* config/i386/tm-symmetry.h: Clean up, it is now only used for Dynix.

Remove all conditionals and definitions for ptx.
	I386_REGNO_TO_SYMMETRY moved to here from symm-tdep.c.
	Fix addresses of floating point registers in REGISTER_U_ADDR.
	STORE_STRUCT_RETURN now handles cc and gcc conventions.
	FRAME_CHAIN, FRAMELESS_FUNCTION_INVOCATION, FRAME_SAVED_PC,
	IN_SIGTRAMP, SIGCONTEXT_PC_OFFSET defined to make backtracing through
	signal trampoline code work.
	* config/i386/xm-symmetry.h:  Clean up, it is now only used for Dynix.
	Remove all conditionals and definitions for ptx.
	Remove KDB definitions.
This commit is contained in:
Peter Schauer 1994-03-30 10:00:00 +00:00
parent db2302cb93
commit 8a19fe2188
2 changed files with 76 additions and 297 deletions

View File

@ -1,6 +1,7 @@
/* Target machine definitions for GDB on a Sequent Symmetry under dynix 3.0,
with Weitek 1167 and i387 support.
Copyright 1986, 1987, 1989, 1991, 1992, 1993 Free Software Foundation, Inc.
Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994
Free Software Foundation, Inc.
Symmetry version by Jay Vosburgh (fubar@sequent.com).
This file is part of GDB.
@ -21,20 +22,7 @@ Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
/* I don't know if this will work for cross-debugging, even if you do get
a copy of the right include file. */
#ifdef _SEQUENT_
/* ptx */
#include <sys/reg.h>
#else
/* dynix */
#include <machine/reg.h>
#endif
#ifdef _SEQUENT_
/* ptx, not dynix */
#define SDB_REG_TO_REGNUM(value) ptx_coff_regno_to_gdb(value)
extern int ptx_coff_regno_to_gdb();
#endif /* _SEQUENT_ */
#define START_INFERIOR_TRAPS_EXPECTED 2
@ -46,13 +34,6 @@ extern int ptx_coff_regno_to_gdb();
#include "i386/tm-i386v.h"
/* Nonzero if instruction at PC is a return instruction. */
/* For Symmetry, this is really the 'leave' instruction, which */
/* is right before the ret */
#undef ABOUT_TO_RETURN
#define ABOUT_TO_RETURN(pc) (read_memory_integer (pc, 1) == 0xc9)
#if 0
/* --- this code can't be used unless we know we are running native,
since it uses host specific ptrace calls. */
@ -126,8 +107,17 @@ extern int ptx_coff_regno_to_gdb();
#define PS_REGNUM 17 /* eflags--Contains processor status */
#define EFLAGS_REGNUM 17
#ifndef _SEQUENT_
/* dynix, not ptx. For ptx, see register_addr in symm-tdep.c */
/*
* Following macro translates i386 opcode register numbers to Symmetry
* register numbers. This is used by i386_frame_find_saved_regs.
*
* %eax %ecx %edx %ebx %esp %ebp %esi %edi
* i386 0 1 2 3 4 5 6 7
* Symmetry 0 2 1 5 14 15 6 7
*
*/
#define I386_REGNO_TO_SYMMETRY(n) \
((n)==0?0 :(n)==1?2 :(n)==2?1 :(n)==3?5 :(n)==4?14 :(n)==5?15 :(n))
/* The magic numbers below are offsets into u_ar0 in the user struct.
