darling-gdb/gdb/convex-tdep.c

919 lines
25 KiB
C
Raw Normal View History

1991-03-28 16:28:29 +00:00
/* Convex stuff for GDB.
Copyright (C) 1990, 1991 Free Software Foundation, Inc.
1991-03-28 16:28:29 +00:00
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
1991-03-28 16:28:29 +00:00
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
1991-03-28 16:28:29 +00:00
This program is distributed in the hope that it will be useful,
1991-03-28 16:28:29 +00:00
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
1991-03-28 16:28:29 +00:00
#include "defs.h"
#include "command.h"
#include "symtab.h"
#include "value.h"
#include "frame.h"
#include "inferior.h"
#include "wait.h"
#include <signal.h>
#include <fcntl.h>
#include "gdbcore.h"
#include <sys/param.h>
#include <sys/dir.h>
#include <sys/user.h>
#include <sys/ioctl.h>
#include <sys/pcntl.h>
#include <sys/thread.h>
#include <sys/proc.h>
#include <sys/file.h>
#include <sys/stat.h>
#include <sys/mman.h>
#include "gdbcmd.h"
exec_file_command (filename, from_tty)
char *filename;
int from_tty;
{
int val;
int n;
struct stat st_exec;
/* Eliminate all traces of old exec file.
Mark text segment as empty. */
if (execfile)
free (execfile);
execfile = 0;
data_start = 0;
data_end = 0;
text_start = 0;
text_end = 0;
exec_data_start = 0;
exec_data_end = 0;
if (execchan >= 0)
close (execchan);
execchan = -1;
n_exec = 0;
/* Now open and digest the file the user requested, if any. */
if (filename)
{
filename = tilde_expand (filename);
make_cleanup (free, filename);
execchan = openp (getenv ("PATH"), 1, filename, O_RDONLY, 0,
&execfile);
if (execchan < 0)
perror_with_name (filename);
if (myread (execchan, &filehdr, sizeof filehdr) < 0)
perror_with_name (filename);
if (! IS_SOFF_MAGIC (filehdr.h_magic))
error ("%s: not an executable file.", filename);
if (myread (execchan, &opthdr, filehdr.h_opthdr) <= 0)
perror_with_name (filename);
/* Read through the section headers.
For text, data, etc, record an entry in the exec file map.
Record text_start and text_end. */
lseek (execchan, (long) filehdr.h_scnptr, 0);
for (n = 0; n < filehdr.h_nscns; n++)
{
if (myread (execchan, &scnhdr, sizeof scnhdr) < 0)
perror_with_name (filename);
if ((scnhdr.s_flags & S_TYPMASK) >= S_TEXT
&& (scnhdr.s_flags & S_TYPMASK) <= S_COMON)
{
exec_map[n_exec].mem_addr = scnhdr.s_vaddr;
exec_map[n_exec].mem_end = scnhdr.s_vaddr + scnhdr.s_size;
exec_map[n_exec].file_addr = scnhdr.s_scnptr;
exec_map[n_exec].type = scnhdr.s_flags & S_TYPMASK;
n_exec++;
if ((scnhdr.s_flags & S_TYPMASK) == S_TEXT)
{
text_start = scnhdr.s_vaddr;
text_end = scnhdr.s_vaddr + scnhdr.s_size;
}
}
}
fstat (execchan, &st_exec);
exec_mtime = st_exec.st_mtime;
validate_files ();
}
else if (from_tty)
printf_filtered ("No exec file now.\n");
/* Tell display code (if any) about the changed file name. */
if (exec_file_display_hook)
(*exec_file_display_hook) (filename);
}
/* Read data from SOFF exec or core file.
Return 0 on success, EIO if address out of bounds. */
int
xfer_core_file (memaddr, myaddr, len)
CORE_ADDR memaddr;
char *myaddr;
int len;
{
register int i;
register int n;
register int val;
int xferchan;
char **xferfile;
int fileptr;
int returnval = 0;
while (len > 0)
{
xferfile = 0;
xferchan = 0;
/* Determine which file the next bunch of addresses reside in,
and where in the file. Set the file's read/write pointer
to point at the proper place for the desired address
and set xferfile and xferchan for the correct file.
