darling-gdb/gdb/symm-nat.c

895 lines
24 KiB
C
Raw Normal View History

/* Sequent Symmetry host interface, for GDB when running under Unix.
2001-03-06 08:22:02 +00:00
Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1999, 2000,
2001
Free Software Foundation, Inc.
1999-07-07 20:19:36 +00:00
This file is part of GDB.
1999-07-07 20:19:36 +00:00
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
1999-07-07 20:19:36 +00:00
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
1999-07-07 20:19:36 +00:00
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
/* FIXME, some 387-specific items of use taken from i387-tdep.c -- ought to be
merged back in. */
#include "defs.h"
#include "frame.h"
#include "inferior.h"
#include "symtab.h"
#include "target.h"
#include "regcache.h"
/* FIXME: What is the _INKERNEL define for? */
#define _INKERNEL
#include <signal.h>
#undef _INKERNEL
#include <sys/wait.h>
#include <sys/param.h>
#include <sys/user.h>
#include <sys/proc.h>
#include <sys/dir.h>
#include <sys/ioctl.h>
#include "gdb_stat.h"
#ifdef _SEQUENT_
#include <sys/ptrace.h>
#else
/* Dynix has only machine/ptrace.h, which is already included by sys/user.h */
/* Dynix has no mptrace call */
#define mptrace ptrace
#endif
#include "gdbcore.h"
#include <fcntl.h>
#include <sgtty.h>
#define TERMINAL struct sgttyb
#include "gdbcore.h"
void
2000-07-30 01:48:28 +00:00
store_inferior_registers (int regno)
{
struct pt_regset regs;
int i;
/* FIXME: Fetching the registers is a kludge to initialize all elements
in the fpu and fpa status. This works for normal debugging, but
might cause problems when calling functions in the inferior.
At least fpu_control and fpa_pcr (probably more) should be added
to the registers array to solve this properly. */
1999-07-07 20:19:36 +00:00
mptrace (XPT_RREGS, inferior_pid, (PTRACE_ARG3_TYPE) & regs, 0);
regs.pr_eax = *(int *) &registers[REGISTER_BYTE (0)];
regs.pr_ebx = *(int *) &registers[REGISTER_BYTE (5)];
regs.pr_ecx = *(int *) &registers[REGISTER_BYTE (2)];
regs.pr_edx = *(int *) &registers[REGISTER_BYTE (1)];
regs.pr_esi = *(int *) &registers[REGISTER_BYTE (6)];
regs.pr_edi = *(int *) &registers[REGISTER_BYTE (7)];
regs.pr_esp = *(int *) &registers[REGISTER_BYTE (14)];
regs.pr_ebp = *(int *) &registers[REGISTER_BYTE (15)];
regs.pr_eip = *(int *) &registers[REGISTER_BYTE (16)];
regs.pr_flags = *(int *) &registers[REGISTER_BYTE (17)];
for (i = 0; i < 31; i++)
{
regs.pr_fpa.fpa_regs[i] =
1999-07-07 20:19:36 +00:00
*(int *) &registers[REGISTER_BYTE (FP1_REGNUM + i)];
}
1999-07-07 20:19:36 +00:00
memcpy (regs.pr_fpu.fpu_stack[0], &registers[REGISTER_BYTE (ST0_REGNUM)], 10);
memcpy (regs.pr_fpu.fpu_stack[1], &registers[REGISTER_BYTE (ST1_REGNUM)], 10);
memcpy (regs.pr_fpu.fpu_stack[2], &registers[REGISTER_BYTE (ST2_REGNUM)], 10);
memcpy (regs.pr_fpu.fpu_stack[3], &registers[REGISTER_BYTE (ST3_REGNUM)], 10);
memcpy (regs.pr_fpu.fpu_stack[4], &registers[REGISTER_BYTE (ST4_REGNUM)], 10);
memcpy (regs.pr_fpu.fpu_stack[5], &registers[REGISTER_BYTE (ST5_REGNUM)], 10);