* They live in <machine/reg.h>. Gdb calls this macro with blockend
@ -146,12 +136,10 @@ switch (regno) { \
case 2: \
addr = blockend + ECX * sizeof(int); break; \
case 3: /* st(0) */ \
addr = blockend - \
((int)&foo.u_fpusave.fpu_stack[0][0] - (int)&foo); \
addr = ((int)&foo.u_fpusave.fpu_stack[0][0] - (int)&foo); \
break; \
case 4: /* st(1) */ \
addr = blockend - \
((int) &foo.u_fpusave.fpu_stack[1][0] - (int)&foo); \
addr = ((int) &foo.u_fpusave.fpu_stack[1][0] - (int)&foo); \
break; \
case 5: \
addr = blockend + EBX * sizeof(int); break; \
@ -160,28 +148,22 @@ switch (regno) { \
case 7: \
addr = blockend + EDI * sizeof(int); break; \
case 8: /* st(2) */ \
addr = blockend - \
((int) &foo.u_fpusave.fpu_stack[2][0] - (int)&foo); \
addr = ((int) &foo.u_fpusave.fpu_stack[2][0] - (int)&foo); \
break; \
case 9: /* st(3) */ \
addr = blockend - \
((int) &foo.u_fpusave.fpu_stack[3][0] - (int)&foo); \
addr = ((int) &foo.u_fpusave.fpu_stack[3][0] - (int)&foo); \
break; \
case 10: /* st(4) */ \
addr = blockend - \
((int) &foo.u_fpusave.fpu_stack[4][0] - (int)&foo); \
addr = ((int) &foo.u_fpusave.fpu_stack[4][0] - (int)&foo); \
break; \
case 11: /* st(5) */ \
addr = blockend - \
((int) &foo.u_fpusave.fpu_stack[5][0] - (int)&foo); \
addr = ((int) &foo.u_fpusave.fpu_stack[5][0] - (int)&foo); \
break; \
case 12: /* st(6) */ \
addr = blockend - \
((int) &foo.u_fpusave.fpu_stack[6][0] - (int)&foo); \
addr = ((int) &foo.u_fpusave.fpu_stack[6][0] - (int)&foo); \
break; \
case 13: /* st(7) */ \
addr = blockend - \
((int) &foo.u_fpusave.fpu_stack[7][0] - (int)&foo); \
addr = ((int) &foo.u_fpusave.fpu_stack[7][0] - (int)&foo); \
break; \
case 14: \
addr = blockend + ESP * sizeof(int); break; \
@ -222,126 +204,9 @@ switch (regno) { \
case 46: /* fp29 */ \
case 47: /* fp30 */ \
case 48: /* fp31 */ \
addr = blockend - \
((int) &foo.u_fpasave.fpa_regs[(regno)-18] - (int)&foo); \
addr = ((int) &foo.u_fpasave.fpa_regs[(regno)-18] - (int)&foo); \
} \
}
#endif /* not _SEQUENT_ */
#ifdef _SEQUENT_
/* ptx. For Dynix, see above */
/*
* For ptx, this is a little bit bizarre, since the register block
* is below the u area in memory. This means that blockend here ends
* up being negative (for the call from coredep.c) since the value in
* u.u_ar0 will be less than KERNEL_U_ADDR (and coredep.c passes us
* u.u_ar0 - KERNEL_U_ADDR in blockend). Since we also define
* FETCH_INFERIOR_REGISTERS (and supply our own functions for that),
* the core file case will be the only use of this function.
*/
#define REGISTER_U_ADDR(addr, blockend, regno) \
{ struct user foo; /* needed for finding fpu regs */ \
switch (regno) { \
case 0: \
addr = blockend + (NBPG * UPAGES) - sizeof(struct user) + (EAX * sizeof(int)); break; \
case 1: \
addr = blockend + (NBPG * UPAGES) - sizeof(struct user) + (EDX * sizeof(int)); break; \
case 2: \
addr = blockend + (NBPG * UPAGES) - sizeof(struct user) + (ECX * sizeof(int)); break; \
case 3: /* st(0) */ \
addr = blockend - KERNEL_U_ADDR + \
((int)&foo.u_fpusave.fpu_stack[0][0] - (int)&foo); \
break; \
case 4: /* st(1) */ \
addr = blockend - KERNEL_U_ADDR + \
((int) &foo.u_fpusave.fpu_stack[1][0] - (int)&foo); \
break; \
case 5: \
addr = blockend + (NBPG * UPAGES) - sizeof(struct user) + (EBX * sizeof(int)); break; \
case 6: \
addr = blockend + (NBPG * UPAGES) - sizeof(struct user) + (ESI * sizeof(int)); break; \
case 7: \
addr = blockend + (NBPG * UPAGES) - sizeof(struct user) + (EDI * sizeof(int)); break; \
case 8: /* st(2) */ \
addr = blockend - KERNEL_U_ADDR + \
((int) &foo.u_fpusave.fpu_stack[2][0] - (int)&foo); \
break; \
case 9: /* st(3) */ \
addr = blockend - KERNEL_U_ADDR + \