If desired address is nonexistent, leave them zero.
i is set to the number of bytes that can be handled
along with the next address. */
i = len;
for (n = 0; n < n_core; n++)
{
if (memaddr >= core_map[n].mem_addr && memaddr < core_map[n].mem_end
&& (core_map[n].thread == -1
|| core_map[n].thread == inferior_thread))
{
i = min (len, core_map[n].mem_end - memaddr);
fileptr = core_map[n].file_addr + memaddr - core_map[n].mem_addr;
if (core_map[n].file_addr)
{
xferfile = &corefile;
xferchan = corechan;
}
break;
}
else if (core_map[n].mem_addr >= memaddr
&& core_map[n].mem_addr < memaddr + i)
i = core_map[n].mem_addr - memaddr;
}
if (!xferfile)
for (n = 0; n < n_exec; n++)
{
if (memaddr >= exec_map[n].mem_addr
&& memaddr < exec_map[n].mem_end)
{
i = min (len, exec_map[n].mem_end - memaddr);
fileptr = exec_map[n].file_addr + memaddr
- exec_map[n].mem_addr;
if (exec_map[n].file_addr)
{
xferfile = &execfile;
xferchan = execchan;
}
break;
}
else if (exec_map[n].mem_addr >= memaddr
&& exec_map[n].mem_addr < memaddr + i)
i = exec_map[n].mem_addr - memaddr;
}
/* Now we know which file to use.
Set up its pointer and transfer the data. */
if (xferfile)
{
if (*xferfile == 0)
if (xferfile == &execfile)
error ("No program file to examine.");
else
error ("No core dump file or running program to examine.");
val = lseek (xferchan, fileptr, 0);
if (val < 0)
perror_with_name (*xferfile);
val = myread (xferchan, myaddr, i);
if (val < 0)
perror_with_name (*xferfile);
}
/* If this address is for nonexistent memory,
read zeros if reading, or do nothing if writing. */
else
{
bzero (myaddr, i);
returnval = EIO;
}
memaddr += i;
myaddr += i;
len -= i;
}
return returnval;
}
/* Here from info files command to print an address map. */
print_maps ()
{
struct pmap ptrs[200];
int n;
/* ID strings for core and executable file sections */
static char *idstr[] =
{
"0", "text", "data", "tdata", "bss", "tbss",
"common", "ttext", "ctx", "tctx", "10", "11", "12",
};
for (n = 0; n < n_core; n++)
{
core_map[n].which = 0;
ptrs[n] = core_map[n];
}
for (n = 0; n < n_exec; n++)
{
exec_map[n].which = 1;
ptrs[n_core+n] = exec_map[n];
}
qsort (ptrs, n_core + n_exec, sizeof *ptrs, ptr_cmp);
for (n = 0; n < n_core + n_exec; n++)
{
struct pmap *p = &ptrs[n];
if (n > 0)
{
if (p->mem_addr < ptrs[n-1].mem_end)
p->mem_addr = ptrs[n-1].mem_end;
if (p->mem_addr >= p->mem_end)
continue;
}
printf_filtered ("%08x .. %08x %-6s %s\n",
p->mem_addr, p->mem_end, idstr[p->type],
p->which ? execfile : corefile);
}
}
/* Compare routine to put file sections in order.
Sort into increasing order on address, and put core file sections
before exec file sections if both files contain the same addresses. */
static ptr_cmp (a, b)
struct pmap *a, *b;
{
if (a->mem_addr != b->mem_addr) return a->mem_addr - b->mem_addr;
return a->which - b->which;
}
/* Trapped internal variables are used to handle special registers.
A trapped i.v. calls a hook here every time it is dereferenced,
to provide a new value for the variable, and it calls a hook here
when a new value is assigned, to do something with the value.
The vector registers are $vl, $vs, $vm, $vN, $VN (N in 0..7).
The communication registers are $cN, $CN (N in 0..63).