memcpy (regs.pr_fpu.fpu_stack[6], &registers[REGISTER_BYTE (ST6_REGNUM)], 10);
memcpy (regs.pr_fpu.fpu_stack[7], &registers[REGISTER_BYTE (ST7_REGNUM)], 10);
mptrace (XPT_WREGS, inferior_pid, (PTRACE_ARG3_TYPE) & regs, 0);
}
void
2000-07-30 01:48:28 +00:00
fetch_inferior_registers (int regno)
{
int i;
struct pt_regset regs;
registers_fetched ();
1999-07-07 20:19:36 +00:00
mptrace (XPT_RREGS, inferior_pid, (PTRACE_ARG3_TYPE) & regs, 0);
*(int *) &registers[REGISTER_BYTE (EAX_REGNUM)] = regs.pr_eax;
*(int *) &registers[REGISTER_BYTE (EBX_REGNUM)] = regs.pr_ebx;
*(int *) &registers[REGISTER_BYTE (ECX_REGNUM)] = regs.pr_ecx;
*(int *) &registers[REGISTER_BYTE (EDX_REGNUM)] = regs.pr_edx;
*(int *) &registers[REGISTER_BYTE (ESI_REGNUM)] = regs.pr_esi;
*(int *) &registers[REGISTER_BYTE (EDI_REGNUM)] = regs.pr_edi;
*(int *) &registers[REGISTER_BYTE (EBP_REGNUM)] = regs.pr_ebp;
*(int *) &registers[REGISTER_BYTE (ESP_REGNUM)] = regs.pr_esp;
*(int *) &registers[REGISTER_BYTE (EIP_REGNUM)] = regs.pr_eip;
*(int *) &registers[REGISTER_BYTE (EFLAGS_REGNUM)] = regs.pr_flags;
for (i = 0; i < FPA_NREGS; i++)
{
1999-07-07 20:19:36 +00:00
*(int *) &registers[REGISTER_BYTE (FP1_REGNUM + i)] =
regs.pr_fpa.fpa_regs[i];
}
1999-07-07 20:19:36 +00:00
memcpy (&registers[REGISTER_BYTE (ST0_REGNUM)], regs.pr_fpu.fpu_stack[0], 10);
memcpy (&registers[REGISTER_BYTE (ST1_REGNUM)], regs.pr_fpu.fpu_stack[1], 10);
memcpy (&registers[REGISTER_BYTE (ST2_REGNUM)], regs.pr_fpu.fpu_stack[2], 10);
memcpy (&registers[REGISTER_BYTE (ST3_REGNUM)], regs.pr_fpu.fpu_stack[3], 10);
memcpy (&registers[REGISTER_BYTE (ST4_REGNUM)], regs.pr_fpu.fpu_stack[4], 10);
memcpy (&registers[REGISTER_BYTE (ST5_REGNUM)], regs.pr_fpu.fpu_stack[5], 10);
memcpy (&registers[REGISTER_BYTE (ST6_REGNUM)], regs.pr_fpu.fpu_stack[6], 10);
memcpy (&registers[REGISTER_BYTE (ST7_REGNUM)], regs.pr_fpu.fpu_stack[7], 10);
}
/* FIXME: This should be merged with i387-tdep.c as well. */
static
2000-07-30 01:48:28 +00:00
print_fpu_status (struct pt_regset ep)
{
1999-07-07 20:19:36 +00:00
int i;
int bothstatus;
int top;
int fpreg;
unsigned char *p;
printf_unfiltered ("80387:");
if (ep.pr_fpu.fpu_ip == 0)
{
printf_unfiltered (" not in use.\n");
return;
}
1999-07-07 20:19:36 +00:00
else
{
printf_unfiltered ("\n");
}
if (ep.pr_fpu.fpu_status != 0)
{
print_387_status_word (ep.pr_fpu.fpu_status);
}
1999-07-07 20:19:36 +00:00
print_387_control_word (ep.pr_fpu.fpu_control);
printf_unfiltered ("last exception: ");
printf_unfiltered ("opcode 0x%x; ", ep.pr_fpu.fpu_rsvd4);
printf_unfiltered ("pc 0x%x:0x%x; ", ep.pr_fpu.fpu_cs, ep.pr_fpu.fpu_ip);
printf_unfiltered ("operand 0x%x:0x%x\n", ep.pr_fpu.fpu_data_offset, ep.pr_fpu.fpu_op_sel);
top = (ep.pr_fpu.fpu_status >> 11) & 7;
printf_unfiltered ("regno tag msb lsb value\n");
for (fpreg = 7; fpreg >= 0; fpreg--)
{
double val;
printf_unfiltered ("%s %d: ", fpreg == top ? "=>" : " ", fpreg);
switch ((ep.pr_fpu.fpu_tag >> (fpreg * 2)) & 3)
{
1999-07-07 20:19:36 +00:00
case 0:
printf_unfiltered ("valid ");
break;