((int) &foo.u_fpusave.fpu_stack[3][0] - (int)&foo); \
break; \
case 10: /* st(4) */ \
addr = blockend - KERNEL_U_ADDR + \
((int) &foo.u_fpusave.fpu_stack[4][0] - (int)&foo); \
break; \
case 11: /* st(5) */ \
addr = blockend - KERNEL_U_ADDR + \
((int) &foo.u_fpusave.fpu_stack[5][0] - (int)&foo); \
break; \
case 12: /* st(6) */ \
addr = blockend - KERNEL_U_ADDR + \
((int) &foo.u_fpusave.fpu_stack[6][0] - (int)&foo); \
break; \
case 13: /* st(7) */ \
addr = blockend - KERNEL_U_ADDR + \
((int) &foo.u_fpusave.fpu_stack[7][0] - (int)&foo); \
break; \
case 14: \
addr = blockend + (NBPG * UPAGES) - sizeof(struct user) + (ESP * sizeof(int)); break; \
case 15: \
addr = blockend + (NBPG * UPAGES) - sizeof(struct user) + (EBP * sizeof(int)); break; \
case 16: \
addr = blockend + (NBPG * UPAGES) - sizeof(struct user) + (EIP * sizeof(int)); break; \
case 17: \
addr = blockend + (NBPG * UPAGES) - sizeof(struct user) + (FLAGS * sizeof(int)); break; \
case 18: /* fp1 */ \
case 19: /* fp2 */ \
case 20: /* fp3 */ \
case 21: /* fp4 */ \
case 22: /* fp5 */ \
case 23: /* fp6 */ \
case 24: /* fp7 */ \
case 25: /* fp8 */ \
case 26: /* fp9 */ \
case 27: /* fp10 */ \
case 28: /* fp11 */ \
case 29: /* fp12 */ \
case 30: /* fp13 */ \
case 31: /* fp14 */ \
case 32: /* fp15 */ \
case 33: /* fp16 */ \
case 34: /* fp17 */ \
case 35: /* fp18 */ \
case 36: /* fp19 */ \
case 37: /* fp20 */ \
case 38: /* fp21 */ \
case 39: /* fp22 */ \
case 40: /* fp23 */ \
case 41: /* fp24 */ \
case 42: /* fp25 */ \
case 43: /* fp26 */ \
case 44: /* fp27 */ \
case 45: /* fp28 */ \
case 46: /* fp29 */ \
case 47: /* fp30 */ \
case 48: /* fp31 */ \
addr = blockend - KERNEL_U_ADDR + \
((int) &foo.u_fpasave.fpa_regs[(regno)-18] - (int)&foo); \
} \
}
#endif /* _SEQUENT_ */
#undef FRAME_CHAIN
#define FRAME_CHAIN(thisframe) ((thisframe)->pc == 0 ? \
0 : read_memory_integer((thisframe)->frame, 4))
#define FRAME_CHAIN_VALID(chain, thisframe) \
((chain) != 0)
#undef FRAME_ARGS_SKIP
#define FRAME_ARGS_SKIP 0
/* Total amount of space needed to store our copies of the machine's
register state, the array `registers'. */
@ -389,6 +254,8 @@ switch (regno) { \
(N < 14) ? 1 : \
0)
#include "floatformat.h"
/* Convert data from raw format for register REGNUM in buffer FROM
to virtual format with type TYPE in buffer TO. */
@ -396,11 +263,9 @@ switch (regno) { \
#define REGISTER_CONVERT_TO_VIRTUAL(REGNUM,TYPE,FROM,TO) \
{ \
double val; \
i387_to_double ((FROM), (char *)&val); \
floatformat_to_double (&floatformat_i387_ext, (FROM), &val); \
store_floating ((TO), TYPE_LENGTH (TYPE), val); \
}
extern void
i387_to_double PARAMS ((char *, char *));
/* Convert data from virtual format with type TYPE in buffer FROM
to raw format for register REGNUM in buffer TO. */
@ -409,10 +274,8 @@ i387_to_double PARAMS ((char *, char *));
#define REGISTER_CONVERT_TO_RAW(TYPE,REGNUM,FROM,TO) \
{ \
double val = extract_floating ((FROM), TYPE_LENGTH (TYPE)); \
double_to_i387((char *)&val, (TO)); \
floatformat_from_double (&floatformat_i387_ext, &val, (TO)); \
}
extern void
double_to_i387 PARAMS ((char *, char *));
/* Return the GDB type object for the "standard" data type
of data in register N. */
@ -425,17 +288,14 @@ double_to_i387 PARAMS ((char *, char *));
(N < 14) ? builtin_type_double : \
builtin_type_int)
/* from m-i386.h (now known as tm-i386v.h). */
/* Store the address of the place in which to copy the structure the
subroutine will return. This is called from call_function. FIXME:
Why is it writing register 0? Is the symmetry different from tm-i386v.h,
or is it some sort of artifact? FIXME. */
subroutine will return. This is called from call_function.