They not handled as regular registers because it's expensive to
read them, and their size varies, and they have too many names. */
/* Return 1 if NAME is a trapped internal variable, else 0. */
int
is_trapped_internalvar (name)
char *name;
{
if ((name[0] == 'c' || name[0] == 'C')
&& name[1] >= '0' && name[1] <= '9'
&& (name[2] == '\0'
|| (name[2] >= '0' && name[2] <= '9'
&& name[3] == '\0' && name[1] != '0'))
&& atoi (&name[1]) < 64) return 1;
if ((name[0] == 'v' || name[0] == 'V')
&& (((name[1] & -8) == '0' && name[2] == '\0')
|| !strcmp (name, "vl")
|| !strcmp (name, "vs")
|| !strcmp (name, "vm")))
return 1;
else return 0;
}
/* Return the value of trapped internal variable VAR */
value
value_of_trapped_internalvar (var)
struct internalvar *var;
{
char *name = var->name;
value val;
struct type *type;
long len = *read_vector_register (VL_REGNUM);
if (len <= 0 || len > 128) len = 128;
if (!strcmp (name, "vl"))
{
val = value_from_longest (builtin_type_int,
1991-03-28 16:28:29 +00:00
(LONGEST) *read_vector_register_1 (VL_REGNUM));
}
else if (!strcmp (name, "vs"))
{
val = value_from_longest (builtin_type_int,
1991-03-28 16:28:29 +00:00
(LONGEST) *read_vector_register_1 (VS_REGNUM));
}
else if (!strcmp (name, "vm"))
{
long vm[4];
long i, *p;
bcopy (read_vector_register_1 (VM_REGNUM), vm, sizeof vm);
* gdbtypes.c (create_array_type): Complete rewrite. Now requires a optional type to decorate as an array type, the type of the index, and the bounds of the array. Records this additional info in the array type for use with languages with nonzero array bounds. * gdbtypes.h (enum type_code): Update comment for TYPE_CODE_ARRAY to note that arrays may have bounds. * gdbtypes.h (create_array_type): Update prototype. * c-exp.y (ptype production): Adjust for new create_array_type calling conventions. * coffread.c (decode_type): Call create_array_type rather than handcrafting array types. * convex-tdep.c (value_type): Remove, now use create_array_type. * convex-tdep.c (value_of_trapped_internalvar): Convert calls to vector_type into calls to create_array_type. * dwarfread.c (decode_subscr_data): Name changed to decode_subscript_data_item throughout. * dwarfread.c (decode_subscript_data_item): Rewrite to use create_array_type. Now records index type and range as well. * dwarfread.c (dwarf_read_array_type): Rewrite as part of change to use create_array_type. * dwarfread.c (read_subroutine_type): Test existing user defined types before decorating them, to ensure they are blank, and complain about it if they are not. * dwarfread.c (decode_fund_type): For unrecognized types, always return some valid type (type integer). If the unrecognized type cannot be an implementation defined type, complain as well. * m88k-tdep.c (pushed_size): Update comment for TYPE_CODE_ARRAY. * m88k-tdep.c (store_param): Update comment for TYPE_CODE_ARRAY. * mipsread.c (upgrade_type): Add FIXME comment that code to handcraft arrays should be replaced with call to create_array_type. * stabsread.c (read_array_type): Replace code to handcraft array types with call to create_array_type. * valprint.c (type_print_varspec_prefix): Minor formatting change, join lines that don't need to be split.