case 1:
printf_unfiltered ("zero ");
break;
case 2:
printf_unfiltered ("trap ");
break;
case 3:
printf_unfiltered ("empty ");
break;
}
1999-07-07 20:19:36 +00:00
for (i = 9; i >= 0; i--)
printf_unfiltered ("%02x", ep.pr_fpu.fpu_stack[fpreg][i]);
i387_to_double ((char *) ep.pr_fpu.fpu_stack[fpreg], (char *) &val);
printf_unfiltered (" %g\n", val);
}
if (ep.pr_fpu.fpu_rsvd1)
warning ("rsvd1 is 0x%x\n", ep.pr_fpu.fpu_rsvd1);
if (ep.pr_fpu.fpu_rsvd2)
warning ("rsvd2 is 0x%x\n", ep.pr_fpu.fpu_rsvd2);
if (ep.pr_fpu.fpu_rsvd3)
warning ("rsvd3 is 0x%x\n", ep.pr_fpu.fpu_rsvd3);
if (ep.pr_fpu.fpu_rsvd5)
warning ("rsvd5 is 0x%x\n", ep.pr_fpu.fpu_rsvd5);
}
2000-07-30 01:48:28 +00:00
print_1167_control_word (unsigned int pcr)
{
1999-07-07 20:19:36 +00:00
int pcr_tmp;
1999-07-07 20:19:36 +00:00
pcr_tmp = pcr & FPA_PCR_MODE;
printf_unfiltered ("\tMODE= %#x; RND= %#x ", pcr_tmp, pcr_tmp & 12);
switch (pcr_tmp & 12)
{
case 0:
1999-07-07 20:19:36 +00:00
printf_unfiltered ("RN (Nearest Value)");
break;
case 1:
1999-07-07 20:19:36 +00:00
printf_unfiltered ("RZ (Zero)");
break;
case 2:
1999-07-07 20:19:36 +00:00
printf_unfiltered ("RP (Positive Infinity)");
break;
case 3:
1999-07-07 20:19:36 +00:00
printf_unfiltered ("RM (Negative Infinity)");
break;
}
printf_unfiltered ("; IRND= %d ", pcr_tmp & 2);
if (0 == pcr_tmp & 2)
{
printf_unfiltered ("(same as RND)\n");
}
1999-07-07 20:19:36 +00:00
else
{
printf_unfiltered ("(toward zero)\n");
}
1999-07-07 20:19:36 +00:00
pcr_tmp = pcr & FPA_PCR_EM;
printf_unfiltered ("\tEM= %#x", pcr_tmp);
if (pcr_tmp & FPA_PCR_EM_DM)
printf_unfiltered (" DM");
if (pcr_tmp & FPA_PCR_EM_UOM)
printf_unfiltered (" UOM");
if (pcr_tmp & FPA_PCR_EM_PM)
printf_unfiltered (" PM");
if (pcr_tmp & FPA_PCR_EM_UM)
printf_unfiltered (" UM");
if (pcr_tmp & FPA_PCR_EM_OM)
printf_unfiltered (" OM");
if (pcr_tmp & FPA_PCR_EM_ZM)
printf_unfiltered (" ZM");
if (pcr_tmp & FPA_PCR_EM_IM)
printf_unfiltered (" IM");
printf_unfiltered ("\n");
pcr_tmp = FPA_PCR_CC;
printf_unfiltered ("\tCC= %#x", pcr_tmp);
if (pcr_tmp & FPA_PCR_20MHZ)
printf_unfiltered (" 20MHZ");
if (pcr_tmp & FPA_PCR_CC_Z)
printf_unfiltered (" Z");
if (pcr_tmp & FPA_PCR_CC_C2)
printf_unfiltered (" C2");
/* Dynix defines FPA_PCR_CC_C0 to 0x100 and ptx defines
FPA_PCR_CC_C1 to 0x100. Use whichever is defined and assume
the OS knows what it is doing. */
#ifdef FPA_PCR_CC_C1
1999-07-07 20:19:36 +00:00
if (pcr_tmp & FPA_PCR_CC_C1)
printf_unfiltered (" C1");
#else
1999-07-07 20:19:36 +00:00
if (pcr_tmp & FPA_PCR_CC_C0)
printf_unfiltered (" C0");
#endif
1999-07-07 20:19:36 +00:00
switch (pcr_tmp)
{
case FPA_PCR_CC_Z:
printf_unfiltered (" (Equal)");
break;
#ifdef FPA_PCR_CC_C1
1999-07-07 20:19:36 +00:00
case FPA_PCR_CC_C1:
#else
1999-07-07 20:19:36 +00:00
case FPA_PCR_CC_C0:
#endif
1999-07-07 20:19:36 +00:00
printf_unfiltered (" (Less than)");
break;
case 0:
printf_unfiltered (" (Greater than)");
break;
case FPA_PCR_CC_Z |
#ifdef FPA_PCR_CC_C1
FPA_PCR_CC_C1
#else
FPA_PCR_CC_C0
#endif
1999-07-07 20:19:36 +00:00
| FPA_PCR_CC_C2:
