1999-04-16 01:35:26 +00:00
|
|
|
|
/* Low level packing and unpacking of values for GDB, the GNU Debugger.
|
2001-03-06 08:22:02 +00:00
|
|
|
|
Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
|
|
|
|
|
1996, 1997, 1998, 1999, 2000
|
1999-04-16 01:35:26 +00:00
|
|
|
|
Free Software Foundation, Inc.
|
|
|
|
|
|
1999-07-07 20:19:36 +00:00
|
|
|
|
This file is part of GDB.
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
1999-07-07 20:19:36 +00:00
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
|
|
|
it under the terms of the GNU General Public License as published by
|
|
|
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
|
|
|
(at your option) any later version.
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
1999-07-07 20:19:36 +00:00
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
|
GNU General Public License for more details.
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
1999-07-07 20:19:36 +00:00
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
|
|
|
along with this program; if not, write to the Free Software
|
|
|
|
|
Foundation, Inc., 59 Temple Place - Suite 330,
|
|
|
|
|
Boston, MA 02111-1307, USA. */
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
|
|
|
|
#include "defs.h"
|
|
|
|
|
#include "gdb_string.h"
|
|
|
|
|
#include "symtab.h"
|
|
|
|
|
#include "gdbtypes.h"
|
|
|
|
|
#include "value.h"
|
|
|
|
|
#include "gdbcore.h"
|
|
|
|
|
#include "frame.h"
|
|
|
|
|
#include "command.h"
|
|
|
|
|
#include "gdbcmd.h"
|
|
|
|
|
#include "target.h"
|
|
|
|
|
#include "language.h"
|
|
|
|
|
#include "scm-lang.h"
|
|
|
|
|
#include "demangle.h"
|
|
|
|
|
|
|
|
|
|
/* Prototypes for exported functions. */
|
|
|
|
|
|
2000-05-28 01:12:42 +00:00
|
|
|
|
void _initialize_values (void);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
|
|
|
|
/* Prototypes for local functions. */
|
|
|
|
|
|
2000-05-28 01:12:42 +00:00
|
|
|
|
static value_ptr value_headof (value_ptr, struct type *, struct type *);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
2000-05-28 01:12:42 +00:00
|
|
|
|
static void show_values (char *, int);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
2000-05-28 01:12:42 +00:00
|
|
|
|
static void show_convenience (char *, int);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
2000-05-28 01:12:42 +00:00
|
|
|
|
static int vb_match (struct type *, int, struct type *);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
|
|
|
|
/* The value-history records all the values printed
|
|
|
|
|
by print commands during this session. Each chunk
|
|
|
|
|
records 60 consecutive values. The first chunk on
|
|
|
|
|
the chain records the most recent values.
|
|
|
|
|
The total number of values is in value_history_count. */
|
|
|
|
|
|
|
|
|
|
#define VALUE_HISTORY_CHUNK 60
|
|
|
|
|
|
|
|
|
|
struct value_history_chunk
|
1999-07-07 20:19:36 +00:00
|
|
|
|
{
|
|
|
|
|
struct value_history_chunk *next;
|
|
|
|
|
value_ptr values[VALUE_HISTORY_CHUNK];
|
|
|
|
|
};
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
|
|
|
|
/* Chain of chunks now in use. */
|
|
|
|
|
|
|
|
|
|
static struct value_history_chunk *value_history_chain;
|
|
|
|
|
|
|
|
|
|
static int value_history_count; /* Abs number of last entry stored */
|
|
|
|
|
|
|
|
|
|
/* List of all value objects currently allocated
|
|
|
|
|
(except for those released by calls to release_value)
|
|
|
|
|
This is so they can be freed after each command. */
|
|
|
|
|
|
|
|
|
|
static value_ptr all_values;
|
|
|
|
|
|
|
|
|
|
/* Allocate a value that has the correct length for type TYPE. */
|
|
|
|
|
|
|
|
|
|
value_ptr
|
2000-07-30 01:48:28 +00:00
|
|
|
|
allocate_value (struct type *type)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
register value_ptr val;
|
|
|
|
|
struct type *atype = check_typedef (type);
|
|
|
|
|
|
|
|
|
|
val = (struct value *) xmalloc (sizeof (struct value) + TYPE_LENGTH (atype));
|
|
|
|
|
VALUE_NEXT (val) = all_values;
|
|
|
|
|
all_values = val;
|
|
|
|
|
VALUE_TYPE (val) = type;
|
|
|
|
|
VALUE_ENCLOSING_TYPE (val) = type;
|
|
|
|
|
VALUE_LVAL (val) = not_lval;
|
|
|
|
|
VALUE_ADDRESS (val) = 0;
|
|
|
|
|
VALUE_FRAME (val) = 0;
|
|
|
|
|
VALUE_OFFSET (val) = 0;
|
|
|
|
|
VALUE_BITPOS (val) = 0;
|
|
|
|
|
VALUE_BITSIZE (val) = 0;
|
|
|
|
|
VALUE_REGNO (val) = -1;
|
|
|
|
|
VALUE_LAZY (val) = 0;
|
|
|
|
|
VALUE_OPTIMIZED_OUT (val) = 0;
|
|
|
|
|
VALUE_BFD_SECTION (val) = NULL;
|
|
|
|
|
VALUE_EMBEDDED_OFFSET (val) = 0;
|
|
|
|
|
VALUE_POINTED_TO_OFFSET (val) = 0;
|
|
|
|
|
val->modifiable = 1;
|
|
|
|
|
return val;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Allocate a value that has the correct length
|
|
|
|
|
for COUNT repetitions type TYPE. */
|
|
|
|
|
|
|
|
|
|
value_ptr
|
2000-07-30 01:48:28 +00:00
|
|
|
|
allocate_repeat_value (struct type *type, int count)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
1999-07-07 20:19:36 +00:00
|
|
|
|
int low_bound = current_language->string_lower_bound; /* ??? */
|
1999-04-16 01:35:26 +00:00
|
|
|
|
/* FIXME-type-allocation: need a way to free this type when we are
|
|
|
|
|
done with it. */
|
|
|
|
|
struct type *range_type
|
1999-07-07 20:19:36 +00:00
|
|
|
|
= create_range_type ((struct type *) NULL, builtin_type_int,
|
|
|
|
|
low_bound, count + low_bound - 1);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
/* FIXME-type-allocation: need a way to free this type when we are
|
|
|
|
|
done with it. */
|
|
|
|
|
return allocate_value (create_array_type ((struct type *) NULL,
|
|
|
|
|
type, range_type));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Return a mark in the value chain. All values allocated after the
|
|
|
|
|
mark is obtained (except for those released) are subject to being freed
|
|
|
|
|
if a subsequent value_free_to_mark is passed the mark. */
|
|
|
|
|
value_ptr
|
2000-07-30 01:48:28 +00:00
|
|
|
|
value_mark (void)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
return all_values;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Free all values allocated since MARK was obtained by value_mark
|
|
|
|
|
(except for those released). */
|
|
|
|
|
void
|
2000-07-30 01:48:28 +00:00
|
|
|
|
value_free_to_mark (value_ptr mark)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
value_ptr val, next;
|
|
|
|
|
|
|
|
|
|
for (val = all_values; val && val != mark; val = next)
|
|
|
|
|
{
|
|
|
|
|
next = VALUE_NEXT (val);
|
|
|
|
|
value_free (val);
|
|
|
|
|
}
|
|
|
|
|
all_values = val;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Free all the values that have been allocated (except for those released).
|
|
|
|
|
Called after each command, successful or not. */
|
|
|
|
|
|
|
|
|
|
void
|
2000-07-30 01:48:28 +00:00
|
|
|
|
free_all_values (void)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
register value_ptr val, next;
|
|
|
|
|
|
|
|
|
|
for (val = all_values; val; val = next)
|
|
|
|
|
{
|
|
|
|
|
next = VALUE_NEXT (val);
|
|
|
|
|
value_free (val);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
all_values = 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Remove VAL from the chain all_values
|
|
|
|
|
so it will not be freed automatically. */
|
|
|
|
|
|
|
|
|
|
void
|
2000-07-30 01:48:28 +00:00
|
|
|
|
release_value (register value_ptr val)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
register value_ptr v;
|
|
|
|
|
|
|
|
|
|
if (all_values == val)
|
|
|
|
|
{
|
|
|
|
|
all_values = val->next;
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
for (v = all_values; v; v = v->next)
|
|
|
|
|
{
|
|
|
|
|
if (v->next == val)
|
|
|
|
|
{
|
|
|
|
|
v->next = val->next;
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Release all values up to mark */
|
|
|
|
|
value_ptr
|
2000-07-30 01:48:28 +00:00
|
|
|
|
value_release_to_mark (value_ptr mark)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
value_ptr val, next;
|
|
|
|
|
|
|
|
|
|
for (val = next = all_values; next; next = VALUE_NEXT (next))
|
|
|
|
|
if (VALUE_NEXT (next) == mark)
|
|
|
|
|
{
|
|
|
|
|
all_values = VALUE_NEXT (next);
|
|
|
|
|
VALUE_NEXT (next) = 0;
|
|
|
|
|
return val;
|
|
|
|
|
}
|
|
|
|
|
all_values = 0;
|
|
|
|
|
return val;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Return a copy of the value ARG.
|
|
|
|
|
It contains the same contents, for same memory address,
|
|
|
|
|
but it's a different block of storage. */
|
|
|
|
|
|
|
|
|
|
value_ptr
|
2000-07-30 01:48:28 +00:00
|
|
|
|
value_copy (value_ptr arg)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
register struct type *encl_type = VALUE_ENCLOSING_TYPE (arg);
|
|
|
|
|
register value_ptr val = allocate_value (encl_type);
|
|
|
|
|
VALUE_TYPE (val) = VALUE_TYPE (arg);
|
|
|
|
|
VALUE_LVAL (val) = VALUE_LVAL (arg);
|
|
|
|
|
VALUE_ADDRESS (val) = VALUE_ADDRESS (arg);
|
|
|
|
|
VALUE_OFFSET (val) = VALUE_OFFSET (arg);
|
|
|
|
|
VALUE_BITPOS (val) = VALUE_BITPOS (arg);
|
|
|
|
|
VALUE_BITSIZE (val) = VALUE_BITSIZE (arg);
|
|
|
|
|
VALUE_FRAME (val) = VALUE_FRAME (arg);
|
|
|
|
|
VALUE_REGNO (val) = VALUE_REGNO (arg);
|
|
|
|
|
VALUE_LAZY (val) = VALUE_LAZY (arg);
|
|
|
|
|
VALUE_OPTIMIZED_OUT (val) = VALUE_OPTIMIZED_OUT (arg);
|
|
|
|
|
VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (arg);
|
|
|
|
|
VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (arg);
|
|
|
|
|
VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (arg);
|
|
|
|
|
val->modifiable = arg->modifiable;
|
|
|
|
|
if (!VALUE_LAZY (val))
|
|
|
|
|
{
|
|
|
|
|
memcpy (VALUE_CONTENTS_ALL_RAW (val), VALUE_CONTENTS_ALL_RAW (arg),
|
|
|
|
|
TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg)));
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
return val;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Access to the value history. */
|
|
|
|
|
|
|
|
|
|
/* Record a new value in the value history.
|
|
|
|
|
Returns the absolute history index of the entry.
|
|
|
|
|
Result of -1 indicates the value was not saved; otherwise it is the
|
|
|
|
|
value history index of this new item. */
|
|
|
|
|
|
|
|
|
|
int
|
2000-07-30 01:48:28 +00:00
|
|
|
|
record_latest_value (value_ptr val)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
int i;
|
|
|
|
|
|
|
|
|
|
/* We don't want this value to have anything to do with the inferior anymore.