1992-12-15 02:52:11 +00:00
type = create_array_type ((struct type *) NULL, builtin_type_int,
builtin_type_int, 0, len - 1);
1991-03-28 16:28:29 +00:00
val = allocate_value (type);
p = (long *) VALUE_CONTENTS (val);
for (i = 0; i < len; i++)
*p++ = !! (vm[3 - (i >> 5)] & (1 << (i & 037)));
}
else if (name[0] == 'V')
{
* gdbtypes.c (create_array_type): Complete rewrite. Now requires a optional type to decorate as an array type, the type of the index, and the bounds of the array. Records this additional info in the array type for use with languages with nonzero array bounds. * gdbtypes.h (enum type_code): Update comment for TYPE_CODE_ARRAY to note that arrays may have bounds. * gdbtypes.h (create_array_type): Update prototype. * c-exp.y (ptype production): Adjust for new create_array_type calling conventions. * coffread.c (decode_type): Call create_array_type rather than handcrafting array types. * convex-tdep.c (value_type): Remove, now use create_array_type. * convex-tdep.c (value_of_trapped_internalvar): Convert calls to vector_type into calls to create_array_type. * dwarfread.c (decode_subscr_data): Name changed to decode_subscript_data_item throughout. * dwarfread.c (decode_subscript_data_item): Rewrite to use create_array_type. Now records index type and range as well. * dwarfread.c (dwarf_read_array_type): Rewrite as part of change to use create_array_type. * dwarfread.c (read_subroutine_type): Test existing user defined types before decorating them, to ensure they are blank, and complain about it if they are not. * dwarfread.c (decode_fund_type): For unrecognized types, always return some valid type (type integer). If the unrecognized type cannot be an implementation defined type, complain as well. * m88k-tdep.c (pushed_size): Update comment for TYPE_CODE_ARRAY. * m88k-tdep.c (store_param): Update comment for TYPE_CODE_ARRAY. * mipsread.c (upgrade_type): Add FIXME comment that code to handcraft arrays should be replaced with call to create_array_type. * stabsread.c (read_array_type): Replace code to handcraft array types with call to create_array_type. * valprint.c (type_print_varspec_prefix): Minor formatting change, join lines that don't need to be split.
1992-12-15 02:52:11 +00:00
type = create_array_type ((struct type *) NULL, builtin_type_long_long,
builtin_type_int, 0, len - 1);
1991-03-28 16:28:29 +00:00
val = allocate_value (type);
bcopy (read_vector_register_1 (name[1] - '0'),
VALUE_CONTENTS (val), TYPE_LENGTH (type));
}
else if (name[0] == 'v')
{
long *p1, *p2;
* gdbtypes.c (create_array_type): Complete rewrite. Now requires a optional type to decorate as an array type, the type of the index, and the bounds of the array. Records this additional info in the array type for use with languages with nonzero array bounds. * gdbtypes.h (enum type_code): Update comment for TYPE_CODE_ARRAY to note that arrays may have bounds. * gdbtypes.h (create_array_type): Update prototype. * c-exp.y (ptype production): Adjust for new create_array_type calling conventions. * coffread.c (decode_type): Call create_array_type rather than handcrafting array types. * convex-tdep.c (value_type): Remove, now use create_array_type. * convex-tdep.c (value_of_trapped_internalvar): Convert calls to vector_type into calls to create_array_type. * dwarfread.c (decode_subscr_data): Name changed to decode_subscript_data_item throughout. * dwarfread.c (decode_subscript_data_item): Rewrite to use create_array_type. Now records index type and range as well. * dwarfread.c (dwarf_read_array_type): Rewrite as part of change to use create_array_type. * dwarfread.c (read_subroutine_type): Test existing user defined types before decorating them, to ensure they are blank, and complain about it if they are not. * dwarfread.c (decode_fund_type): For unrecognized types, always return some valid type (type integer). If the unrecognized type cannot be an implementation defined type, complain as well. * m88k-tdep.c (pushed_size): Update comment for TYPE_CODE_ARRAY. * m88k-tdep.c (store_param): Update comment for TYPE_CODE_ARRAY. * mipsread.c (upgrade_type): Add FIXME comment that code to handcraft arrays should be replaced with call to create_array_type. * stabsread.c (read_array_type): Replace code to handcraft array types with call to create_array_type. * valprint.c (type_print_varspec_prefix): Minor formatting change, join lines that don't need to be split.
