB.
1999-07-07 20:19:36 +00:00
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
1999-07-07 20:19:36 +00:00
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
1999-07-07 20:19:36 +00:00
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include "defs.h"
#include "gdb_string.h"
#include "inferior.h"
#include "gdbcore.h"
#include "target.h"
#include "regcache.h"
#include "alpha-tdep.h"
#include <sys/ptrace.h>
#ifdef __linux__
1999-07-07 20:19:36 +00:00
#include <asm/reg.h>
#include <alpha/ptrace.h>
#else
#include <alpha/coreregs.h>
#endif
#include <sys/user.h>
/* Prototypes for local functions. */
2000-05-28 01:12:42 +00:00
static void fetch_osf_core_registers (char *, unsigned, int, CORE_ADDR);
static void fetch_elf_core_registers (char *, unsigned, int, CORE_ADDR);
/* Extract the register values out of the core file and store
them where `read_register' will find them.
CORE_REG_SECT points to the register values themselves, read into memory.
CORE_REG_SIZE is the size of that area.
WHICH says which set of registers we are handling (0 = int, 2 = float
1999-07-07 20:19:36 +00:00
on machines where they are discontiguous).
REG_ADDR is the offset from u.u_ar0 to the register values relative to
1999-07-07 20:19:36 +00:00
core_reg_sect. This is used with old-fashioned core files to
locate the registers in a large upage-plus-stack ".reg" section.
Original upage address X is at location core_reg_sect+x+reg_addr.
*/
static void
2000-07-30 01:48:28 +00:00
fetch_osf_core_registers (char *core_reg_sect, unsigned core_reg_size,
int which, CORE_ADDR reg_addr)
{
int regno;
int addr;
int bad_reg = -1;
/* Table to map a gdb regnum to an index in the core register
section. The floating point register values are garbage in
OSF/1.2 core files. OSF5 uses different names for the register
enum list, need to handle two cases. The actual values are the
same. */
static int const core_reg_mapping[ALPHA_NUM_REGS] =
{
#ifdef NCF_REGS
#define EFL NCF_REGS
CF_V0, CF_T0, CF_T1, CF_T2, CF_T3, CF_T4, CF_T5, CF_T6,
CF_T7, CF_S0, CF_S1, CF_S2, CF_S3, CF_S4, CF_S5, CF_S6,
CF_A0, CF_A1, CF_A2, CF_A3, CF_A4, CF_A5, CF_T8, CF_T9,
CF_T10, CF_T11, CF_RA, CF_T12, CF_AT, CF_GP, CF_SP, -1,
EFL + 0, EFL + 1, EFL + 2, EFL + 3, EFL + 4, EFL + 5, EFL + 6, EFL + 7,
EFL + 8, EFL + 9, EFL + 10, EFL + 11, EFL + 12, EFL + 13, EFL + 14, EFL + 15,
EFL + 16, EFL + 17, EFL + 18, EFL + 19, EFL + 20, EFL + 21, EFL + 22, EFL + 23,
EFL + 24, EFL + 25, EFL + 26, EFL + 27, EFL + 28, EFL + 29, EFL + 30, EFL + 31,
CF_PC, -1
#else
#define EFL (EF_SIZE / 8)
1999-07-07 20:19:36 +00:00
EF_V0, EF_T0, EF_T1, EF_T2, EF_T3, EF_T4, EF_T5, EF_T6,
EF_T7, EF_S0, EF_S1, EF_S2, EF_S3, EF_S4, EF_S5, EF_S6,
EF_A0, EF_A1, EF_A2, EF_A3, EF_A4, EF_A5, EF_T8, EF_T9,
EF_T10, EF_T11, EF_RA, EF_T12, EF_AT, EF_GP, EF_SP, -1,
EFL + 0, EFL + 1, EFL + 2, EFL + 3, EFL + 4, EFL + 5, EFL + 6, EFL + 7,
EFL + 8, EFL + 9, EFL + 10, EFL + 11, EFL + 12, EFL + 13, EFL + 14, EFL + 15,
EFL + 16, EFL + 17, EFL + 18, EFL + 19, EFL + 20, EFL + 21, EFL + 22, EFL + 23,
EFL + 24, EFL + 25, EFL + 26, EFL + 27, EFL + 28, EFL + 29, EFL + 30, EFL + 31,
EF_PC, -1
#endif
};
for (regno = 0; regno < ALPHA_NUM_REGS; regno++)
{
if (CANNOT_FETCH_REGISTER (regno))
{
supply_register (regno, NULL);
continue;
}
addr = 8 * core_reg_mapping[regno];
if (addr < 0 || addr >= core_reg_size)
{
/* ??? UNIQUE is a new addition. Don't generate an error. */
if (regno == ALPHA_UNIQUE_REGNUM)
{
supply_register (regno, NULL);
continue;
}
if (bad_reg < 0)
bad_reg = regno;
}
else
{
supply_register (regno, core_reg_sect + addr);
}
}
if (bad_reg >= 0)
{
error ("Register %s not found in core file.", REGISTER_NAME (bad_reg));
}
}
static void
2000-07-30 01:48:28 +00:00
fetch_elf_core_registers (char *core_reg_sect, unsigned core_reg_size,
int which, CORE_ADDR reg_addr)
{
1999-07-07 20:19:36 +00:00
if (core_reg_size < 32 * 8)
{
error ("Core file register section too small (%u bytes).", core_reg_size);
return;
}
switch (which)
{
case 0: /* integer registers */
/* PC is in slot 32; UNIQUE is in slot 33, if present. */
alpha_supply_int_regs (-1, core_reg_sect, core_reg_sect + 31*8,
(core_reg_size >= 33 * 8
? core_reg_sect + 32*8 : NULL));
break;
case 2: /* floating-point registers */
/* FPCR is in slot 32. */
alpha_supply_fp_regs (-1, core_reg_sect, core_reg_sect + 31*8);
break;
default:
break;
}
}
/* Map gdb internal register number to a ptrace ``address''.