|
|
|
|
|
In particular, "set $1 = 50" should not affect the variable from which
|
|
|
|
|
the value was taken, and fast watchpoints should be able to assume that
|
|
|
|
|
a value on the value history never changes. */
|
|
|
|
|
if (VALUE_LAZY (val))
|
|
|
|
|
value_fetch_lazy (val);
|
|
|
|
|
/* We preserve VALUE_LVAL so that the user can find out where it was fetched
|
|
|
|
|
from. This is a bit dubious, because then *&$1 does not just return $1
|
|
|
|
|
but the current contents of that location. c'est la vie... */
|
|
|
|
|
val->modifiable = 0;
|
|
|
|
|
release_value (val);
|
|
|
|
|
|
|
|
|
|
/* Here we treat value_history_count as origin-zero
|
|
|
|
|
and applying to the value being stored now. */
|
|
|
|
|
|
|
|
|
|
i = value_history_count % VALUE_HISTORY_CHUNK;
|
|
|
|
|
if (i == 0)
|
|
|
|
|
{
|
|
|
|
|
register struct value_history_chunk *new
|
1999-07-07 20:19:36 +00:00
|
|
|
|
= (struct value_history_chunk *)
|
|
|
|
|
xmalloc (sizeof (struct value_history_chunk));
|
1999-04-16 01:35:26 +00:00
|
|
|
|
memset (new->values, 0, sizeof new->values);
|
|
|
|
|
new->next = value_history_chain;
|
|
|
|
|
value_history_chain = new;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
value_history_chain->values[i] = val;
|
|
|
|
|
|
|
|
|
|
/* Now we regard value_history_count as origin-one
|
|
|
|
|
and applying to the value just stored. */
|
|
|
|
|
|
|
|
|
|
return ++value_history_count;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Return a copy of the value in the history with sequence number NUM. */
|
|
|
|
|
|
|
|
|
|
value_ptr
|
2000-07-30 01:48:28 +00:00
|
|
|
|
access_value_history (int num)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
register struct value_history_chunk *chunk;
|
|
|
|
|
register int i;
|
|
|
|
|
register int absnum = num;
|
|
|
|
|
|
|
|
|
|
if (absnum <= 0)
|
|
|
|
|
absnum += value_history_count;
|
|
|
|
|
|
|
|
|
|
if (absnum <= 0)
|
|
|
|
|
{
|
|
|
|
|
if (num == 0)
|
|
|
|
|
error ("The history is empty.");
|
|
|
|
|
else if (num == 1)
|
|
|
|
|
error ("There is only one value in the history.");
|
|
|
|
|
else
|
|
|
|
|
error ("History does not go back to $$%d.", -num);
|
|
|
|
|
}
|
|
|
|
|
if (absnum > value_history_count)
|
|
|
|
|
error ("History has not yet reached $%d.", absnum);
|
|
|
|
|
|
|
|
|
|
absnum--;
|
|
|
|
|
|
|
|
|
|
/* Now absnum is always absolute and origin zero. */
|
|
|
|
|
|
|
|
|
|
chunk = value_history_chain;
|
|
|
|
|
for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
|
|
|
|
|
i > 0; i--)
|
|
|
|
|
chunk = chunk->next;
|
|
|
|
|
|
|
|
|
|
return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Clear the value history entirely.
|
|
|
|
|
Must be done when new symbol tables are loaded,
|
|
|
|
|
because the type pointers become invalid. */
|
|
|
|
|
|
|
|
|
|
void
|
2000-07-30 01:48:28 +00:00
|
|
|
|
clear_value_history (void)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
register struct value_history_chunk *next;
|
|
|
|
|
register int i;
|
|
|
|
|
register value_ptr val;
|
|
|
|
|
|
|
|
|
|
while (value_history_chain)
|
|
|
|
|
{
|
|
|
|
|
for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
|
|
|
|
|
if ((val = value_history_chain->values[i]) != NULL)
|
2000-12-15 01:01:51 +00:00
|
|
|
|
xfree (val);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
next = value_history_chain->next;
|
2000-12-15 01:01:51 +00:00
|
|
|
|
xfree (value_history_chain);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
value_history_chain = next;
|
|
|
|
|
}
|
|
|
|
|
value_history_count = 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static void
|
2000-07-30 01:48:28 +00:00
|
|
|
|
show_values (char *num_exp, int from_tty)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
register int i;
|
|
|
|
|
register value_ptr val;
|
|
|
|
|
static int num = 1;
|
|
|
|
|
|
|
|
|
|
if (num_exp)
|
|
|
|
|
{
|
1999-07-07 20:19:36 +00:00
|
|
|
|
/* "info history +" should print from the stored position.
|
|
|
|
|
"info history <exp>" should print around value number <exp>. */
|
1999-04-16 01:35:26 +00:00
|
|
|
|
if (num_exp[0] != '+' || num_exp[1] != '\0')
|
2000-10-30 15:32:51 +00:00
|
|
|
|
num = parse_and_eval_long (num_exp) - 5;
|
1999-04-16 01:35:26 +00:00
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
/* "info history" means print the last 10 values. */
|
|
|
|
|
num = value_history_count - 9;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (num <= 0)
|
|
|
|
|
num = 1;
|
|
|
|
|
|
|
|
|
|
for (i = num; i < num + 10 && i <= value_history_count; i++)
|
|
|
|
|
{
|
|
|
|
|
val = access_value_history (i);
|
|
|
|
|
printf_filtered ("$%d = ", i);
|
|
|
|
|
value_print (val, gdb_stdout, 0, Val_pretty_default);
|
|
|
|
|
printf_filtered ("\n");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* The next "info history +" should start after what we just printed. */
|
|
|
|
|
num += 10;
|
|
|
|
|
|
|
|
|
|
/* Hitting just return after this command should do the same thing as
|
|
|
|
|
"info history +". If num_exp is null, this is unnecessary, since
|
|
|
|
|
"info history +" is not useful after "info history". */
|
|
|
|
|
if (from_tty && num_exp)
|
|
|
|
|
{
|
|
|
|
|
num_exp[0] = '+';
|
|
|
|
|
num_exp[1] = '\0';
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Internal variables. These are variables within the debugger
|
|
|
|
|
that hold values assigned by debugger commands.
|
|
|
|
|
The user refers to them with a '$' prefix
|
|
|
|
|
that does not appear in the variable names stored internally. */
|
|
|
|
|
|
|
|
|
|
static struct internalvar *internalvars;
|
|
|
|
|
|
|
|
|
|
/* Look up an internal variable with name NAME. NAME should not
|
|
|
|
|
normally include a dollar sign.
|
|
|
|
|
|
|
|
|
|
If the specified internal variable does not exist,
|
|
|
|
|
one is created, with a void value. */
|
|
|
|
|
|
|
|
|
|
struct internalvar *
|
2000-07-30 01:48:28 +00:00
|
|
|
|
lookup_internalvar (char *name)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
register struct internalvar *var;
|
|
|
|
|
|
|
|
|
|
for (var = internalvars; var; var = var->next)
|
|
|
|
|
if (STREQ (var->name, name))
|
|
|
|
|
return var;
|
|
|
|
|
|
|
|
|
|
var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
|
|
|
|
|
var->name = concat (name, NULL);
|
|
|
|
|
var->value = allocate_value (builtin_type_void);
|
|
|
|
|
release_value (var->value);
|
|
|
|
|
var->next = internalvars;
|
|
|
|
|
internalvars = var;
|
|
|
|
|
return var;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
value_ptr
|
2000-07-30 01:48:28 +00:00
|
|
|
|
value_of_internalvar (struct internalvar *var)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
register value_ptr val;
|
|
|
|
|
|
|
|
|
|
#ifdef IS_TRAPPED_INTERNALVAR
|
|
|
|
|
if (IS_TRAPPED_INTERNALVAR (var->name))
|
|
|
|
|
return VALUE_OF_TRAPPED_INTERNALVAR (var);
|
1999-07-07 20:19:36 +00:00
|
|
|
|
#endif
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
|
|
|
|
val = value_copy (var->value);
|
|
|
|
|
if (VALUE_LAZY (val))
|
|
|
|
|
value_fetch_lazy (val);
|
|
|
|
|
VALUE_LVAL (val) = lval_internalvar;
|
|
|
|
|
VALUE_INTERNALVAR (val) = var;
|
|
|
|
|
return val;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void
|
2000-07-30 01:48:28 +00:00
|
|
|
|
set_internalvar_component (struct internalvar *var, int offset, int bitpos,
|
|
|
|
|
int bitsize, value_ptr newval)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
register char *addr = VALUE_CONTENTS (var->value) + offset;
|
|
|
|
|
|
|
|
|
|
#ifdef IS_TRAPPED_INTERNALVAR
|
|
|
|
|
if (IS_TRAPPED_INTERNALVAR (var->name))
|
|
|
|
|
SET_TRAPPED_INTERNALVAR (var, newval, bitpos, bitsize, offset);
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
if (bitsize)
|
|
|
|
|
modify_field (addr, value_as_long (newval),
|
|
|
|
|
bitpos, bitsize);
|
|
|
|
|
else
|
|
|
|
|
memcpy (addr, VALUE_CONTENTS (newval), TYPE_LENGTH (VALUE_TYPE (newval)));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void
|
2000-07-30 01:48:28 +00:00
|
|
|
|
set_internalvar (struct internalvar *var, value_ptr val)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
value_ptr newval;
|
|
|
|
|
|
|
|
|
|
#ifdef IS_TRAPPED_INTERNALVAR
|
|
|
|
|
if (IS_TRAPPED_INTERNALVAR (var->name))
|
|
|
|
|
SET_TRAPPED_INTERNALVAR (var, val, 0, 0, 0);
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
newval = value_copy (val);
|
|
|
|
|
newval->modifiable = 1;
|
|
|
|
|
|
|
|
|
|
/* Force the value to be fetched from the target now, to avoid problems
|
|
|
|
|
later when this internalvar is referenced and the target is gone or
|
|
|
|
|
has changed. */
|
|
|
|
|
if (VALUE_LAZY (newval))
|
|
|
|
|
value_fetch_lazy (newval);
|
|
|
|
|
|
|
|
|
|
/* Begin code which must not call error(). If var->value points to
|
|
|
|
|
something free'd, an error() obviously leaves a dangling pointer.
|
|
|
|
|
But we also get a danling pointer if var->value points to
|
|
|
|
|
something in the value chain (i.e., before release_value is
|
|
|
|
|
called), because after the error free_all_values will get called before
|
|
|
|
|
long. */
|
2000-12-15 01:01:51 +00:00
|
|
|
|
xfree (var->value);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
var->value = newval;
|
|
|
|
|
release_value (newval);
|
|
|
|
|
/* End code which must not call error(). */
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
char *
|
2000-07-30 01:48:28 +00:00
|
|
|
|
internalvar_name (struct internalvar *var)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
return var->name;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Free all internalvars. Done when new symtabs are loaded,
|
|
|
|
|
because that makes the values invalid. */
|
|
|
|
|
|
|
|
|
|
void
|
2000-07-30 01:48:28 +00:00
|
|
|
|
clear_internalvars (void)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
register struct internalvar *var;
|
|
|
|
|
|
|
|
|
|
while (internalvars)
|
|
|
|
|
{
|
|
|
|
|
var = internalvars;
|
|
|
|
|
internalvars = var->next;
|
2000-12-15 01:01:51 +00:00
|
|
|
|
xfree (var->name);
|
|
|
|
|
xfree (var->value);
|
|
|
|
|
xfree (var);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static void
|
2000-07-30 01:48:28 +00:00
|
|
|
|
show_convenience (char *ignore, int from_tty)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
register struct internalvar *var;
|
|
|
|
|
int varseen = 0;
|
|
|
|
|
|
|
|
|
|
for (var = internalvars; var; var = var->next)
|
|
|
|
|
{
|
|
|
|
|
#ifdef IS_TRAPPED_INTERNALVAR
|
|
|
|
|
if (IS_TRAPPED_INTERNALVAR (var->name))
|
|
|
|
|
continue;
|
|
|
|
|
#endif
|
|
|
|
|
if (!varseen)
|
|
|
|
|
{
|
|
|
|
|
varseen = 1;
|
|
|
|
|
}
|
|
|
|
|
printf_filtered ("$%s = ", var->name);
|
|
|
|
|
value_print (var->value, gdb_stdout, 0, Val_pretty_default);
|
|
|
|
|
printf_filtered ("\n");
|
|
|
|
|
}
|
|
|
|
|
if (!varseen)
|
|
|
|
|
printf_unfiltered ("No debugger convenience variables now defined.\n\
|
|
|
|
|
Convenience variables have names starting with \"$\";\n\
|
|
|
|
|
use \"set\" as in \"set $foo = 5\" to define them.\n");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Extract a value as a C number (either long or double).
|
|
|
|
|
Knows how to convert fixed values to double, or
|
|
|
|
|
floating values to long.
|
|
|
|
|
Does not deallocate the value. */
|
|
|
|
|
|
|
|
|
|
LONGEST
|
2000-07-30 01:48:28 +00:00
|
|
|
|
value_as_long (register value_ptr val)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
/* This coerces arrays and functions, which is necessary (e.g.
|
|
|
|
|
in disassemble_command). It also dereferences references, which
|
|
|
|
|
I suspect is the most logical thing to do. */
|
|
|
|
|
COERCE_ARRAY (val);
|
|
|
|
|
return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
DOUBLEST
|
2000-07-30 01:48:28 +00:00
|
|
|
|
value_as_double (register value_ptr val)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
DOUBLEST foo;
|
|
|
|
|
int inv;
|
1999-07-07 20:19:36 +00:00
|
|
|
|
|
1999-04-16 01:35:26 +00:00
|
|
|
|
foo = unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &inv);
|
|
|
|
|
if (inv)
|
|
|
|
|
error ("Invalid floating value found in program.");
|
|
|
|
|
return foo;
|
|
|
|
|
}
|
* gdbarch.sh (POINTER_TO_ADDRESS, ADDRESS_TO_POINTER): Two new
functions which architectures can redefine, defaulting to
generic_pointer_to_address and generic_address_to_pointer.