1992-12-15 02:52:11 +00:00
type = create_array_type ((struct type *) NULL, builtin_type_long,
builtin_type_int, 0, len - 1);
1991-03-28 16:28:29 +00:00
val = allocate_value (type);
p1 = read_vector_register_1 (name[1] - '0');
p2 = (long *) VALUE_CONTENTS (val);
while (--len >= 0) {p1++; *p2++ = *p1++;}
}
else if (name[0] == 'c')
val = value_from_longest (builtin_type_int,
1991-03-28 16:28:29 +00:00
read_comm_register (atoi (&name[1])));
else if (name[0] == 'C')
val = value_from_longest (builtin_type_long_long,
1991-03-28 16:28:29 +00:00
read_comm_register (atoi (&name[1])));
VALUE_LVAL (val) = lval_internalvar;
VALUE_INTERNALVAR (val) = var;
return val;
}
/* Handle a new value assigned to a trapped internal variable */
void
set_trapped_internalvar (var, val, bitpos, bitsize, offset)
struct internalvar *var;
value val;
int bitpos, bitsize, offset;
{
char *name = var->name;
long long newval = value_as_long (val);
if (!strcmp (name, "vl"))
write_vector_register (VL_REGNUM, 0, newval);
else if (!strcmp (name, "vs"))
write_vector_register (VS_REGNUM, 0, newval);
else if (name[0] == 'c' || name[0] == 'C')
write_comm_register (atoi (&name[1]), newval);
else if (!strcmp (name, "vm"))
error ("can't assign to $vm");
else
{
offset /= bitsize / 8;
write_vector_register (name[1] - '0', offset, newval);
}
}
/* Print an integer value when no format was specified. gdb normally
prints these values in decimal, but the the leading 0x80000000 of
pointers produces intolerable 10-digit negative numbers.
If it looks like an address, print it in hex instead. */
decout (stream, type, val)
FILE *stream;
struct type *type;
LONGEST val;
{
long lv = val;
switch (output_radix)
{
case 0:
if ((lv == val || (unsigned) lv == val)
&& ((lv & 0xf0000000) == 0x80000000
|| ((lv & 0xf0000000) == 0xf0000000 && lv < STACK_END_ADDR)))
{
fprintf_filtered (stream, "%#x", lv);
return;
}
case 10:
fprintf_filtered (stream, TYPE_UNSIGNED (type) ? "%llu" : "%lld", val);
return;
case 8:
if (TYPE_LENGTH (type) <= sizeof lv)
fprintf_filtered (stream, "%#o", lv);
else
fprintf_filtered (stream, "%#llo", val);
return;
case 16:
if (TYPE_LENGTH (type) <= sizeof lv)
fprintf_filtered (stream, "%#x", lv);
else
fprintf_filtered (stream, "%#llx", val);
return;
}
}
/* Change the default output radix to 10 or 16, or set it to 0 (heuristic).
This command is mostly obsolete now that the print command allows
formats to apply to aggregates, but is still handy occasionally. */
static void
set_base_command (arg)
char *arg;
{
int new_radix;
if (!arg)
output_radix = 0;
else
{
new_radix = atoi (arg);
if (new_radix != 10 && new_radix != 16 && new_radix != 8)
error ("base must be 8, 10 or 16, or null");
else output_radix = new_radix;
}
}
/* Turn pipelining on or off in the inferior. */
static void
set_pipelining_command (arg)
char *arg;
{
if (!arg)
{
sequential = !sequential;
printf_filtered ("%s\n", sequential ? "off" : "on");
}
else if (!strcmp (arg, "on"))
sequential = 0;
else if (!strcmp (arg, "off"))
sequential = 1;
else error ("valid args are `on', to allow instructions to overlap, or\n\
`off', to prevent it and thereby pinpoint exceptions.");
}
/* Enable, disable, or force parallel execution in the inferior. */
static void
set_parallel_command (arg)
char *arg;
{
struct rlimit rl;
int prevparallel = parallel;
if (!strncmp (arg, "fixed", strlen (arg)))
parallel = 2;
else if (!strcmp (arg, "on"))
parallel = 1;
else if (!strcmp (arg, "off"))
parallel = 0;
else error ("valid args are `on', to allow multiple threads, or\n\
`fixed', to force multiple threads, or\n\
`off', to run with one thread only.");
if ((prevparallel == 0) != (parallel == 0) && inferior_pid)