These ``addresses'' are defined in <sys/ptrace.h>, with
the exception of ALPHA_UNIQUE_PTRACE_ADDR. */
#ifndef ALPHA_UNIQUE_PTRACE_ADDR
#define ALPHA_UNIQUE_PTRACE_ADDR 0
#endif
CORE_ADDR
2000-07-30 01:48:28 +00:00
register_addr (int regno, CORE_ADDR blockend)
{
if (regno == PC_REGNUM)
return PC;
if (regno == ALPHA_UNIQUE_REGNUM)
return ALPHA_UNIQUE_PTRACE_ADDR;
if (regno < FP0_REGNUM)
return GPR_BASE + regno;
else
return FPR_BASE + regno - FP0_REGNUM;
}
int
2000-07-30 01:48:28 +00:00
kernel_u_size (void)
{
return (sizeof (struct user));
}
#if defined(USE_PROC_FS) || defined(HAVE_GREGSET_T)
#include <sys/procfs.h>
/* Prototypes for supply_gregset etc. */
#include "gregset.h"
/* Locate the UNIQUE value within the gregset_t. */
#ifndef ALPHA_REGSET_UNIQUE
#define ALPHA_REGSET_UNIQUE(ptr) NULL
#endif
/*
* See the comment in m68k-tdep.c regarding the utility of these functions.
*/
1999-07-07 20:19:36 +00:00
void
supply_gregset (gdb_gregset_t *gregsetp)
{
long *regp = ALPHA_REGSET_BASE (gregsetp);
void *unique = ALPHA_REGSET_UNIQUE (gregsetp);
/* PC is in slot 32. */
alpha_supply_int_regs (-1, regp, regp + 31, unique);
}
void
fill_gregset (gdb_gregset_t *gregsetp, int regno)
{
long *regp = ALPHA_REGSET_BASE (gregsetp);
void *unique = ALPHA_REGSET_UNIQUE (gregsetp);
/* PC is in slot 32. */
alpha_fill_int_regs (regno, regp, regp + 31, unique);
}
/*
* Now we do the same thing for floating-point registers.
* Again, see the comments in m68k-tdep.c.
*/
void
supply_fpregset (gdb_fpregset_t *fpregsetp)
{
long *regp = ALPHA_REGSET_BASE (fpregsetp);
/* FPCR is in slot 32. */
alpha_supply_fp_regs (-1, regp, regp + 31);
}
void
fill_fpregset (gdb_fpregset_t *fpregsetp, int regno)
{
long *regp = ALPHA_REGSET_BASE (fpregsetp);
/* FPCR is in slot 32. */
alpha_fill_fp_regs (regno, regp, regp + 31);
}
#endif
1999-07-07 20:19:36 +00:00
/* Register that we are able to handle alpha core file formats. */
static struct core_fns alpha_osf_core_fns =
{
/* This really is bfd_target_unknown_flavour. */
1999-10-05 23:13:56 +00:00
bfd_target_unknown_flavour, /* core_flavour */
default_check_format, /* check_format */
default_core_sniffer, /* core_sniffer */
fetch_osf_core_registers, /* core_read_registers */
NULL /* next */
};
static struct core_fns alpha_elf_core_fns =
{
1999-10-05 23:13:56 +00:00
bfd_target_elf_flavour, /* core_flavour */
default_check_format, /* check_format */
default_core_sniffer, /* core_sniffer */
fetch_elf_core_registers, /* core_read_registers */
NULL /* next */
};
void
2000-07-30 01:48:28 +00:00
_initialize_core_alpha (void)
{
add_core_fns (&alpha_osf_core_fns);
add_core_fns (&alpha_elf_core_fns);
}