printf_unfiltered (" (Unordered)");
break;
default:
printf_unfiltered (" (Undefined)");
break;
}
printf_unfiltered ("\n");
pcr_tmp = pcr & FPA_PCR_AE;
printf_unfiltered ("\tAE= %#x", pcr_tmp);
if (pcr_tmp & FPA_PCR_AE_DE)
printf_unfiltered (" DE");
if (pcr_tmp & FPA_PCR_AE_UOE)
printf_unfiltered (" UOE");
if (pcr_tmp & FPA_PCR_AE_PE)
printf_unfiltered (" PE");
if (pcr_tmp & FPA_PCR_AE_UE)
printf_unfiltered (" UE");
if (pcr_tmp & FPA_PCR_AE_OE)
printf_unfiltered (" OE");
if (pcr_tmp & FPA_PCR_AE_ZE)
printf_unfiltered (" ZE");
if (pcr_tmp & FPA_PCR_AE_EE)
printf_unfiltered (" EE");
if (pcr_tmp & FPA_PCR_AE_IE)
printf_unfiltered (" IE");
printf_unfiltered ("\n");
}
2000-10-27 01:25:10 +00:00
print_1167_regs (long regs[FPA_NREGS])
{
1999-07-07 20:19:36 +00:00
int i;
union
{
double d;
long l[2];
}
xd;
union
{
float f;
long l;
}
xf;
for (i = 0; i < FPA_NREGS; i++)
{
xf.l = regs[i];
printf_unfiltered ("%%fp%d: raw= %#x, single= %f", i + 1, regs[i], xf.f);
if (!(i & 1))
{
printf_unfiltered ("\n");
}
else
{
xd.l[1] = regs[i];
xd.l[0] = regs[i + 1];
printf_unfiltered (", double= %f\n", xd.d);
}
}
}
2000-07-30 01:48:28 +00:00
print_fpa_status (struct pt_regset ep)
{
1999-07-07 20:19:36 +00:00
printf_unfiltered ("WTL 1167:");
if (ep.pr_fpa.fpa_pcr != 0)
{
printf_unfiltered ("\n");
print_1167_control_word (ep.pr_fpa.fpa_pcr);
print_1167_regs (ep.pr_fpa.fpa_regs);
}
else
{
printf_unfiltered (" not in use.\n");
}
}
1999-07-07 20:19:36 +00:00
#if 0 /* disabled because it doesn't go through the target vector. */
2000-07-30 01:48:28 +00:00
i386_float_info (void)
{
1999-07-07 20:19:36 +00:00
char ubuf[UPAGES * NBPG];
struct pt_regset regset;
1999-07-07 20:19:36 +00:00
if (have_inferior_p ())
{
1999-07-07 20:19:36 +00:00
PTRACE_READ_REGS (inferior_pid, (PTRACE_ARG3_TYPE) & regset);
}
else
{
int corechan = bfd_cache_lookup (core_bfd);
if (lseek (corechan, 0, 0) < 0)
{
perror ("seek on core file");
}
1999-07-07 20:19:36 +00:00
if (myread (corechan, ubuf, UPAGES * NBPG) < 0)
{
perror ("read on core file");
}
/* only interested in the floating point registers */
regset.pr_fpu = ((struct user *) ubuf)->u_fpusave;
regset.pr_fpa = ((struct user *) ubuf)->u_fpasave;
}
1999-07-07 20:19:36 +00:00
print_fpu_status (regset);
print_fpa_status (regset);
}
#endif
static volatile int got_sigchld;
1999-07-07 20:19:36 +00:00
/*ARGSUSED */
/* This will eventually be more interesting. */
void
2000-07-30 01:48:28 +00:00
sigchld_handler (int signo)
{
1999-07-07 20:19:36 +00:00
got_sigchld++;
}
/*
* Signals for which the default action does not cause the process
* to die. See <sys/signal.h> for where this came from (alas, we
* can't use those macros directly)
*/
#ifndef sigmask
#define sigmask(s) (1 << ((s) - 1))
#endif
#define SIGNALS_DFL_SAFE sigmask(SIGSTOP) | sigmask(SIGTSTP) | \
sigmask(SIGTTIN) | sigmask(SIGTTOU) | sigmask(SIGCHLD) | \
sigmask(SIGCONT) | sigmask(SIGWINCH) | sigmask(SIGPWR) | \
sigmask(SIGURG) | sigmask(SIGPOLL)
#ifdef ATTACH_DETACH
/*
* Thanks to XPT_MPDEBUGGER, we have to mange child_wait().