printf_filtered ("will take effect at next run.\n");
getrlimit (RLIMIT_CONCUR, &rl);
rl.rlim_cur = parallel ? rl.rlim_max : 1;
setrlimit (RLIMIT_CONCUR, &rl);
if (inferior_pid)
set_fixed_scheduling (inferior_pid, parallel == 2);
}
/* Add a new name for an existing command. */
static void
alias_command (arg)
char *arg;
{
static char *aliaserr = "usage is `alias NEW OLD', no args allowed";
char *newname = arg;
struct cmd_list_element *new, *old;
if (!arg)
error_no_arg ("newname oldname");
new = lookup_cmd (&arg, cmdlist, "", -1);
if (new && !strncmp (newname, new->name, strlen (new->name)))
{
newname = new->name;
if (!(*arg == '-'
|| (*arg >= 'a' && *arg <= 'z')
|| (*arg >= 'A' && *arg <= 'Z')
|| (*arg >= '0' && *arg <= '9')))
error (aliaserr);
}
else
{
arg = newname;
while (*arg == '-'
|| (*arg >= 'a' && *arg <= 'z')
|| (*arg >= 'A' && *arg <= 'Z')
|| (*arg >= '0' && *arg <= '9'))
arg++;
if (*arg != ' ' && *arg != '\t')
error (aliaserr);
*arg = '\0';
arg++;
}
old = lookup_cmd (&arg, cmdlist, "", 0);
if (*arg != '\0')
error (aliaserr);
if (new && !strncmp (newname, new->name, strlen (new->name)))
{
char *tem;
if (new->class == (int) class_user || new->class == (int) class_alias)
tem = "Redefine command \"%s\"? ";
else
tem = "Really redefine built-in command \"%s\"? ";
if (!query (tem, new->name))
error ("Command \"%s\" not redefined.", new->name);
}
add_com (newname, class_alias, old->function, old->doc);
}
/* Print the current thread number, and any threads with signals in the
queue. */
thread_info ()
{
struct threadpid *p;
if (have_inferior_p ())
{
ps.pi_buffer = (char *) &comm_registers;
ps.pi_nbytes = sizeof comm_registers;
ps.pi_offset = 0;
ps.pi_thread = inferior_thread;
ioctl (inferior_fd, PIXRDCREGS, &ps);
}
printf_filtered ("Current thread %d stopped with signal %d.%d (%s).\n",
inferior_thread, stop_signal, stop_sigcode,
subsig_name (stop_signal, stop_sigcode));
for (p = signal_stack; p->pid; p--)
printf_filtered ("Thread %d stopped with signal %d.%d (%s).\n",
p->thread, p->signo, p->subsig,
subsig_name (p->signo, p->subsig));
if (iscrlbit (comm_registers.crctl.lbits.cc, 64+13))
printf_filtered ("New thread start pc %#x\n",
(long) (comm_registers.crreg.pcpsw >> 32));
}
/* Return string describing a signal.subcode number */
static char *
subsig_name (signo, subcode)
int signo, subcode;
{
static char *subsig4[] = {
"error exit", "privileged instruction", "unknown",
"unknown", "undefined opcode",
0};
static char *subsig5[] = {0,
"breakpoint", "single step", "fork trap", "exec trap", "pfork trap",
"join trap", "idle trap", "last thread", "wfork trap",
"process breakpoint", "trap instruction",
0};
static char *subsig8[] = {0,
"int overflow", "int divide check", "float overflow",
"float divide check", "float underflow", "reserved operand",
"sqrt error", "exp error", "ln error", "sin error", "cos error",
0};
static char *subsig10[] = {0,
"invalid inward ring address", "invalid outward ring call",
"invalid inward ring return", "invalid syscall gate",
"invalid rtn frame length", "invalid comm reg address",
"invalid trap gate",
0};
static char *subsig11[] = {0,
"read access denied", "write access denied", "execute access denied",
"segment descriptor fault", "page table fault", "data reference fault",
"i/o access denied", "levt pte invalid",
0};
static char **subsig_list[] =
{0, 0, 0, 0, subsig4, subsig5, 0, 0, subsig8, 0, subsig10, subsig11, 0};
int i;
char *p;
1991-03-28 16:28:29 +00:00
if ((p = strsignal (signo)) == NULL)
p = "unknown";
1991-03-28 16:28:29 +00:00
if (signo >= (sizeof subsig_list / sizeof *subsig_list)
|| !subsig_list[signo])