* findvar.c (extract_typed_address, store_typed_address,
generic_pointer_to_address, generic_address_to_pointer): New
functions.
(POINTER_TO_ADDRESS, ADDRESS_TO_POINTER): Provide default
definitions.
(extract_address, store_address): Doc fixes.
* values.c (value_as_pointer): Doc fix.
(value_from_pointer): New function.
* defs.h (extract_typed_address, store_typed_address): New
declarations.
* inferior.h (generic_address_to_pointer,
generic_pointer_to_address): New declarations.
* value.h (value_from_pointer): New declaration.
* ax-gdb.c (const_var_ref): Use value_from_pointer, not
value_from_longest.
* blockframe.c (generic_push_dummy_frame): Use read_pc and
read_sp, not read_register.
* c-valprint.c (c_val_print): Use extract_typed_address instead of
extract_address to extract vtable entries and references.
* cp-valprint.c (cp_print_value_fields): Use value_from_pointer
instead of value_from_longest to extract the vtable's address.
* eval.c (evaluate_subexp_standard): Use value_from_pointer
instead of value_from_longest to compute `this', and for doing
pointer-to-member dereferencing.
* findvar.c (read_register): Use extract_unsigned_integer, not
extract_address.
(read_var_value): Use store_typed_address instead of store_address
for building label values.
(locate_var_value): Use value_from_pointer instead of
value_from_longest.
* hppa-tdep.c (find_stub_with_shl_get): Use value_from_pointer,
instead of value_from_longest, to build arguments to __d_shl_get.
* printcmd.c (set_next_address): Use value_from_pointer, not
value_from_longest.
(x_command): Use value_from_pointer, not value_from_longest.
* tracepoint.c (set_traceframe_context): Use value_from_pointer,
not value_from_longest.
* valarith.c (value_add, value_sub): Use value_from_pointer, not
value_from_longest.
* valops.c (find_function_in_inferior, value_coerce_array,
value_coerce_function, value_addr, hand_function_call): Same.
* value.h (COERCE_REF): Use unpack_pointer, not unpack_long.
* values.c (unpack_long): Use extract_typed_address to produce
addresses from pointers and references, not extract_address.
(value_from_longest): Use store_typed_address instead of
store_address to produce pointer and reference values.
2000-04-14 18:43:41 +00:00
|
|
|
|
/* Extract a value as a C pointer. Does not deallocate the value.
|
|
|
|
|
Note that val's type may not actually be a pointer; value_as_long
|
|
|
|
|
handles all the cases. */
|
1999-04-16 01:35:26 +00:00
|
|
|
|
CORE_ADDR
|
2000-07-30 01:48:28 +00:00
|
|
|
|
value_as_pointer (value_ptr val)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
/* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
|
|
|
|
|
whether we want this to be true eventually. */
|
|
|
|
|
#if 0
|
|
|
|
|
/* ADDR_BITS_REMOVE is wrong if we are being called for a
|
|
|
|
|
non-address (e.g. argument to "signal", "info break", etc.), or
|
|
|
|
|
for pointers to char, in which the low bits *are* significant. */
|
1999-07-07 20:19:36 +00:00
|
|
|
|
return ADDR_BITS_REMOVE (value_as_long (val));
|
1999-04-16 01:35:26 +00:00
|
|
|
|
#else
|
2000-07-17 03:39:34 +00:00
|
|
|
|
COERCE_ARRAY (val);
|
|
|
|
|
/* In converting VAL to an address (CORE_ADDR), any small integers
|
|
|
|
|
are first cast to a generic pointer. The function unpack_long
|
|
|
|
|
will then correctly convert that pointer into a canonical address
|
|
|
|
|
(using POINTER_TO_ADDRESS).
|
|
|
|
|
|
|
|
|
|
Without the cast, the MIPS gets: 0xa0000000 -> (unsigned int)
|
|
|
|
|
0xa0000000 -> (LONGEST) 0x00000000a0000000
|
|
|
|
|
|
|
|
|
|
With the cast, the MIPS gets: 0xa0000000 -> (unsigned int)
|
|
|
|
|
0xa0000000 -> (void*) 0xa0000000 -> (LONGEST) 0xffffffffa0000000.
|
|
|
|
|
|
|
|
|
|
If the user specifies an integer that is larger than the target
|
|
|
|
|
pointer type, it is assumed that it was intentional and the value
|
|
|
|
|
is converted directly into an ADDRESS. This ensures that no
|
|
|
|
|
information is discarded.
|
|
|
|
|
|
|
|
|
|
NOTE: The cast operation may eventualy be converted into a TARGET
|
|
|
|
|
method (see POINTER_TO_ADDRESS() and ADDRESS_TO_POINTER()) so
|
|
|
|
|
that the TARGET ISA/ABI can apply an arbitrary conversion.
|
|
|
|
|
|
|
|
|
|
NOTE: In pure harvard architectures function and data pointers
|
|
|
|
|
can be different and may require different integer to pointer
|
|
|
|
|
conversions. */
|
|
|
|
|
if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_INT
|
|
|
|
|
&& TYPE_LENGTH (VALUE_TYPE (val)) <= TYPE_LENGTH (builtin_type_ptr))
|
|
|
|
|
{
|
|
|
|
|
val = value_cast (builtin_type_ptr, val);
|
|
|
|
|
}
|
|
|
|
|
return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
|
1999-04-16 01:35:26 +00:00
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Unpack raw data (copied from debugee, target byte order) at VALADDR
|
|
|
|
|
as a long, or as a double, assuming the raw data is described
|
|
|
|
|
by type TYPE. Knows how to convert different sizes of values
|
|
|
|
|
and can convert between fixed and floating point. We don't assume
|
|
|
|
|
any alignment for the raw data. Return value is in host byte order.
|
|
|
|
|
|
|
|
|
|
If you want functions and arrays to be coerced to pointers, and
|
|
|
|
|
references to be dereferenced, call value_as_long() instead.
|
|
|
|
|
|
|
|
|
|
C++: It is assumed that the front-end has taken care of
|
|
|
|
|
all matters concerning pointers to members. A pointer
|
|
|
|
|
to member which reaches here is considered to be equivalent
|
|
|
|
|
to an INT (or some size). After all, it is only an offset. */
|
|
|
|
|
|
|
|
|
|
LONGEST
|
2000-07-30 01:48:28 +00:00
|
|
|
|
unpack_long (struct type *type, char *valaddr)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
register enum type_code code = TYPE_CODE (type);
|
|
|
|
|
register int len = TYPE_LENGTH (type);
|
|
|
|
|
register int nosign = TYPE_UNSIGNED (type);
|
|
|
|
|
|
|
|
|
|
if (current_language->la_language == language_scm
|
|
|
|
|
&& is_scmvalue_type (type))
|
|
|
|
|
return scm_unpack (type, valaddr, TYPE_CODE_INT);
|
|
|
|
|
|
|
|
|
|
switch (code)
|
|
|
|
|
{
|
|
|
|
|
case TYPE_CODE_TYPEDEF:
|
|
|
|
|
return unpack_long (check_typedef (type), valaddr);
|
|
|
|
|
case TYPE_CODE_ENUM:
|
|
|
|
|
case TYPE_CODE_BOOL:
|
|
|
|
|
case TYPE_CODE_INT:
|
|
|
|
|
case TYPE_CODE_CHAR:
|
|
|
|
|
case TYPE_CODE_RANGE:
|
|
|
|
|
if (nosign)
|
|
|
|
|
return extract_unsigned_integer (valaddr, len);
|
|
|
|
|
else
|
|
|
|
|
return extract_signed_integer (valaddr, len);
|
|
|
|
|
|
|
|
|
|
case TYPE_CODE_FLT:
|
|
|
|
|
return extract_floating (valaddr, len);
|
|
|
|
|
|
|
|
|
|
case TYPE_CODE_PTR:
|
|
|
|
|
case TYPE_CODE_REF:
|
|
|
|
|
/* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
|
1999-07-07 20:19:36 +00:00
|
|
|
|
whether we want this to be true eventually. */
|
1999-04-26 18:34:20 +00:00
|
|
|
|
if (GDB_TARGET_IS_D10V
|
|
|
|
|
&& len == 2)
|
1999-07-07 20:19:36 +00:00
|
|
|
|
return D10V_MAKE_DADDR (extract_address (valaddr, len));
|
* gdbarch.sh (POINTER_TO_ADDRESS, ADDRESS_TO_POINTER): Two new
functions which architectures can redefine, defaulting to
generic_pointer_to_address and generic_address_to_pointer.
* findvar.c (extract_typed_address, store_typed_address,
generic_pointer_to_address, generic_address_to_pointer): New
functions.
(POINTER_TO_ADDRESS, ADDRESS_TO_POINTER): Provide default
definitions.
(extract_address, store_address): Doc fixes.
* values.c (value_as_pointer): Doc fix.
(value_from_pointer): New function.
* defs.h (extract_typed_address, store_typed_address): New
declarations.
* inferior.h (generic_address_to_pointer,
generic_pointer_to_address): New declarations.
* value.h (value_from_pointer): New declaration.
* ax-gdb.c (const_var_ref): Use value_from_pointer, not
value_from_longest.
* blockframe.c (generic_push_dummy_frame): Use read_pc and
read_sp, not read_register.
* c-valprint.c (c_val_print): Use extract_typed_address instead of
extract_address to extract vtable entries and references.
* cp-valprint.c (cp_print_value_fields): Use value_from_pointer
instead of value_from_longest to extract the vtable's address.
* eval.c (evaluate_subexp_standard): Use value_from_pointer
instead of value_from_longest to compute `this', and for doing
pointer-to-member dereferencing.
* findvar.c (read_register): Use extract_unsigned_integer, not
extract_address.
(read_var_value): Use store_typed_address instead of store_address
for building label values.
(locate_var_value): Use value_from_pointer instead of
value_from_longest.
* hppa-tdep.c (find_stub_with_shl_get): Use value_from_pointer,
instead of value_from_longest, to build arguments to __d_shl_get.
* printcmd.c (set_next_address): Use value_from_pointer, not
value_from_longest.
(x_command): Use value_from_pointer, not value_from_longest.
* tracepoint.c (set_traceframe_context): Use value_from_pointer,
not value_from_longest.
* valarith.c (value_add, value_sub): Use value_from_pointer, not
value_from_longest.
* valops.c (find_function_in_inferior, value_coerce_array,
value_coerce_function, value_addr, hand_function_call): Same.
* value.h (COERCE_REF): Use unpack_pointer, not unpack_long.
* values.c (unpack_long): Use extract_typed_address to produce
addresses from pointers and references, not extract_address.