*/
int
2000-07-30 01:48:28 +00:00
child_wait (int pid, struct target_waitstatus *status)
{
int save_errno, rv, xvaloff, saoff, sa_hand;
struct pt_stop pt;
struct user u;
sigset_t set;
/* Host signal number for a signal which the inferior terminates with, or
0 if it hasn't terminated due to a signal. */
static int death_by_signal = 0;
#ifdef SVR4_SHARED_LIBS /* use this to distinguish ptx 2 vs ptx 4 */
prstatus_t pstatus;
#endif
1999-07-07 20:19:36 +00:00
do
{
set_sigint_trap (); /* Causes SIGINT to be passed on to the
attached process. */
save_errno = errno;
1999-07-07 20:19:36 +00:00
got_sigchld = 0;
1999-07-07 20:19:36 +00:00
sigemptyset (&set);
1999-07-07 20:19:36 +00:00
while (got_sigchld == 0)
{
sigsuspend (&set);
}
1999-07-07 20:19:36 +00:00
clear_sigint_trap ();
rv = mptrace (XPT_STOPSTAT, 0, (char *) &pt, 0);
if (-1 == rv)
{
printf ("XPT_STOPSTAT: errno %d\n", errno); /* DEBUG */
continue;
}
1999-07-07 20:19:36 +00:00
pid = pt.ps_pid;
if (pid != inferior_pid)
{
/* NOTE: the mystery fork in csh/tcsh needs to be ignored.
* We should not return new children for the initial run
* of a process until it has done the exec.
*/
/* inferior probably forked; send it on its way */
rv = mptrace (XPT_UNDEBUG, pid, 0, 0);
if (-1 == rv)
{
printf ("child_wait: XPT_UNDEBUG: pid %d: %s\n", pid,
safe_strerror (errno));
}
1999-07-07 20:19:36 +00:00
continue;
}
/* FIXME: Do we deal with fork notification correctly? */
switch (pt.ps_reason)
{
case PTS_FORK:
/* multi proc: treat like PTS_EXEC */
/*
* Pretend this didn't happen, since gdb isn't set up
* to deal with stops on fork.
*/
rv = ptrace (PT_CONTSIG, pid, 1, 0);
if (-1 == rv)
{
printf ("PTS_FORK: PT_CONTSIG: error %d\n", errno);
}
1999-07-07 20:19:36 +00:00
continue;
case PTS_EXEC:
/*
* Pretend this is a SIGTRAP.
*/
status->kind = TARGET_WAITKIND_STOPPED;
status->value.sig = TARGET_SIGNAL_TRAP;
break;
case PTS_EXIT:
/*
* Note: we stop before the exit actually occurs. Extract
* the exit code from the uarea. If we're stopped in the
* exit() system call, the exit code will be in
* u.u_ap[0]. An exit due to an uncaught signal will have
* something else in here, see the comment in the default:
* case, below. Finally,let the process exit.
*/
if (death_by_signal)
{
status->kind = TARGET_WAITKIND_SIGNALED;
status->value.sig = target_signal_from_host (death_by_signal);
death_by_signal = 0;
break;
}
1999-07-07 20:19:36 +00:00
xvaloff = (unsigned long) &u.u_ap[0] - (unsigned long) &u;
errno = 0;
rv = ptrace (PT_RUSER, pid, (char *) xvaloff, 0);
status->kind = TARGET_WAITKIND_EXITED;
status->value.integer = rv;
/*
* addr & data to mptrace() don't matter here, since
* the process is already dead.