return p;
for (i = 1; subsig_list[signo][i]; i++)
if (i == subcode)
return subsig_list[signo][subcode];
return p;
}
/* Print a compact display of thread status, essentially x/i $pc
for all active threads. */
static void
threadstat ()
{
int t;
for (t = 0; t < n_threads; t++)
if (thread_state[t] == PI_TALIVE)
{
printf_filtered ("%d%c %08x%c %d.%d ", t,
(t == inferior_thread ? '*' : ' '), thread_pc[t],
(thread_is_in_kernel[t] ? '#' : ' '),
thread_signal[t], thread_sigcode[t]);
print_insn (thread_pc[t], stdout);
printf_filtered ("\n");
}
}
/* Change the current thread to ARG. */
set_thread_command (arg)
char *arg;
{
int thread;
if (!arg)
{
threadstat ();
return;
}
thread = parse_and_eval_address (arg);
if (thread < 0 || thread > n_threads || thread_state[thread] != PI_TALIVE)
error ("no such thread.");
select_thread (thread);
stop_pc = read_pc ();
flush_cached_frames ();
set_current_frame (create_new_frame (read_register (FP_REGNUM),
read_pc ()));
select_frame (get_current_frame (), 0);
print_stack_frame (selected_frame, selected_frame_level, -1);
1991-03-28 16:28:29 +00:00
}
/* Here on CONT command; gdb's dispatch address is changed to come here.
Set global variable ALL_CONTINUE to tell resume() that it should
start up all threads, and that a thread switch will not blow gdb's
mind. */
static void
convex_cont_command (proc_count_exp, from_tty)
char *proc_count_exp;
int from_tty;
{
all_continue = 1;
cont_command (proc_count_exp, from_tty);
}
/* Here on 1CONT command. Resume only the current thread. */
one_cont_command (proc_count_exp, from_tty)
char *proc_count_exp;
int from_tty;
{
cont_command (proc_count_exp, from_tty);
}
/* Print the contents and lock bits of all communication registers,
or just register ARG if ARG is a communication register,
or the 3-word resource structure in memory at address ARG. */
comm_registers_info (arg)
char *arg;
{
int i, regnum;
if (arg)
{
if (sscanf (arg, "$c%d", &regnum) == 1) {
1991-03-28 16:28:29 +00:00
;
} else if (sscanf (arg, "$C%d", &regnum) == 1) {
1991-03-28 16:28:29 +00:00
;
} else {
1991-03-28 16:28:29 +00:00
regnum = parse_and_eval_address (arg);
if (regnum > 0)
regnum &= ~0x8000;
}
1991-03-28 16:28:29 +00:00
if (regnum >= 64)
error ("%s: invalid register name.", arg);
/* if we got a (user) address, examine the resource struct there */
if (regnum < 0)
{
static int buf[3];
read_memory (regnum, buf, sizeof buf);
printf_filtered ("%08x %08x%08x%s\n", regnum, buf[1], buf[2],
buf[0] & 0xff ? " locked" : "");
return;
}
}
ps.pi_buffer = (char *) &comm_registers;
ps.pi_nbytes = sizeof comm_registers;
ps.pi_offset = 0;
ps.pi_thread = inferior_thread;
ioctl (inferior_fd, PIXRDCREGS, &ps);
for (i = 0; i < 64; i++)
if (!arg || i == regnum)
printf_filtered ("%2d 0x8%03x %016llx%s\n", i, i,
comm_registers.crreg.r4[i],
(iscrlbit (comm_registers.crctl.lbits.cc, i)
? " locked" : ""));
}
/* Print the psw */
static void
psw_info (arg)
char *arg;
{
struct pswbit
{
int bit;
int pos;
char *text;
};
static struct pswbit pswbit[] =
{
{ 0x80000000, -1, "A carry" },
{ 0x40000000, -1, "A integer overflow" },
{ 0x20000000, -1, "A zero divide" },
{ 0x10000000, -1, "Integer overflow enable" },
{ 0x08000000, -1, "Trace" },
{ 0x06000000, 25, "Frame length" },
{ 0x01000000, -1, "Sequential" },
{ 0x00800000, -1, "S carry" },
{ 0x00400000, -1, "S integer overflow" },
{ 0x00200000, -1, "S zero divide" },
{ 0x00100000, -1, "Zero divide enable" },
{ 0x00080000, -1, "Floating underflow" },
{ 0x00040000, -1, "Floating overflow" },
{ 0x00020000, -1, "Floating reserved operand" },
{ 0x00010000, -1, "Floating zero divide" },
{ 0x00008000, -1, "Floating error enable" },