(value_from_longest): Use store_typed_address instead of
store_address to produce pointer and reference values.
2000-04-14 18:43:41 +00:00
|
|
|
|
return extract_typed_address (valaddr, type);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
|
|
|
|
case TYPE_CODE_MEMBER:
|
|
|
|
|
error ("not implemented: member types in unpack_long");
|
|
|
|
|
|
|
|
|
|
default:
|
|
|
|
|
error ("Value can't be converted to integer.");
|
|
|
|
|
}
|
1999-07-07 20:19:36 +00:00
|
|
|
|
return 0; /* Placate lint. */
|
1999-04-16 01:35:26 +00:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Return a double value from the specified type and address.
|
|
|
|
|
INVP points to an int which is set to 0 for valid value,
|
|
|
|
|
1 for invalid value (bad float format). In either case,
|
|
|
|
|
the returned double is OK to use. Argument is in target
|
|
|
|
|
format, result is in host format. */
|
|
|
|
|
|
|
|
|
|
DOUBLEST
|
2000-07-30 01:48:28 +00:00
|
|
|
|
unpack_double (struct type *type, char *valaddr, int *invp)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
enum type_code code;
|
|
|
|
|
int len;
|
|
|
|
|
int nosign;
|
|
|
|
|
|
|
|
|
|
*invp = 0; /* Assume valid. */
|
|
|
|
|
CHECK_TYPEDEF (type);
|
|
|
|
|
code = TYPE_CODE (type);
|
|
|
|
|
len = TYPE_LENGTH (type);
|
|
|
|
|
nosign = TYPE_UNSIGNED (type);
|
|
|
|
|
if (code == TYPE_CODE_FLT)
|
|
|
|
|
{
|
|
|
|
|
#ifdef INVALID_FLOAT
|
|
|
|
|
if (INVALID_FLOAT (valaddr, len))
|
|
|
|
|
{
|
|
|
|
|
*invp = 1;
|
|
|
|
|
return 1.234567891011121314;
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
return extract_floating (valaddr, len);
|
|
|
|
|
}
|
|
|
|
|
else if (nosign)
|
|
|
|
|
{
|
|
|
|
|
/* Unsigned -- be sure we compensate for signed LONGEST. */
|
|
|
|
|
#if !defined (_MSC_VER) || (_MSC_VER > 900)
|
|
|
|
|
return (ULONGEST) unpack_long (type, valaddr);
|
|
|
|
|
#else
|
|
|
|
|
/* FIXME!!! msvc22 doesn't support unsigned __int64 -> double */
|
|
|
|
|
return (LONGEST) unpack_long (type, valaddr);
|
|
|
|
|
#endif /* _MSC_VER */
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
/* Signed -- we are OK with unpack_long. */
|
|
|
|
|
return unpack_long (type, valaddr);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Unpack raw data (copied from debugee, target byte order) at VALADDR
|
|
|
|
|
as a CORE_ADDR, assuming the raw data is described by type TYPE.
|
|
|
|
|
We don't assume any alignment for the raw data. Return value is in
|
|
|
|
|
host byte order.
|
|
|
|
|
|
|
|
|
|
If you want functions and arrays to be coerced to pointers, and
|
|
|
|
|
references to be dereferenced, call value_as_pointer() instead.
|
|
|
|
|
|
|
|
|
|
C++: It is assumed that the front-end has taken care of
|
|
|
|
|
all matters concerning pointers to members. A pointer
|
|
|
|
|
to member which reaches here is considered to be equivalent
|
|
|
|
|
to an INT (or some size). After all, it is only an offset. */
|
|
|
|
|
|
|
|
|
|
CORE_ADDR
|
2000-07-30 01:48:28 +00:00
|
|
|
|
unpack_pointer (struct type *type, char *valaddr)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
/* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
|
|
|
|
|
whether we want this to be true eventually. */
|
|
|
|
|
return unpack_long (type, valaddr);
|
|
|
|
|
}
|
* gdbarch.sh (POINTER_TO_ADDRESS, ADDRESS_TO_POINTER): Two new
functions which architectures can redefine, defaulting to
generic_pointer_to_address and generic_address_to_pointer.
* findvar.c (extract_typed_address, store_typed_address,
generic_pointer_to_address, generic_address_to_pointer): New
functions.
(POINTER_TO_ADDRESS, ADDRESS_TO_POINTER): Provide default
definitions.
(extract_address, store_address): Doc fixes.
* values.c (value_as_pointer): Doc fix.
(value_from_pointer): New function.
* defs.h (extract_typed_address, store_typed_address): New
declarations.
* inferior.h (generic_address_to_pointer,
generic_pointer_to_address): New declarations.
* value.h (value_from_pointer): New declaration.
* ax-gdb.c (const_var_ref): Use value_from_pointer, not
value_from_longest.
* blockframe.c (generic_push_dummy_frame): Use read_pc and
read_sp, not read_register.
* c-valprint.c (c_val_print): Use extract_typed_address instead of
extract_address to extract vtable entries and references.
* cp-valprint.c (cp_print_value_fields): Use value_from_pointer
instead of value_from_longest to extract the vtable's address.
* eval.c (evaluate_subexp_standard): Use value_from_pointer
instead of value_from_longest to compute `this', and for doing
pointer-to-member dereferencing.
* findvar.c (read_register): Use extract_unsigned_integer, not
extract_address.
(read_var_value): Use store_typed_address instead of store_address
for building label values.
(locate_var_value): Use value_from_pointer instead of
value_from_longest.
* hppa-tdep.c (find_stub_with_shl_get): Use value_from_pointer,
instead of value_from_longest, to build arguments to __d_shl_get.
* printcmd.c (set_next_address): Use value_from_pointer, not
value_from_longest.
(x_command): Use value_from_pointer, not value_from_longest.
* tracepoint.c (set_traceframe_context): Use value_from_pointer,
not value_from_longest.
* valarith.c (value_add, value_sub): Use value_from_pointer, not
value_from_longest.
* valops.c (find_function_in_inferior, value_coerce_array,
value_coerce_function, value_addr, hand_function_call): Same.
* value.h (COERCE_REF): Use unpack_pointer, not unpack_long.
* values.c (unpack_long): Use extract_typed_address to produce
addresses from pointers and references, not extract_address.
(value_from_longest): Use store_typed_address instead of
store_address to produce pointer and reference values.
2000-04-14 18:43:41 +00:00
|
|
|
|
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
|
|
|
|
/* Get the value of the FIELDN'th field (which must be static) of TYPE. */
|
|
|
|
|
|
|
|
|
|
value_ptr
|
2000-07-30 01:48:28 +00:00
|
|
|
|
value_static_field (struct type *type, int fieldno)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
CORE_ADDR addr;
|
|
|
|
|
asection *sect;
|
|
|
|
|
if (TYPE_FIELD_STATIC_HAS_ADDR (type, fieldno))
|
|
|
|
|
{
|
|
|
|
|
addr = TYPE_FIELD_STATIC_PHYSADDR (type, fieldno);
|
|
|
|
|
sect = NULL;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
|
|
|
|
|
struct symbol *sym = lookup_symbol (phys_name, 0, VAR_NAMESPACE, 0, NULL);
|
|
|
|
|
if (sym == NULL)
|
|
|
|
|
{
|
|
|
|
|
/* With some compilers, e.g. HP aCC, static data members are reported
|
1999-07-07 20:19:36 +00:00
|
|
|
|
as non-debuggable symbols */
|
|
|
|
|
struct minimal_symbol *msym = lookup_minimal_symbol (phys_name, NULL, NULL);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
if (!msym)
|
|
|
|
|
return NULL;
|
|
|
|
|
else
|
1999-07-07 20:19:36 +00:00
|
|
|
|
{
|
1999-04-16 01:35:26 +00:00
|
|
|
|
addr = SYMBOL_VALUE_ADDRESS (msym);
|
|
|
|
|
sect = SYMBOL_BFD_SECTION (msym);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
addr = SYMBOL_VALUE_ADDRESS (sym);
|
|
|
|
|
sect = SYMBOL_BFD_SECTION (sym);
|
|
|
|
|
}
|
|
|
|
|
SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno), addr);
|
|
|
|
|
}
|
|
|
|
|
return value_at (TYPE_FIELD_TYPE (type, fieldno), addr, sect);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Given a value ARG1 (offset by OFFSET bytes)
|
|
|
|
|
of a struct or union type ARG_TYPE,
|
|
|
|
|
extract and return the value of one of its (non-static) fields.
|
|
|
|
|
FIELDNO says which field. */
|
|
|
|
|
|
|
|
|
|
value_ptr
|
2000-07-30 01:48:28 +00:00
|
|
|
|
value_primitive_field (register value_ptr arg1, int offset,
|
|
|
|
|
register int fieldno, register struct type *arg_type)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
register value_ptr v;
|
|
|
|
|
register struct type *type;
|
|
|
|
|
|
|
|
|
|
CHECK_TYPEDEF (arg_type);
|
|
|
|
|
type = TYPE_FIELD_TYPE (arg_type, fieldno);
|
|
|
|
|
|
|
|
|
|
/* Handle packed fields */
|
|
|
|
|
|
|
|
|
|
if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
|
|
|
|
|
{
|
|
|
|
|
v = value_from_longest (type,
|
|
|
|
|
unpack_field_as_long (arg_type,
|
|
|
|
|
VALUE_CONTENTS (arg1)
|
1999-07-07 20:19:36 +00:00
|
|
|
|
+ offset,
|
1999-04-16 01:35:26 +00:00
|
|
|
|
fieldno));
|
|
|
|
|
VALUE_BITPOS (v) = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
|
|
|
|
|
VALUE_BITSIZE (v) = TYPE_FIELD_BITSIZE (arg_type, fieldno);
|
2000-03-21 01:27:34 +00:00
|
|
|
|
VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset
|
|
|
|
|
+ TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
|
1999-04-16 01:35:26 +00:00
|
|
|
|
}
|
|
|
|
|
else if (fieldno < TYPE_N_BASECLASSES (arg_type))
|
|
|
|
|
{
|
|
|
|
|
/* This field is actually a base subobject, so preserve the
|
|
|
|
|
entire object's contents for later references to virtual
|
|
|
|
|
bases, etc. */
|
|
|
|
|
v = allocate_value (VALUE_ENCLOSING_TYPE (arg1));
|
|
|
|
|
VALUE_TYPE (v) = arg_type;
|
|
|
|
|
if (VALUE_LAZY (arg1))
|
|
|
|
|
VALUE_LAZY (v) = 1;
|
|
|
|
|
else
|
|
|
|
|
memcpy (VALUE_CONTENTS_ALL_RAW (v), VALUE_CONTENTS_ALL_RAW (arg1),
|
|
|
|
|
TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg1)));
|
|
|
|
|
VALUE_OFFSET (v) = VALUE_OFFSET (arg1);
|
|
|
|
|
VALUE_EMBEDDED_OFFSET (v)
|
1999-07-07 20:19:36 +00:00
|
|
|
|
= offset +
|
|
|
|
|
VALUE_EMBEDDED_OFFSET (arg1) +
|
|
|
|
|
TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
|
1999-04-16 01:35:26 +00:00
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
/* Plain old data member */
|
|
|
|
|
offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
|
|
|
|
|
v = allocate_value (type);
|
|
|
|
|
if (VALUE_LAZY (arg1))
|
|
|
|
|
VALUE_LAZY (v) = 1;
|
|
|
|
|
else
|
|
|
|
|
memcpy (VALUE_CONTENTS_RAW (v),
|
|
|
|
|
VALUE_CONTENTS_RAW (arg1) + offset,
|
|
|
|
|
TYPE_LENGTH (type));
|
|
|
|
|
VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset;
|
|
|
|
|
}
|
|
|
|
|
VALUE_LVAL (v) = VALUE_LVAL (arg1);
|
|
|
|
|
if (VALUE_LVAL (arg1) == lval_internalvar)
|
|
|
|
|
VALUE_LVAL (v) = lval_internalvar_component;
|
|
|
|
|
VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1);
|
2000-06-09 00:51:55 +00:00
|
|
|
|
VALUE_REGNO (v) = VALUE_REGNO (arg1);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
/* VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset
|
1999-07-07 20:19:36 +00:00
|
|
|
|
+ TYPE_FIELD_BITPOS (arg_type, fieldno) / 8; */
|
1999-04-16 01:35:26 +00:00
|
|
|
|
return v;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Given a value ARG1 of a struct or union type,
|
|
|
|
|
extract and return the value of one of its (non-static) fields.