*/
rv = mptrace (XPT_UNDEBUG, pid, 0, 0);
if (-1 == rv)
{
printf ("child_wait: PTS_EXIT: XPT_UNDEBUG: pid %d error %d\n", pid,
errno);
}
break;
case PTS_WATCHPT_HIT:
internal_error (__FILE__, __LINE__,
"PTS_WATCHPT_HIT\n");
1999-07-07 20:19:36 +00:00
break;
default:
/* stopped by signal */
status->kind = TARGET_WAITKIND_STOPPED;
status->value.sig = target_signal_from_host (pt.ps_reason);
death_by_signal = 0;
if (0 == (SIGNALS_DFL_SAFE & sigmask (pt.ps_reason)))
{
break;
}
1999-07-07 20:19:36 +00:00
/* else default action of signal is to die */
#ifdef SVR4_SHARED_LIBS
1999-07-07 20:19:36 +00:00
rv = ptrace (PT_GET_PRSTATUS, pid, (char *) &pstatus, 0);
if (-1 == rv)
error ("child_wait: signal %d PT_GET_PRSTATUS: %s\n",
pt.ps_reason, safe_strerror (errno));
if (pstatus.pr_cursig != pt.ps_reason)
{
printf ("pstatus signal %d, pt signal %d\n",
pstatus.pr_cursig, pt.ps_reason);
}
1999-07-07 20:19:36 +00:00
sa_hand = (int) pstatus.pr_action.sa_handler;
#else
1999-07-07 20:19:36 +00:00
saoff = (unsigned long) &u.u_sa[0] - (unsigned long) &u;
saoff += sizeof (struct sigaction) * (pt.ps_reason - 1);
errno = 0;
sa_hand = ptrace (PT_RUSER, pid, (char *) saoff, 0);
if (errno)
error ("child_wait: signal %d: RUSER: %s\n",
pt.ps_reason, safe_strerror (errno));
#endif
1999-07-07 20:19:36 +00:00
if ((int) SIG_DFL == sa_hand)
{
/* we will be dying */
death_by_signal = pt.ps_reason;
}
1999-07-07 20:19:36 +00:00
break;
}
1999-07-07 20:19:36 +00:00
}
while (pid != inferior_pid); /* Some other child died or stopped */
return pid;
}
#else /* !ATTACH_DETACH */
/*
* Simple child_wait() based on inftarg.c child_wait() for use until
* the MPDEBUGGER child_wait() works properly. This will go away when
* that is fixed.
*/
2000-07-30 01:48:28 +00:00
child_wait (int pid, struct target_waitstatus *ourstatus)
{
int save_errno;
int status;
1999-07-07 20:19:36 +00:00
do
{
pid = wait (&status);
save_errno = errno;
1999-07-07 20:19:36 +00:00
if (pid == -1)
{
if (save_errno == EINTR)
continue;
fprintf (stderr, "Child process unexpectedly missing: %s.\n",
safe_strerror (save_errno));
ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
ourstatus->value.sig = TARGET_SIGNAL_UNKNOWN;
return -1;
}
}
while (pid != inferior_pid); /* Some other child died or stopped */
store_waitstatus (ourstatus, status);
return pid;
}
#endif /* ATTACH_DETACH */
1999-07-07 20:19:36 +00:00
/* This function simply calls ptrace with the given arguments.
It exists so that all calls to ptrace are isolated in this
machine-dependent file. */
int
2000-07-30 01:48:28 +00:00
call_ptrace (int request, int pid, PTRACE_ARG3_TYPE addr, int data)
{
return ptrace (request, pid, addr, data);
}
int
2000-07-30 01:48:28 +00:00
call_mptrace (int request, int pid, PTRACE_ARG3_TYPE addr, int data)
{
1999-07-07 20:19:36 +00:00
return mptrace (request, pid, addr, data);
}
#if defined (DEBUG_PTRACE)
/* For the rest of the file, use an extra level of indirection */
/* This lets us breakpoint usefully on call_ptrace. */
#define ptrace call_ptrace
#define mptrace call_mptrace
#endif
void
2000-07-30 01:48:28 +00:00
kill_inferior (void)
{
if (inferior_pid == 0)
return;
/* For MPDEBUGGER, don't use PT_KILL, since the child will stop
again with a PTS_EXIT. Just hit him with SIGKILL (so he stops)
and detach. */
kill (inferior_pid, SIGKILL);
#ifdef ATTACH_DETACH
1999-07-07 20:19:36 +00:00
detach (SIGKILL);
#else /* ATTACH_DETACH */
1999-07-07 20:19:36 +00:00
ptrace (PT_KILL, inferior_pid, 0, 0);
wait ((int *) NULL);
#endif /* ATTACH_DETACH */
target_mourn_inferior ();
}
/* Resume execution of the inferior process.