Native cc passes the address in eax, gcc (up to version 2.5.8)
passes it on the stack. gcc should be fixed in future versions to
adopt native cc conventions. */
#undef STORE_STRUCT_RETURN
#define STORE_STRUCT_RETURN(ADDR, SP) \
{ (SP) -= sizeof (ADDR); \
write_memory ((SP), (char *) &(ADDR), sizeof (ADDR)); \
write_register(0, (ADDR)); }
#define STORE_STRUCT_RETURN(ADDR, SP) write_register(0, (ADDR))
/* Extract from an array REGBUF containing the (raw) register state
a function return value of type TYPE, and copy that, in virtual format,
@ -451,3 +311,46 @@ print_387_control_word PARAMS ((unsigned int));
extern void
print_387_status_word PARAMS ((unsigned int));
/* The following redefines make backtracing through sigtramp work.
They manufacture a fake sigtramp frame and obtain the saved pc in sigtramp
from the sigcontext structure which is pushed by the kernel on the
user stack, along with a pointer to it. */
#define IN_SIGTRAMP(pc, name) ((name) && STREQ ("_sigcode", name))
/* Offset to saved PC in sigcontext, from <signal.h>. */
#define SIGCONTEXT_PC_OFFSET 16
/* FRAME_CHAIN takes a frame's nominal address and produces the frame's
chain-pointer.
In the case of the i386, the frame's nominal address
is the address of a 4-byte word containing the calling frame's address. */
#undef FRAME_CHAIN
#define FRAME_CHAIN(thisframe) \
(thisframe->signal_handler_caller \
? thisframe->frame \
: (!inside_entry_file ((thisframe)->pc) \
? read_memory_integer ((thisframe)->frame, 4) \
: 0))
/* A macro that tells us whether the function invocation represented
by FI does not have a frame on the stack associated with it. If it
does not, FRAMELESS is set to 1, else 0. */
#undef FRAMELESS_FUNCTION_INVOCATION
#define FRAMELESS_FUNCTION_INVOCATION(FI, FRAMELESS) \
do { \
if ((FI)->signal_handler_caller) \
(FRAMELESS) = 0; \
else \
(FRAMELESS) = frameless_look_for_prologue(FI); \
} while (0)
/* Saved Pc. Get it from sigcontext if within sigtramp. */
#undef FRAME_SAVED_PC
#define FRAME_SAVED_PC(FRAME) \
(((FRAME)->signal_handler_caller \
? sigtramp_saved_pc (FRAME) \
: read_memory_integer ((FRAME)->frame + 4, 4)) \
)

View File

@ -1,6 +1,6 @@
/* Definitions to make GDB run on a Sequent Symmetry under
dynix 3.1 and ptx 1.3, with Weitek 1167 and i387 support.
Copyright 1986, 1987, 1989, 1992, 1993 Free Software Foundation, Inc.
dynix 3.1, with Weitek 1167 and i387 support.
Copyright 1986, 1987, 1989, 1992, 1993, 1994 Free Software Foundation, Inc.
This file is part of GDB.