|
|
|
|
|
FIELDNO says which field. */
|
|
|
|
|
|
|
|
|
|
value_ptr
|
2000-07-30 01:48:28 +00:00
|
|
|
|
value_field (register value_ptr arg1, register int fieldno)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
return value_primitive_field (arg1, 0, fieldno, VALUE_TYPE (arg1));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Return a non-virtual function as a value.
|
|
|
|
|
F is the list of member functions which contains the desired method.
|
|
|
|
|
J is an index into F which provides the desired method. */
|
|
|
|
|
|
|
|
|
|
value_ptr
|
2000-07-30 01:48:28 +00:00
|
|
|
|
value_fn_field (value_ptr *arg1p, struct fn_field *f, int j, struct type *type,
|
|
|
|
|
int offset)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
register value_ptr v;
|
|
|
|
|
register struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
|
|
|
|
|
struct symbol *sym;
|
|
|
|
|
|
|
|
|
|
sym = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
|
|
|
|
|
0, VAR_NAMESPACE, 0, NULL);
|
1999-07-07 20:19:36 +00:00
|
|
|
|
if (!sym)
|
|
|
|
|
return NULL;
|
1999-04-16 01:35:26 +00:00
|
|
|
|
/*
|
1999-07-07 20:19:36 +00:00
|
|
|
|
error ("Internal error: could not find physical method named %s",
|
|
|
|
|
TYPE_FN_FIELD_PHYSNAME (f, j));
|
|
|
|
|
*/
|
|
|
|
|
|
1999-04-16 01:35:26 +00:00
|
|
|
|
v = allocate_value (ftype);
|
|
|
|
|
VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
|
|
|
|
|
VALUE_TYPE (v) = ftype;
|
|
|
|
|
|
|
|
|
|
if (arg1p)
|
1999-07-07 20:19:36 +00:00
|
|
|
|
{
|
|
|
|
|
if (type != VALUE_TYPE (*arg1p))
|
|
|
|
|
*arg1p = value_ind (value_cast (lookup_pointer_type (type),
|
|
|
|
|
value_addr (*arg1p)));
|
|
|
|
|
|
2000-04-04 04:53:50 +00:00
|
|
|
|
/* Move the `this' pointer according to the offset.
|
1999-07-07 20:19:36 +00:00
|
|
|
|
VALUE_OFFSET (*arg1p) += offset;
|
|
|
|
|
*/
|
1999-04-16 01:35:26 +00:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return v;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Return a virtual function as a value.
|
|
|
|
|
ARG1 is the object which provides the virtual function
|
|
|
|
|
table pointer. *ARG1P is side-effected in calling this function.
|
|
|
|
|
F is the list of member functions which contains the desired virtual
|
|
|
|
|
function.
|
|
|
|
|
J is an index into F which provides the desired virtual function.
|
|
|
|
|
|
|
|
|
|
TYPE is the type in which F is located. */
|
|
|
|
|
value_ptr
|
2000-07-30 01:48:28 +00:00
|
|
|
|
value_virtual_fn_field (value_ptr *arg1p, struct fn_field *f, int j,
|
|
|
|
|
struct type *type, int offset)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
value_ptr arg1 = *arg1p;
|
|
|
|
|
struct type *type1 = check_typedef (VALUE_TYPE (arg1));
|
|
|
|
|
|
|
|
|
|
if (TYPE_HAS_VTABLE (type))
|
|
|
|
|
{
|
|
|
|
|
/* Deal with HP/Taligent runtime model for virtual functions */
|
|
|
|
|
value_ptr vp;
|
1999-07-07 20:19:36 +00:00
|
|
|
|
value_ptr argp; /* arg1 cast to base */
|
|
|
|
|
CORE_ADDR coreptr; /* pointer to target address */
|
|
|
|
|
int class_index; /* which class segment pointer to use */
|
|
|
|
|
struct type *ftype = TYPE_FN_FIELD_TYPE (f, j); /* method type */
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
|
|
|
|
argp = value_cast (type, *arg1p);
|
|
|
|
|
|
|
|
|
|
if (VALUE_ADDRESS (argp) == 0)
|
1999-07-07 20:19:36 +00:00
|
|
|
|
error ("Address of object is null; object may not have been created.");
|
|
|
|
|
|
1999-04-16 01:35:26 +00:00
|
|
|
|
/* pai: FIXME -- 32x64 possible problem? */
|
|
|
|
|
/* First word (4 bytes) in object layout is the vtable pointer */
|
1999-07-07 20:19:36 +00:00
|
|
|
|
coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (argp)); /* pai: (temp) */
|
|
|
|
|
/* + offset + VALUE_EMBEDDED_OFFSET (argp)); */
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
|
|
|
|
if (!coreptr)
|
1999-07-07 20:19:36 +00:00
|
|
|
|
error ("Virtual table pointer is null for object; object may not have been created.");
|
|
|
|
|
|
1999-04-16 01:35:26 +00:00
|
|
|
|
/* pai/1997-05-09
|
|
|
|
|
* FIXME: The code here currently handles only
|
|
|
|
|
* the non-RRBC case of the Taligent/HP runtime spec; when RRBC
|
|
|
|
|
* is introduced, the condition for the "if" below will have to
|
|
|
|
|
* be changed to be a test for the RRBC case. */
|
1999-07-07 20:19:36 +00:00
|
|
|
|
|
1999-04-16 01:35:26 +00:00
|
|
|
|
if (1)
|
1999-07-07 20:19:36 +00:00
|
|
|
|
{
|
|
|
|
|
/* Non-RRBC case; the virtual function pointers are stored at fixed
|
|
|
|
|
* offsets in the virtual table. */
|
|
|
|
|
|
|
|
|
|
/* Retrieve the offset in the virtual table from the debug
|
|
|
|
|
* info. The offset of the vfunc's entry is in words from
|
|
|
|
|
* the beginning of the vtable; but first we have to adjust
|
|
|
|
|
* by HP_ACC_VFUNC_START to account for other entries */
|
|
|
|
|
|
|
|
|
|
/* pai: FIXME: 32x64 problem here, a word may be 8 bytes in
|
|
|
|
|
* which case the multiplier should be 8 and values should be long */
|
|
|
|
|
vp = value_at (builtin_type_int,
|
|
|
|
|
coreptr + 4 * (TYPE_FN_FIELD_VOFFSET (f, j) + HP_ACC_VFUNC_START), NULL);
|
|
|
|
|
|
|
|
|
|
coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (vp));
|
|
|
|
|
/* coreptr now contains the address of the virtual function */
|
|
|
|
|
/* (Actually, it contains the pointer to the plabel for the function. */
|
|
|
|
|
}
|
1999-04-16 01:35:26 +00:00
|
|
|
|
else
|
1999-07-07 20:19:36 +00:00
|
|
|
|
{
|
|
|
|
|
/* RRBC case; the virtual function pointers are found by double
|
|
|
|
|
* indirection through the class segment tables. */
|
|
|
|
|
|
|
|
|
|
/* Choose class segment depending on type we were passed */
|
|
|
|
|
class_index = class_index_in_primary_list (type);
|
|
|
|
|
|
|
|
|
|
/* Find class segment pointer. These are in the vtable slots after
|
|
|
|
|
* some other entries, so adjust by HP_ACC_VFUNC_START for that. */
|
|
|
|
|
/* pai: FIXME 32x64 problem here, if words are 8 bytes long
|
|
|
|
|
* the multiplier below has to be 8 and value should be long. */
|
|
|
|
|
vp = value_at (builtin_type_int,
|
|
|
|
|
coreptr + 4 * (HP_ACC_VFUNC_START + class_index), NULL);
|
|
|
|
|
/* Indirect once more, offset by function index */
|
|
|
|
|
/* pai: FIXME 32x64 problem here, again multiplier could be 8 and value long */
|
|
|
|
|
coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (vp) + 4 * TYPE_FN_FIELD_VOFFSET (f, j));
|
|
|
|
|
vp = value_at (builtin_type_int, coreptr, NULL);
|
|
|
|
|
coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (vp));
|
|
|
|
|
|
|
|
|
|
/* coreptr now contains the address of the virtual function */
|
|
|
|
|
/* (Actually, it contains the pointer to the plabel for the function.) */
|
|
|
|
|
|
|
|
|
|
}
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
|
|
|
|
if (!coreptr)
|
1999-07-07 20:19:36 +00:00
|
|
|
|
error ("Address of virtual function is null; error in virtual table?");
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
1999-07-07 20:19:36 +00:00
|
|
|
|
/* Wrap this addr in a value and return pointer */
|
1999-04-16 01:35:26 +00:00
|
|
|
|
vp = allocate_value (ftype);
|
|
|
|
|
VALUE_TYPE (vp) = ftype;
|
|
|
|
|
VALUE_ADDRESS (vp) = coreptr;
|
1999-07-07 20:19:36 +00:00
|
|
|
|
|
1999-04-16 01:35:26 +00:00
|
|
|
|
/* pai: (temp) do we need the value_ind stuff in value_fn_field? */
|
|
|
|
|
return vp;
|
|
|
|
|
}
|
1999-07-07 20:19:36 +00:00
|
|
|
|
else
|
|
|
|
|
{ /* Not using HP/Taligent runtime conventions; so try to
|
|
|
|
|
* use g++ conventions for virtual table */
|
|
|
|
|
|
1999-04-16 01:35:26 +00:00
|
|
|
|
struct type *entry_type;
|
|
|
|
|
/* First, get the virtual function table pointer. That comes
|
|
|
|
|
with a strange type, so cast it to type `pointer to long' (which
|
|
|
|
|
should serve just fine as a function type). Then, index into
|
|
|
|
|
the table, and convert final value to appropriate function type. */
|
|
|
|
|
value_ptr entry, vfn, vtbl;
|
1999-07-07 20:19:36 +00:00
|
|
|
|
value_ptr vi = value_from_longest (builtin_type_int,
|
|
|
|
|
(LONGEST) TYPE_FN_FIELD_VOFFSET (f, j));
|
1999-04-16 01:35:26 +00:00
|
|
|
|
struct type *fcontext = TYPE_FN_FIELD_FCONTEXT (f, j);
|
|
|
|
|
struct type *context;
|
|
|
|
|
if (fcontext == NULL)
|
1999-07-07 20:19:36 +00:00
|
|
|
|
/* We don't have an fcontext (e.g. the program was compiled with
|
|
|
|
|
g++ version 1). Try to get the vtbl from the TYPE_VPTR_BASETYPE.