{ 0x00004000, -1, "Floating underflow enable" },
{ 0x00002000, -1, "IEEE" },
{ 0x00001000, -1, "Sequential stores" },
{ 0x00000800, -1, "Intrinsic error" },
{ 0x00000400, -1, "Intrinsic error enable" },
{ 0x00000200, -1, "Trace thread creates" },
{ 0x00000100, -1, "Thread init trap" },
{ 0x000000e0, 5, "Reserved" },
{ 0x0000001f, 0, "Intrinsic error code" },
{0, 0, 0},
};
long psw;
struct pswbit *p;
if (arg)
psw = parse_and_eval_address (arg);
else
psw = read_register (PS_REGNUM);
for (p = pswbit; p->bit; p++)
{
if (p->pos < 0)
printf_filtered ("%08x %s %s\n", p->bit,
(psw & p->bit) ? "yes" : "no ", p->text);
else
printf_filtered ("%08x %3d %s\n", p->bit,
(psw & p->bit) >> p->pos, p->text);
}
}
_initialize_convex_dep ()
{
add_com ("alias", class_support, alias_command,
"Add a new name for an existing command.");
add_cmd ("base", class_vars, set_base_command,
"Change the integer output radix to 8, 10 or 16\n\
or use just `set base' with no args to return to the ad-hoc default,\n\
which is 16 for integers that look like addresses, 10 otherwise.",
&setlist);
add_cmd ("pipeline", class_run, set_pipelining_command,
"Enable or disable overlapped execution of instructions.\n\
With `set pipe off', exceptions are reported with\n\
$pc pointing at the instruction after the faulting one.\n\
The default is `set pipe on', which runs faster.",
&setlist);
add_cmd ("parallel", class_run, set_parallel_command,
"Enable or disable multi-threaded execution of parallel code.\n\
`set parallel off' means run the program on a single CPU.\n\
`set parallel fixed' means run the program with all CPUs assigned to it.\n\
`set parallel on' means run the program on any CPUs that are available.",
&setlist);
add_com ("1cont", class_run, one_cont_command,
"Continue the program, activating only the current thread.\n\
Args are the same as the `cont' command.");
add_com ("thread", class_run, set_thread_command,
"Change the current thread, the one under scrutiny and control.\n\
With no arg, show the active threads, the current one marked with *.");
add_info ("threads", thread_info,
"List status of active threads.");
add_info ("comm-registers", comm_registers_info,
"List communication registers and their contents.\n\
A communication register name as argument means describe only that register.\n\
An address as argument means describe the resource structure at that address.\n\
`Locked' means that the register has been sent to but not yet received from.");
add_info ("psw", psw_info,
"Display $ps, the processor status word, bit by bit.\n\
An argument means display that value's interpretation as a psw.");
add_cmd ("convex", no_class, 0, "Convex-specific commands.\n\
32-bit registers $pc $ps $sp $ap $fp $a1-5 $s0-7 $v0-7 $vl $vs $vm $c0-63\n\
64-bit registers $S0-7 $V0-7 $C0-63\n\
\n\
info threads display info on stopped threads waiting to signal\n\
thread display list of active threads\n\
thread N select thread N (its registers, stack, memory, etc.)\n\
step, next, etc step selected thread only\n\
1cont continue selected thread only\n\
cont continue all threads\n\
info comm-registers display contents of comm register(s) or a resource struct\n\
info psw display processor status word $ps\n\
set base N change integer radix used by `print' without a format\n\
set pipeline off exceptions are precise, $pc points after the faulting insn\n\
set pipeline on normal mode, $pc is somewhere ahead of faulting insn\n\
set parallel off program runs on a single CPU\n\
set parallel fixed all CPUs are assigned to the program\n\
set parallel on normal mode, parallel execution on random available CPUs\n\
",
&cmdlist);
}