If STEP is nonzero, single-step it.
If SIGNAL is nonzero, give it that signal. */
void
2000-07-30 01:48:28 +00:00
child_resume (int pid, int step, enum target_signal signal)
{
errno = 0;
if (pid == -1)
pid = inferior_pid;
/* An address of (PTRACE_ARG3_TYPE)1 tells ptrace to continue from where
it was. (If GDB wanted it to start some other way, we have already
written a new PC value to the child.)
If this system does not support PT_SSTEP, a higher level function will
have called single_step() to transmute the step request into a
continue request (by setting breakpoints on all possible successor
instructions), so we don't have to worry about that here. */
if (step)
1999-07-07 20:19:36 +00:00
ptrace (PT_SSTEP, pid, (PTRACE_ARG3_TYPE) 1, signal);
else
ptrace (PT_CONTSIG, pid, (PTRACE_ARG3_TYPE) 1, signal);
if (errno)
perror_with_name ("ptrace");
}
#ifdef ATTACH_DETACH
/* Start debugging the process whose number is PID. */
int
2000-07-30 01:48:28 +00:00
attach (int pid)
{
1999-07-07 20:19:36 +00:00
sigset_t set;
int rv;
1999-07-07 20:19:36 +00:00
rv = mptrace (XPT_DEBUG, pid, 0, 0);
if (-1 == rv)
{
error ("mptrace(XPT_DEBUG): %s", safe_strerror (errno));
}
rv = mptrace (XPT_SIGNAL, pid, 0, SIGSTOP);
if (-1 == rv)
{
error ("mptrace(XPT_SIGNAL): %s", safe_strerror (errno));
}
attach_flag = 1;
return pid;
}
void
2000-07-30 01:48:28 +00:00
detach (int signo)
{
1999-07-07 20:19:36 +00:00
int rv;
1999-07-07 20:19:36 +00:00
rv = mptrace (XPT_UNDEBUG, inferior_pid, 1, signo);
if (-1 == rv)
{
error ("mptrace(XPT_UNDEBUG): %s", safe_strerror (errno));
}
attach_flag = 0;
}
#endif /* ATTACH_DETACH */
/* Default the type of the ptrace transfer to int. */
#ifndef PTRACE_XFER_TYPE
#define PTRACE_XFER_TYPE int
#endif
1999-07-07 20:19:36 +00:00
/* NOTE! I tried using PTRACE_READDATA, etc., to read and write memory
in the NEW_SUN_PTRACE case.
It ought to be straightforward. But it appears that writing did
not write the data that I specified. I cannot understand where
it got the data that it actually did write. */
/* Copy LEN bytes to or from inferior's memory starting at MEMADDR
to debugger memory starting at MYADDR. Copy to inferior if
2000-10-27 01:25:10 +00:00
WRITE is nonzero. TARGET is ignored.
1999-07-07 20:19:36 +00:00
Returns the length copied, which is either the LEN argument or zero.