|
|
|
|
|
This won't work right for multiple inheritance, but at least we
|
|
|
|
|
should do as well as GDB 3.x did. */
|
|
|
|
|
fcontext = TYPE_VPTR_BASETYPE (type);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
context = lookup_pointer_type (fcontext);
|
|
|
|
|
/* Now context is a pointer to the basetype containing the vtbl. */
|
|
|
|
|
if (TYPE_TARGET_TYPE (context) != type1)
|
1999-07-07 20:19:36 +00:00
|
|
|
|
{
|
1999-04-16 01:35:26 +00:00
|
|
|
|
value_ptr tmp = value_cast (context, value_addr (arg1));
|
|
|
|
|
VALUE_POINTED_TO_OFFSET (tmp) = 0;
|
1999-07-07 20:19:36 +00:00
|
|
|
|
arg1 = value_ind (tmp);
|
|
|
|
|
type1 = check_typedef (VALUE_TYPE (arg1));
|
|
|
|
|
}
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
|
|
|
|
context = type1;
|
|
|
|
|
/* Now context is the basetype containing the vtbl. */
|
|
|
|
|
|
|
|
|
|
/* This type may have been defined before its virtual function table
|
|
|
|
|
was. If so, fill in the virtual function table entry for the
|
|
|
|
|
type now. */
|
|
|
|
|
if (TYPE_VPTR_FIELDNO (context) < 0)
|
1999-07-07 20:19:36 +00:00
|
|
|
|
fill_in_vptr_fieldno (context);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
|
|
|
|
/* The virtual function table is now an array of structures
|
|
|
|
|
which have the form { int16 offset, delta; void *pfn; }. */
|
|
|
|
|
vtbl = value_primitive_field (arg1, 0, TYPE_VPTR_FIELDNO (context),
|
|
|
|
|
TYPE_VPTR_BASETYPE (context));
|
1999-07-07 20:19:36 +00:00
|
|
|
|
|
1999-04-16 01:35:26 +00:00
|
|
|
|
/* With older versions of g++, the vtbl field pointed to an array
|
1999-07-07 20:19:36 +00:00
|
|
|
|
of structures. Nowadays it points directly to the structure. */
|
1999-04-16 01:35:26 +00:00
|
|
|
|
if (TYPE_CODE (VALUE_TYPE (vtbl)) == TYPE_CODE_PTR
|
1999-07-07 20:19:36 +00:00
|
|
|
|
&& TYPE_CODE (TYPE_TARGET_TYPE (VALUE_TYPE (vtbl))) == TYPE_CODE_ARRAY)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
/* Handle the case where the vtbl field points to an
|
|
|
|
|
array of structures. */
|
|
|
|
|
vtbl = value_ind (vtbl);
|
|
|
|
|
|
|
|
|
|
/* Index into the virtual function table. This is hard-coded because
|
|
|
|
|
looking up a field is not cheap, and it may be important to save
|
|
|
|
|
time, e.g. if the user has set a conditional breakpoint calling
|
|
|
|
|
a virtual function. */
|
|
|
|
|
entry = value_subscript (vtbl, vi);
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
/* Handle the case where the vtbl field points directly to a structure. */
|
|
|
|
|
vtbl = value_add (vtbl, vi);
|
|
|
|
|
entry = value_ind (vtbl);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
entry_type = check_typedef (VALUE_TYPE (entry));
|
|
|
|
|
|
|
|
|
|
if (TYPE_CODE (entry_type) == TYPE_CODE_STRUCT)
|
1999-07-07 20:19:36 +00:00
|
|
|
|
{
|
|
|
|
|
/* Move the `this' pointer according to the virtual function table. */
|
|
|
|
|
VALUE_OFFSET (arg1) += value_as_long (value_field (entry, 0));
|
|
|
|
|
|
|
|
|
|
if (!VALUE_LAZY (arg1))
|
|
|
|
|
{
|
|
|
|
|
VALUE_LAZY (arg1) = 1;
|
|
|
|
|
value_fetch_lazy (arg1);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
vfn = value_field (entry, 2);
|
|
|
|
|
}
|
1999-04-16 01:35:26 +00:00
|
|
|
|
else if (TYPE_CODE (entry_type) == TYPE_CODE_PTR)
|
1999-07-07 20:19:36 +00:00
|
|
|
|
vfn = entry;
|
1999-04-16 01:35:26 +00:00
|
|
|
|
else
|
1999-07-07 20:19:36 +00:00
|
|
|
|
error ("I'm confused: virtual function table has bad type");
|
1999-04-16 01:35:26 +00:00
|
|
|
|
/* Reinstantiate the function pointer with the correct type. */
|
|
|
|
|
VALUE_TYPE (vfn) = lookup_pointer_type (TYPE_FN_FIELD_TYPE (f, j));
|
|
|
|
|
|
|
|
|
|
*arg1p = arg1;
|
|
|
|
|
return vfn;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* ARG is a pointer to an object we know to be at least
|
|
|
|
|
a DTYPE. BTYPE is the most derived basetype that has
|
|
|
|
|
already been searched (and need not be searched again).
|
|
|
|
|
After looking at the vtables between BTYPE and DTYPE,
|
|
|
|
|
return the most derived type we find. The caller must
|
|
|
|
|
be satisfied when the return value == DTYPE.
|
|
|
|
|
|
2000-04-04 04:53:50 +00:00
|
|
|
|
FIXME-tiemann: should work with dossier entries as well.
|
|
|
|
|
NOTICE - djb: I see no good reason at all to keep this function now that
|
|
|
|
|
we have RTTI support. It's used in literally one place, and it's
|
|
|
|
|
hard to keep this function up to date when it's purpose is served
|
|
|
|
|
by value_rtti_type efficiently.
|
|
|
|
|
Consider it gone for 5.1. */
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
|
|
|
|
static value_ptr
|
2000-07-30 01:48:28 +00:00
|
|
|
|
value_headof (value_ptr in_arg, struct type *btype, struct type *dtype)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
/* First collect the vtables we must look at for this object. */
|
2000-04-04 04:53:50 +00:00
|
|
|
|
value_ptr arg, vtbl;
|
1999-04-16 01:35:26 +00:00
|
|
|
|
struct symbol *sym;
|
|
|
|
|
char *demangled_name;
|
|
|
|
|
struct minimal_symbol *msymbol;
|
|
|
|
|
|
|
|
|
|
btype = TYPE_VPTR_BASETYPE (dtype);
|
|
|
|
|
CHECK_TYPEDEF (btype);
|
|
|
|
|
arg = in_arg;
|
|
|
|
|
if (btype != dtype)
|
2000-04-04 04:53:50 +00:00
|
|
|
|
arg = value_cast (lookup_pointer_type (btype), arg);
|
|
|
|
|
if (TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_REF)
|
|
|
|
|
{
|
|
|
|
|
/*
|
|
|
|
|
* Copy the value, but change the type from (T&) to (T*).
|
|
|
|
|
* We keep the same location information, which is efficient,
|
|
|
|
|
* and allows &(&X) to get the location containing the reference.
|
|
|
|
|
*/
|
|
|
|
|
arg = value_copy (arg);
|
|
|
|
|
VALUE_TYPE (arg) = lookup_pointer_type (TYPE_TARGET_TYPE (VALUE_TYPE (arg)));
|
|
|
|
|
}
|
|
|
|
|
if (VALUE_ADDRESS(value_field (value_ind(arg), TYPE_VPTR_FIELDNO (btype)))==0)
|
|
|
|
|
return arg;
|
|
|
|
|
|
1999-04-16 01:35:26 +00:00
|
|
|
|
vtbl = value_ind (value_field (value_ind (arg), TYPE_VPTR_FIELDNO (btype)));
|
2000-04-04 04:53:50 +00:00
|
|
|
|
/* Turn vtable into typeinfo function */
|
|
|
|
|
VALUE_OFFSET(vtbl)+=4;
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
2000-04-04 04:53:50 +00:00
|
|
|
|
msymbol = lookup_minimal_symbol_by_pc ( value_as_pointer(value_ind(vtbl)) );
|
1999-04-16 01:35:26 +00:00
|
|
|
|
if (msymbol == NULL
|
2000-04-04 04:53:50 +00:00
|
|
|
|
|| (demangled_name = SYMBOL_NAME (msymbol)) == NULL)
|
|
|
|
|
{
|
|
|
|
|
/* If we expected to find a vtable, but did not, let the user
|
|
|
|
|
know that we aren't happy, but don't throw an error.
|
|
|
|
|
FIXME: there has to be a better way to do this. */
|
|
|
|
|
struct type *error_type = (struct type *) xmalloc (sizeof (struct type));
|
|
|
|
|
memcpy (error_type, VALUE_TYPE (in_arg), sizeof (struct type));
|
|
|
|
|
TYPE_NAME (error_type) = savestring ("suspicious *", sizeof ("suspicious *"));
|
|
|
|
|
VALUE_TYPE (in_arg) = error_type;
|
|
|
|
|
return in_arg;
|
|
|
|
|
}
|
|
|
|
|
demangled_name = cplus_demangle(demangled_name,DMGL_ANSI);
|
|
|
|
|
*(strchr (demangled_name, ' ')) = '\0';
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
|
|
|
|
sym = lookup_symbol (demangled_name, 0, VAR_NAMESPACE, 0, 0);
|
|
|
|
|
if (sym == NULL)
|
2000-04-04 04:53:50 +00:00
|
|
|
|
error ("could not find type declaration for `%s'", demangled_name);
|
|
|
|
|
|
|
|
|
|
arg = in_arg;
|
1999-04-16 01:35:26 +00:00
|
|
|
|
VALUE_TYPE (arg) = lookup_pointer_type (SYMBOL_TYPE (sym));
|
|
|
|
|
return arg;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* ARG is a pointer object of type TYPE. If TYPE has virtual
|
|
|
|
|
function tables, probe ARG's tables (including the vtables
|
|
|
|
|
of its baseclasses) to figure out the most derived type that ARG
|
|
|
|
|
could actually be a pointer to. */
|
|
|
|
|
|
|
|
|
|
value_ptr
|
2000-07-30 01:48:28 +00:00
|
|
|
|
value_from_vtable_info (value_ptr arg, struct type *type)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
/* Take care of preliminaries. */
|
|
|
|
|
if (TYPE_VPTR_FIELDNO (type) < 0)
|
|
|
|
|
fill_in_vptr_fieldno (type);
|
|
|
|
|
if (TYPE_VPTR_FIELDNO (type) < 0)
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
|
|
return value_headof (arg, 0, type);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Return true if the INDEXth field of TYPE is a virtual baseclass
|
|
|
|
|
pointer which is for the base class whose type is BASECLASS. */
|
|
|
|
|
|
|
|
|
|
static int
|
2000-07-30 01:48:28 +00:00
|
|
|
|
vb_match (struct type *type, int index, struct type *basetype)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
struct type *fieldtype;
|
|
|
|
|
char *name = TYPE_FIELD_NAME (type, index);
|
|
|
|
|
char *field_class_name = NULL;
|
|
|
|
|
|
|
|
|
|
if (*name != '_')
|
|
|
|
|
return 0;
|
|
|
|
|
/* gcc 2.4 uses _vb$. */
|
|
|
|
|
if (name[1] == 'v' && name[2] == 'b' && is_cplus_marker (name[3]))
|
|
|
|
|
field_class_name = name + 4;
|
|
|
|
|
/* gcc 2.5 will use __vb_. */
|
|
|
|
|
if (name[1] == '_' && name[2] == 'v' && name[3] == 'b' && name[4] == '_')
|
|
|
|
|
field_class_name = name + 5;
|
|
|
|
|
|
|
|
|
|
if (field_class_name == NULL)
|
|
|
|
|
/* This field is not a virtual base class pointer. */
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
|
|
/* It's a virtual baseclass pointer, now we just need to find out whether
|
|
|
|
|
it is for this baseclass. */
|
|
|
|
|
fieldtype = TYPE_FIELD_TYPE (type, index);
|
|
|
|
|
if (fieldtype == NULL
|
|
|
|
|
|| TYPE_CODE (fieldtype) != TYPE_CODE_PTR)
|
|
|
|
|
/* "Can't happen". */
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
|
|
/* What we check for is that either the types are equal (needed for
|
|
|
|
|
nameless types) or have the same name. This is ugly, and a more
|
|
|
|
|
elegant solution should be devised (which would probably just push
|
|
|
|
|
the ugliness into symbol reading unless we change the stabs format). */
|
|
|
|
|
if (TYPE_TARGET_TYPE (fieldtype) == basetype)
|
|
|
|
|
return 1;
|
|
|
|
|
|
|
|
|
|
if (TYPE_NAME (basetype) != NULL
|
|
|
|
|
&& TYPE_NAME (TYPE_TARGET_TYPE (fieldtype)) != NULL
|
|
|
|
|
&& STREQ (TYPE_NAME (basetype),
|
|
|
|
|
TYPE_NAME (TYPE_TARGET_TYPE (fieldtype))))
|
|
|
|
|
return 1;
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Compute the offset of the baseclass which is
|
|
|
|
|
the INDEXth baseclass of class TYPE,
|
|
|
|
|
for value at VALADDR (in host) at ADDRESS (in target).
|
|
|
|
|
The result is the offset of the baseclass value relative
|
|
|
|
|
to (the address of)(ARG) + OFFSET.