@ -25,136 +25,12 @@ Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
#define HAVE_WAIT_STRUCT
#ifdef _SEQUENT_
/* ptx */
#define HAVE_TERMIOS
#define USG
#define MEM_FNS_DECLARED
#define NEED_POSIX_SETPGID
#define USE_O_NOCTTY
#else
/* dynix */
/* Get rid of any system-imposed stack limit if possible. */
#define SET_STACK_LIMIT_HUGE
#endif
/* XPT_DEBUG doesn't work yet under Dynix 3.0.12, but UNDEBUG does... */
/* #define PTRACE_ATTACH XPT_DEBUG
#define PTRACE_DETACH XPT_UNDEBUG
#define ATTACH_DETACH */
#ifdef _SEQUENT_
/* ptx does attach as of ptx version 2.1 */
#define ATTACH_DETACH 1
#endif
#define HOST_BYTE_ORDER LITTLE_ENDIAN
/* We must fetch all the regs before storing, since we store all at once. */
#define CHILD_PREPARE_TO_STORE() read_register_bytes (0, NULL, REGISTER_BYTES)
/* Interface definitions for kernel debugger KDB. */
/* This doesn't work... */
/* Map machine fault codes into signal numbers.
First subtract 0, divide by 4, then index in a table.
Faults for which the entry in this table is 0
are not handled by KDB; the program's own trap handler
gets to handle then. */
#define FAULT_CODE_ORIGIN 0
#define FAULT_CODE_UNITS 4
#define FAULT_TABLE \
{ 0, SIGKILL, SIGSEGV, 0, 0, 0, 0, 0, \
0, 0, SIGTRAP, SIGTRAP, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0}
/* Start running with a stack stretching from BEG to END.
BEG and END should be symbols meaningful to the assembler.
This is used only for kdb. */
#define INIT_STACK(beg, end) \
{ asm (".globl end"); \
asm ("movl $ end, %esp"); \
asm ("movl %ebp, $0"); }
/* Push the frame pointer register on the stack. */
#define PUSH_FRAME_PTR \
asm ("pushl %ebp");
/* Copy the top-of-stack to the frame pointer register. */
#define POP_FRAME_PTR \
asm ("movl (%esp), %ebp");
/* After KDB is entered by a fault, push all registers
that GDB thinks about (all NUM_REGS of them),
so that they appear in order of ascending GDB register number.
The fault code will be on the stack beyond the last register. */
#define PUSH_REGISTERS \
{ asm("pushad"); }
/*
{ asm("pushl %eax"); \
asm("pushl %edx"); \
asm("pushl %ecx"); \
asm("pushl %st(0)"); \
asm("pushl %st(1)"); \
asm("pushl %ebx"); \
asm("pushl %esi"); \
asm("pushl %edi"); \
asm("pushl %st(2)"); \
asm("pushl %st(3)"); \
asm("pushl %st(4)"); \
asm("pushl %st(5)"); \
asm("pushl %st(6)"); \
asm("pushl %st(7)"); \
asm("pushl %esp"); \
asm("pushl %ebp"); \
asm("pushl %eip"); \
asm("pushl %eflags"); \
asm("pushl %fp1"); \
asm("pushl %fp2"); \
asm("pushl %fp3"); \
asm("pushl %fp4"); \
asm("pushl %fp5"); \
asm("pushl %fp6"); \
asm("pushl %fp7"); \
asm("pushl %fp8"); \
asm("pushl %fp9"); \
asm("pushl %fp10"); \
asm("pushl %fp11"); \
asm("pushl %fp12"); \
asm("pushl %fp13"); \
asm("pushl %fp14"); \
asm("pushl %fp15"); \
asm("pushl %fp16"); \
asm("pushl %fp17"); \
asm("pushl %fp18"); \
asm("pushl %fp19"); \
asm("pushl %fp20"); \
asm("pushl %fp21"); \
asm("pushl %fp22"); \
asm("pushl %fp23"); \
asm("pushl %fp24"); \
asm("pushl %fp25"); \
asm("pushl %fp26"); \
asm("pushl %fp27"); \
asm("pushl %fp28"); \
asm("pushl %fp29"); \
asm("pushl %fp30"); \
asm("pushl %fp31"); \
}
*/
/* Assuming the registers (including processor status) have been
pushed on the stack in order of ascending GDB register number,
restore them and return to the address in the saved PC register. */
#define POP_REGISTERS \
{ asm ("popad"); }