This xfer function does not do partial moves, since child_ops
doesn't allow memory operations to cross below us in the target stack
anyway. */
int
2000-10-27 01:25:10 +00:00
child_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len, int write,
struct mem_attrib *attrib,
2000-10-27 01:25:10 +00:00
struct target_ops *target)
{
register int i;
/* Round starting address down to longword boundary. */
1999-07-07 20:19:36 +00:00
register CORE_ADDR addr = memaddr & -sizeof (PTRACE_XFER_TYPE);
/* Round ending address up; get number of longwords that makes. */
register int count
1999-07-07 20:19:36 +00:00
= (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
/ sizeof (PTRACE_XFER_TYPE);
/* Allocate buffer of that many longwords. */
register PTRACE_XFER_TYPE *buffer
1999-07-07 20:19:36 +00:00
= (PTRACE_XFER_TYPE *) alloca (count * sizeof (PTRACE_XFER_TYPE));
if (write)
{
/* Fill start and end extra bytes of buffer with existing memory data. */
1999-07-07 20:19:36 +00:00
if (addr != memaddr || len < (int) sizeof (PTRACE_XFER_TYPE))
{
/* Need part of initial word -- fetch it. */
buffer[0] = ptrace (PT_RTEXT, inferior_pid, (PTRACE_ARG3_TYPE) addr,
0);
}
if (count > 1) /* FIXME, avoid if even boundary */
{
buffer[count - 1]
= ptrace (PT_RTEXT, inferior_pid,
((PTRACE_ARG3_TYPE)
(addr + (count - 1) * sizeof (PTRACE_XFER_TYPE))),
0);
}
/* Copy data to be written over corresponding part of buffer */
memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
myaddr,
len);
/* Write the entire buffer. */
for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
{
errno = 0;
ptrace (PT_WDATA, inferior_pid, (PTRACE_ARG3_TYPE) addr,
buffer[i]);
if (errno)
{
/* Using the appropriate one (I or D) is necessary for
1999-07-07 20:19:36 +00:00
Gould NP1, at least. */
errno = 0;
ptrace (PT_WTEXT, inferior_pid, (PTRACE_ARG3_TYPE) addr,
buffer[i]);
}
if (errno)
return 0;
}
}
else
{
/* Read all the longwords */
for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
{
errno = 0;
buffer[i] = ptrace (PT_RTEXT, inferior_pid,
(PTRACE_ARG3_TYPE) addr, 0);
if (errno)
return 0;
QUIT;
}
/* Copy appropriate bytes out of the buffer. */
memcpy (myaddr,
(char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
len);
}
return len;
}
void
2000-07-30 01:48:28 +00:00
_initialize_symm_nat (void)
{
#ifdef ATTACH_DETACH
/*
* the MPDEBUGGER is necessary for process tree debugging and attach
* to work, but it alters the behavior of debugged processes, so other
* things (at least child_wait()) will have to change to accomodate
* that.
*
* Note that attach is not implemented in dynix 3, and not in ptx
* until version 2.1 of the OS.
*/
1999-07-07 20:19:36 +00:00
int rv;
sigset_t set;
struct sigaction sact;
1999-07-07 20:19:36 +00:00
rv = mptrace (XPT_MPDEBUGGER, 0, 0, 0);
if (-1 == rv)
{
internal_error (__FILE__, __LINE__,
"_initialize_symm_nat(): mptrace(XPT_MPDEBUGGER): %s",
1999-08-09 21:36:23 +00:00
safe_strerror (errno));
1999-07-07 20:19:36 +00:00
}
1999-07-07 20:19:36 +00:00
/*
* Under MPDEBUGGER, we get SIGCLHD when a traced process does
* anything of interest.
*/
/*
* Block SIGCHLD. We leave it blocked all the time, and then
* call sigsuspend() in child_wait() to wait for the child
* to do something. None of these ought to fail, but check anyway.
*/
sigemptyset (&set);
rv = sigaddset (&set, SIGCHLD);
if (-1 == rv)
{
internal_error (__FILE__, __LINE__,
"_initialize_symm_nat(): sigaddset(SIGCHLD): %s",
1999-08-09 21:36:23 +00:00
safe_strerror (errno));
1999-07-07 20:19:36 +00:00
}
rv = sigprocmask (SIG_BLOCK, &set, (sigset_t *) NULL);
if (-1 == rv)
{
internal_error (__FILE__, __LINE__,
"_initialize_symm_nat(): sigprocmask(SIG_BLOCK): %s",
1999-08-09 21:36:23 +00:00
safe_strerror (errno));
1999-07-07 20:19:36 +00:00
}
sact.sa_handler = sigchld_handler;
sigemptyset (&sact.sa_mask);
sact.sa_flags = SA_NOCLDWAIT; /* keep the zombies away */
rv = sigaction (SIGCHLD, &sact, (struct sigaction *) NULL);
if (-1 == rv)
{
internal_error (__FILE__, __LINE__,
"_initialize_symm_nat(): sigaction(SIGCHLD): %s",
1999-08-09 21:36:23 +00:00
safe_strerror (errno));
1999-07-07 20:19:36 +00:00
}
#endif
}