|
|
|
|
|
|
|
|
|
|
-1 is returned on error. */
|
|
|
|
|
|
|
|
|
|
int
|
2000-07-30 01:48:28 +00:00
|
|
|
|
baseclass_offset (struct type *type, int index, char *valaddr,
|
|
|
|
|
CORE_ADDR address)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
struct type *basetype = TYPE_BASECLASS (type, index);
|
|
|
|
|
|
|
|
|
|
if (BASETYPE_VIA_VIRTUAL (type, index))
|
|
|
|
|
{
|
|
|
|
|
/* Must hunt for the pointer to this virtual baseclass. */
|
|
|
|
|
register int i, len = TYPE_NFIELDS (type);
|
|
|
|
|
register int n_baseclasses = TYPE_N_BASECLASSES (type);
|
|
|
|
|
|
|
|
|
|
/* First look for the virtual baseclass pointer
|
1999-07-07 20:19:36 +00:00
|
|
|
|
in the fields. */
|
1999-04-16 01:35:26 +00:00
|
|
|
|
for (i = n_baseclasses; i < len; i++)
|
|
|
|
|
{
|
|
|
|
|
if (vb_match (type, i, basetype))
|
|
|
|
|
{
|
|
|
|
|
CORE_ADDR addr
|
1999-07-07 20:19:36 +00:00
|
|
|
|
= unpack_pointer (TYPE_FIELD_TYPE (type, i),
|
|
|
|
|
valaddr + (TYPE_FIELD_BITPOS (type, i) / 8));
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
|
|
|
|
return addr - (LONGEST) address;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
/* Not in the fields, so try looking through the baseclasses. */
|
1999-07-07 20:19:36 +00:00
|
|
|
|
for (i = index + 1; i < n_baseclasses; i++)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
int boffset =
|
1999-07-07 20:19:36 +00:00
|
|
|
|
baseclass_offset (type, i, valaddr, address);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
if (boffset)
|
|
|
|
|
return boffset;
|
|
|
|
|
}
|
|
|
|
|
/* Not found. */
|
|
|
|
|
return -1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Baseclass is easily computed. */
|
|
|
|
|
return TYPE_BASECLASS_BITPOS (type, index) / 8;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
|
|
|
|
|
VALADDR.
|
|
|
|
|
|
|
|
|
|
Extracting bits depends on endianness of the machine. Compute the
|
|
|
|
|
number of least significant bits to discard. For big endian machines,
|
|
|
|
|
we compute the total number of bits in the anonymous object, subtract
|
|
|
|
|
off the bit count from the MSB of the object to the MSB of the
|
|
|
|
|
bitfield, then the size of the bitfield, which leaves the LSB discard
|
|
|
|
|
count. For little endian machines, the discard count is simply the
|
|
|
|
|
number of bits from the LSB of the anonymous object to the LSB of the
|
|
|
|
|
bitfield.
|
|
|
|
|
|
|
|
|
|
If the field is signed, we also do sign extension. */
|
|
|
|
|
|
|
|
|
|
LONGEST
|
2000-07-30 01:48:28 +00:00
|
|
|
|
unpack_field_as_long (struct type *type, char *valaddr, int fieldno)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
ULONGEST val;
|
|
|
|
|
ULONGEST valmask;
|
|
|
|
|
int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
|
|
|
|
|
int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
|
|
|
|
|
int lsbcount;
|
|
|
|
|
struct type *field_type;
|
|
|
|
|
|
|
|
|
|
val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
|
|
|
|
|
field_type = TYPE_FIELD_TYPE (type, fieldno);
|
|
|
|
|
CHECK_TYPEDEF (field_type);
|
|
|
|
|
|
|
|
|
|
/* Extract bits. See comment above. */
|
|
|
|
|
|
|
|
|
|
if (BITS_BIG_ENDIAN)
|
|
|
|
|
lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
|
|
|
|
|
else
|
|
|
|
|
lsbcount = (bitpos % 8);
|
|
|
|
|
val >>= lsbcount;
|
|
|
|
|
|
|
|
|
|
/* If the field does not entirely fill a LONGEST, then zero the sign bits.
|
|
|
|
|
If the field is signed, and is negative, then sign extend. */
|
|
|
|
|
|
|
|
|
|
if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
|
|
|
|
|
{
|
|
|
|
|
valmask = (((ULONGEST) 1) << bitsize) - 1;
|
|
|
|
|
val &= valmask;
|
|
|
|
|
if (!TYPE_UNSIGNED (field_type))
|
|
|
|
|
{
|
|
|
|
|
if (val & (valmask ^ (valmask >> 1)))
|
|
|
|
|
{
|
|
|
|
|
val |= ~valmask;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
return (val);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Modify the value of a bitfield. ADDR points to a block of memory in
|
|
|
|
|
target byte order; the bitfield starts in the byte pointed to. FIELDVAL
|
|
|
|
|
is the desired value of the field, in host byte order. BITPOS and BITSIZE
|
|
|
|
|
indicate which bits (in target bit order) comprise the bitfield. */
|
|
|
|
|
|
|
|
|
|
void
|
2000-07-30 01:48:28 +00:00
|
|
|
|
modify_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
LONGEST oword;
|
|
|
|
|
|
|
|
|
|
/* If a negative fieldval fits in the field in question, chop
|
|
|
|
|
off the sign extension bits. */
|
|
|
|
|
if (bitsize < (8 * (int) sizeof (fieldval))
|
|
|
|
|
&& (~fieldval & ~((1 << (bitsize - 1)) - 1)) == 0)
|
|
|
|
|
fieldval = fieldval & ((1 << bitsize) - 1);
|
|
|
|
|
|
|
|
|
|
/* Warn if value is too big to fit in the field in question. */
|
|
|
|
|
if (bitsize < (8 * (int) sizeof (fieldval))
|
1999-07-07 20:19:36 +00:00
|
|
|
|
&& 0 != (fieldval & ~((1 << bitsize) - 1)))
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
/* FIXME: would like to include fieldval in the message, but
|
1999-07-07 20:19:36 +00:00
|
|
|
|
we don't have a sprintf_longest. */
|
1999-04-16 01:35:26 +00:00
|
|
|
|
warning ("Value does not fit in %d bits.", bitsize);
|
|
|
|
|
|
|
|
|
|
/* Truncate it, otherwise adjoining fields may be corrupted. */
|
|
|
|
|
fieldval = fieldval & ((1 << bitsize) - 1);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
oword = extract_signed_integer (addr, sizeof oword);
|
|
|
|
|
|
|
|
|
|
/* Shifting for bit field depends on endianness of the target machine. */
|
|
|
|
|
if (BITS_BIG_ENDIAN)
|
|
|
|
|
bitpos = sizeof (oword) * 8 - bitpos - bitsize;
|
|
|
|
|
|
|
|
|
|
/* Mask out old value, while avoiding shifts >= size of oword */
|
|
|
|
|
if (bitsize < 8 * (int) sizeof (oword))
|
1999-07-07 20:19:36 +00:00
|
|
|
|
oword &= ~(((((ULONGEST) 1) << bitsize) - 1) << bitpos);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
else
|
1999-07-07 20:19:36 +00:00
|
|
|
|
oword &= ~((~(ULONGEST) 0) << bitpos);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
oword |= fieldval << bitpos;
|
|
|
|
|
|
|
|
|
|
store_signed_integer (addr, sizeof oword, oword);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Convert C numbers into newly allocated values */
|
|
|
|
|
|
|
|
|
|
value_ptr
|
2000-07-30 01:48:28 +00:00
|
|
|
|
value_from_longest (struct type *type, register LONGEST num)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
register value_ptr val = allocate_value (type);
|
|
|
|
|
register enum type_code code;
|
|
|
|
|
register int len;
|
1999-07-07 20:19:36 +00:00
|
|
|
|
retry:
|
1999-04-16 01:35:26 +00:00
|
|
|
|
code = TYPE_CODE (type);
|
|
|
|
|
len = TYPE_LENGTH (type);
|
|
|
|
|
|
|
|
|
|
switch (code)
|
|
|
|
|
{
|
|
|
|
|
case TYPE_CODE_TYPEDEF:
|
|
|
|
|
type = check_typedef (type);
|
|
|
|
|
goto retry;
|
|
|
|
|
case TYPE_CODE_INT:
|
|
|
|
|
case TYPE_CODE_CHAR:
|
|
|
|
|
case TYPE_CODE_ENUM:
|
|
|
|
|
case TYPE_CODE_BOOL:
|
|
|
|
|
case TYPE_CODE_RANGE:
|
|
|
|
|
store_signed_integer (VALUE_CONTENTS_RAW (val), len, num);
|
|
|
|
|
break;
|
1999-07-07 20:19:36 +00:00
|
|
|
|
|
1999-04-16 01:35:26 +00:00
|
|
|
|
case TYPE_CODE_REF:
|
|
|
|
|
case TYPE_CODE_PTR:
|
* gdbarch.sh (POINTER_TO_ADDRESS, ADDRESS_TO_POINTER): Two new
functions which architectures can redefine, defaulting to
generic_pointer_to_address and generic_address_to_pointer.
* findvar.c (extract_typed_address, store_typed_address,
generic_pointer_to_address, generic_address_to_pointer): New
functions.
(POINTER_TO_ADDRESS, ADDRESS_TO_POINTER): Provide default
definitions.
(extract_address, store_address): Doc fixes.
* values.c (value_as_pointer): Doc fix.
(value_from_pointer): New function.
* defs.h (extract_typed_address, store_typed_address): New
declarations.
* inferior.h (generic_address_to_pointer,
generic_pointer_to_address): New declarations.
* value.h (value_from_pointer): New declaration.
* ax-gdb.c (const_var_ref): Use value_from_pointer, not
value_from_longest.
* blockframe.c (generic_push_dummy_frame): Use read_pc and
read_sp, not read_register.
* c-valprint.c (c_val_print): Use extract_typed_address instead of
extract_address to extract vtable entries and references.
* cp-valprint.c (cp_print_value_fields): Use value_from_pointer
instead of value_from_longest to extract the vtable's address.
* eval.c (evaluate_subexp_standard): Use value_from_pointer
instead of value_from_longest to compute `this', and for doing
pointer-to-member dereferencing.
* findvar.c (read_register): Use extract_unsigned_integer, not
extract_address.
(read_var_value): Use store_typed_address instead of store_address
for building label values.
(locate_var_value): Use value_from_pointer instead of
value_from_longest.
* hppa-tdep.c (find_stub_with_shl_get): Use value_from_pointer,
instead of value_from_longest, to build arguments to __d_shl_get.
* printcmd.c (set_next_address): Use value_from_pointer, not
value_from_longest.
(x_command): Use value_from_pointer, not value_from_longest.
* tracepoint.c (set_traceframe_context): Use value_from_pointer,
not value_from_longest.
* valarith.c (value_add, value_sub): Use value_from_pointer, not
value_from_longest.
* valops.c (find_function_in_inferior, value_coerce_array,
value_coerce_function, value_addr, hand_function_call): Same.
* value.h (COERCE_REF): Use unpack_pointer, not unpack_long.
* values.c (unpack_long): Use extract_typed_address to produce
addresses from pointers and references, not extract_address.
(value_from_longest): Use store_typed_address instead of
store_address to produce pointer and reference values.
2000-04-14 18:43:41 +00:00
|
|
|
|
store_typed_address (VALUE_CONTENTS_RAW (val), type, (CORE_ADDR) num);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
break;
|
1999-07-07 20:19:36 +00:00
|
|
|
|
|
1999-04-16 01:35:26 +00:00
|
|
|
|
default:
|
|
|
|
|
error ("Unexpected type (%d) encountered for integer constant.", code);
|
|
|
|
|
}
|
|
|
|
|
return val;
|
|
|
|
|
}
|
|
|
|
|
|
* gdbarch.sh (POINTER_TO_ADDRESS, ADDRESS_TO_POINTER): Two new
functions which architectures can redefine, defaulting to
generic_pointer_to_address and generic_address_to_pointer.
* findvar.c (extract_typed_address, store_typed_address,
generic_pointer_to_address, generic_address_to_pointer): New
functions.
(POINTER_TO_ADDRESS, ADDRESS_TO_POINTER): Provide default
definitions.
(extract_address, store_address): Doc fixes.
* values.c (value_as_pointer): Doc fix.
(value_from_pointer): New function.
* defs.h (extract_typed_address, store_typed_address): New
declarations.
* inferior.h (generic_address_to_pointer,
generic_pointer_to_address): New declarations.
* value.h (value_from_pointer): New declaration.
* ax-gdb.c (const_var_ref): Use value_from_pointer, not
value_from_longest.
* blockframe.c (generic_push_dummy_frame): Use read_pc and
read_sp, not read_register.
* c-valprint.c (c_val_print): Use extract_typed_address instead of
extract_address to extract vtable entries and references.
* cp-valprint.c (cp_print_value_fields): Use value_from_pointer
instead of value_from_longest to extract the vtable's address.
* eval.c (evaluate_subexp_standard): Use value_from_pointer
instead of value_from_longest to compute `this', and for doing
pointer-to-member dereferencing.
* findvar.c (read_register): Use extract_unsigned_integer, not
extract_address.
(read_var_value): Use store_typed_address instead of store_address
for building label values.
(locate_var_value): Use value_from_pointer instead of
value_from_longest.
* hppa-tdep.c (find_stub_with_shl_get): Use value_from_pointer,
instead of value_from_longest, to build arguments to __d_shl_get.
* printcmd.c (set_next_address): Use value_from_pointer, not
value_from_longest.
(x_command): Use value_from_pointer, not value_from_longest.
* tracepoint.c (set_traceframe_context): Use value_from_pointer,
not value_from_longest.
* valarith.c (value_add, value_sub): Use value_from_pointer, not
value_from_longest.
* valops.c (find_function_in_inferior, value_coerce_array,
value_coerce_function, value_addr, hand_function_call): Same.
* value.h (COERCE_REF): Use unpack_pointer, not unpack_long.
* values.c (unpack_long): Use extract_typed_address to produce
addresses from pointers and references, not extract_address.
(value_from_longest): Use store_typed_address instead of
store_address to produce pointer and reference values.
2000-04-14 18:43:41 +00:00
|
|
|
|
|
|
|
|
|
/* Create a value representing a pointer of type TYPE to the address
|
|
|
|
|
ADDR. */
|
|
|
|
|
value_ptr
|
|
|
|
|
value_from_pointer (struct type *type, CORE_ADDR addr)
|
|
|
|
|
{
|
|
|
|
|
value_ptr val = allocate_value (type);
|
|
|
|
|
store_typed_address (VALUE_CONTENTS_RAW (val), type, addr);
|
|
|
|
|
return val;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
1999-06-14 18:08:47 +00:00
|
|
|
|
/* Create a value for a string constant to be stored locally
|
2000-04-04 04:53:50 +00:00
|
|
|
|
(not in the inferior's memory space, but in GDB memory).
|
1999-06-14 18:08:47 +00:00
|
|
|
|
This is analogous to value_from_longest, which also does not
|
|
|
|
|
use inferior memory. String shall NOT contain embedded nulls. */
|
|
|
|
|
|
|
|
|
|
value_ptr
|
2000-07-30 01:48:28 +00:00
|
|
|
|
value_from_string (char *ptr)
|
1999-06-14 18:08:47 +00:00
|
|
|
|
{
|
|
|
|
|
value_ptr val;
|
1999-07-07 20:19:36 +00:00
|
|
|
|
int len = strlen (ptr);
|
1999-06-14 18:08:47 +00:00
|
|
|
|
int lowbound = current_language->string_lower_bound;
|
1999-07-07 20:19:36 +00:00
|
|
|
|
struct type *rangetype =
|
|
|
|
|
create_range_type ((struct type *) NULL,
|
|
|
|
|
builtin_type_int,
|
|
|
|
|
lowbound, len + lowbound - 1);
|
|
|
|
|
struct type *stringtype =
|
|
|
|
|
create_array_type ((struct type *) NULL,
|
|
|
|
|
*current_language->string_char_type,
|
|
|
|
|
rangetype);
|
1999-06-14 18:08:47 +00:00
|
|
|
|
|
|
|
|
|
val = allocate_value (stringtype);
|
|
|
|
|
memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
|
|
|
|
|
return val;
|
|
|
|
|
}
|
|
|
|
|
|
1999-04-16 01:35:26 +00:00
|
|
|
|
value_ptr
|
2000-07-30 01:48:28 +00:00
|
|
|
|
value_from_double (struct type *type, DOUBLEST num)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
register value_ptr val = allocate_value (type);
|
|
|
|
|
struct type *base_type = check_typedef (type);
|
|
|
|
|
register enum type_code code = TYPE_CODE (base_type);
|
|
|
|
|
register int len = TYPE_LENGTH (base_type);
|
|
|
|
|
|
|
|
|
|
if (code == TYPE_CODE_FLT)
|
|
|
|
|
{
|
|
|
|
|
store_floating (VALUE_CONTENTS_RAW (val), len, num);
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
error ("Unexpected type encountered for floating constant.");
|
|
|
|
|
|
|
|
|
|
return val;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Deal with the value that is "about to be returned". */
|
|
|
|
|
|
|
|
|
|
/* Return the value that a function returning now
|
|
|
|
|
would be returning to its caller, assuming its type is VALTYPE.
|
|
|
|
|
RETBUF is where we look for what ought to be the contents
|
|
|
|
|
of the registers (in raw form). This is because it is often
|
|
|
|
|
desirable to restore old values to those registers
|
|
|
|
|
after saving the contents of interest, and then call
|
|
|
|
|
this function using the saved values.
|
|
|
|
|
struct_return is non-zero when the function in question is
|
|
|
|
|
using the structure return conventions on the machine in question;
|
|
|
|
|
0 when it is using the value returning conventions (this often
|
|
|
|
|
means returning pointer to where structure is vs. returning value). */
|
|
|
|
|
|
2000-11-10 01:19:47 +00:00
|
|
|
|
/* ARGSUSED */
|
1999-04-16 01:35:26 +00:00
|
|
|
|
value_ptr
|
2000-11-10 01:19:47 +00:00
|
|
|
|
value_being_returned (struct type *valtype, char *retbuf, int struct_return)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
register value_ptr val;
|
|
|
|
|
CORE_ADDR addr;
|
|
|
|
|
|
|
|
|
|
/* If this is not defined, just use EXTRACT_RETURN_VALUE instead. */
|
1999-06-01 15:44:41 +00:00
|
|
|
|
if (EXTRACT_STRUCT_VALUE_ADDRESS_P)
|
|
|
|
|
if (struct_return)
|
|
|
|
|
{
|
|
|
|
|
addr = EXTRACT_STRUCT_VALUE_ADDRESS (retbuf);
|
|
|
|
|
if (!addr)
|
|
|
|
|
error ("Function return value unknown");
|
|
|
|
|
return value_at (valtype, addr, NULL);
|
|
|
|
|
}
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
|
|
|
|
val = allocate_value (valtype);
|
|
|
|
|
CHECK_TYPEDEF (valtype);
|
|
|
|
|
EXTRACT_RETURN_VALUE (valtype, retbuf, VALUE_CONTENTS_RAW (val));
|
|
|
|
|
|
|
|
|
|
return val;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
|
|
|
|
|
EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
|
|
|
|
|
and TYPE is the type (which is known to be struct, union or array).
|
|
|
|
|
|
|
|
|
|
On most machines, the struct convention is used unless we are
|
|
|
|
|
using gcc and the type is of a special size. */
|
|
|
|
|
/* As of about 31 Mar 93, GCC was changed to be compatible with the
|
|
|
|
|
native compiler. GCC 2.3.3 was the last release that did it the
|
|
|
|
|
old way. Since gcc2_compiled was not changed, we have no
|
|
|
|
|
way to correctly win in all cases, so we just do the right thing
|
|
|
|
|
for gcc1 and for gcc2 after this change. Thus it loses for gcc
|
|
|
|
|
2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled
|
|
|
|
|
would cause more chaos than dealing with some struct returns being
|
|
|
|
|
handled wrong. */
|
|
|
|
|
|
|
|
|
|
int
|
2000-07-30 01:48:28 +00:00
|
|
|
|
generic_use_struct_convention (int gcc_p, struct type *value_type)
|
1999-07-07 20:19:36 +00:00
|
|
|
|
{
|
1999-04-16 01:35:26 +00:00
|
|
|
|
return !((gcc_p == 1)
|
1999-07-07 20:19:36 +00:00
|
|
|
|
&& (TYPE_LENGTH (value_type) == 1
|
|
|
|
|
|| TYPE_LENGTH (value_type) == 2
|
|
|
|
|
|| TYPE_LENGTH (value_type) == 4
|
|
|
|
|
|| TYPE_LENGTH (value_type) == 8));
|
1999-04-16 01:35:26 +00:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#ifndef USE_STRUCT_CONVENTION
|
|
|
|
|
#define USE_STRUCT_CONVENTION(gcc_p,type) generic_use_struct_convention (gcc_p, type)
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* Return true if the function specified is using the structure returning
|
|
|
|
|
convention on this machine to return arguments, or 0 if it is using
|
|
|
|
|
the value returning convention. FUNCTION is the value representing
|
|
|
|
|
the function, FUNCADDR is the address of the function, and VALUE_TYPE
|
|
|
|
|
is the type returned by the function. GCC_P is nonzero if compiled
|
|
|
|
|
with GCC. */
|
|
|
|
|
|
2000-11-10 01:19:47 +00:00
|
|
|
|
/* ARGSUSED */
|
1999-04-16 01:35:26 +00:00
|
|
|
|
int
|
2000-11-10 01:19:47 +00:00
|
|
|
|
using_struct_return (value_ptr function, CORE_ADDR funcaddr,
|
|
|
|
|
struct type *value_type, int gcc_p)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
register enum type_code code = TYPE_CODE (value_type);
|
|
|
|
|
|
|
|
|
|
if (code == TYPE_CODE_ERROR)
|
|
|
|
|
error ("Function return type unknown.");
|
|
|
|
|
|
|
|
|
|
if (code == TYPE_CODE_STRUCT
|
|
|
|
|
|| code == TYPE_CODE_UNION
|
|
|
|
|
|| code == TYPE_CODE_ARRAY
|
|
|
|
|
|| RETURN_VALUE_ON_STACK (value_type))
|
|
|
|
|
return USE_STRUCT_CONVENTION (gcc_p, value_type);
|
|
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Store VAL so it will be returned if a function returns now.
|
|
|
|
|
Does not verify that VAL's type matches what the current
|
|
|
|
|
function wants to return. */
|
|
|
|
|
|
|
|
|
|
void
|
2000-07-30 01:48:28 +00:00
|
|
|
|
set_return_value (value_ptr val)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
struct type *type = check_typedef (VALUE_TYPE (val));
|
|
|
|
|
register enum type_code code = TYPE_CODE (type);
|
|
|
|
|
|
|
|
|
|
if (code == TYPE_CODE_ERROR)
|
|
|
|
|
error ("Function return type unknown.");
|
|
|
|
|
|
1999-07-07 20:19:36 +00:00
|
|
|
|
if (code == TYPE_CODE_STRUCT
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|| code == TYPE_CODE_UNION) /* FIXME, implement struct return. */
|
|
|
|
|
error ("GDB does not support specifying a struct or union return value.");
|
|
|
|
|
|
|
|
|
|
STORE_RETURN_VALUE (type, VALUE_CONTENTS (val));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void
|
2000-07-30 01:48:28 +00:00
|
|
|
|
_initialize_values (void)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
add_cmd ("convenience", no_class, show_convenience,
|
1999-07-07 20:19:36 +00:00
|
|
|
|
"Debugger convenience (\"$foo\") variables.\n\
|
1999-04-16 01:35:26 +00:00
|
|
|
|
These variables are created when you assign them values;\n\
|
|
|
|
|
thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\
|
|
|
|
|
A few convenience variables are given values automatically:\n\
|
|
|
|
|
\"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
|
|
|
|
|
\"$__\" holds the contents of the last address examined with \"x\".",
|
|
|
|
|
&showlist);
|
|
|
|
|
|
|
|
|
|
add_cmd ("values", no_class, show_values,
|
|
|
|
|
"Elements of value history around item number IDX (or last ten).",
|
|
|
|
|
&showlist);
|
|
|
|
|
}
|