Tue Aug 20 14:10:02 1996 Martin M. Hunt <hunt@pizza.cygnus.com>

* tc-d10v.c: All references to defined symbols should
 	now use the optimal instruction.  .float and .double now work.
This commit is contained in:
Martin Hunt 1996-08-20 21:15:18 +00:00
parent ab457c4c0b
commit bb5638c637

View File

@ -29,17 +29,19 @@
const char comment_chars[] = "#;";
const char line_comment_chars[] = "#";
const char line_separator_chars[] = "";
const char *md_shortopts = "";
const char *md_shortopts = "O";
const char EXP_CHARS[] = "eE";
const char FLT_CHARS[] = "dD";
int Optimizing = 0;
/* fixups */
#define MAX_INSN_FIXUPS (5)
struct d10v_fixup
{
expressionS exp;
bfd_reloc_code_real_type reloc;
int operand;
int pcrel;
};
typedef struct _fixups
@ -59,6 +61,7 @@ static int check_range PARAMS ((unsigned long num, int bits, int flags));
static int postfix PARAMS ((char *p));
static bfd_reloc_code_real_type get_reloc PARAMS ((struct d10v_operand *op));
static int get_operands PARAMS ((expressionS exp[]));
static struct d10v_opcode *find_opcode PARAMS ((struct d10v_opcode *opcode, expressionS ops[]));
static unsigned long build_insn PARAMS ((struct d10v_opcode *opcode, expressionS *opers, unsigned long insn));
static void write_long PARAMS ((struct d10v_opcode *opcode, unsigned long insn, Fixups *fx));
static void write_1_short PARAMS ((struct d10v_opcode *opcode, unsigned long insn, Fixups *fx));
@ -67,6 +70,8 @@ static int write_2_short PARAMS ((struct d10v_opcode *opcode1, unsigned long ins
static unsigned long do_assemble PARAMS ((char *str, struct d10v_opcode **opcode));
static unsigned long d10v_insert_operand PARAMS (( unsigned long insn, int op_type,
offsetT value, int left));
static int parallel_ok PARAMS ((struct d10v_opcode *opcode1, unsigned long insn1,
struct d10v_opcode *opcode2, unsigned long insn2));
struct option md_longopts[] = {
@ -192,7 +197,7 @@ md_show_usage (stream)
FILE *stream;
{
fprintf(stream, "D10V options:\n\
none yet\n");
-O optimize. Will do some operations in parallel.\n");
}
int
@ -200,7 +205,16 @@ md_parse_option (c, arg)
int c;
char *arg;
{
return 0;
switch (c)
{
case 'O':
/* Optimize. Will attempt to parallelize operations */
Optimizing = 1;
break;
default:
return 0;
}
return 1;
}
symbolS *
@ -210,13 +224,46 @@ md_undefined_symbol (name)
return 0;
}
/* Turn a string in input_line_pointer into a floating point constant of type
type, and store the appropriate bytes in *litP. The number of LITTLENUMS
emitted is stored in *sizeP . An error message is returned, or NULL on OK.
*/
char *
md_atof (type, litp, sizep)
int type;
char *litp;
int *sizep;
md_atof (type, litP, sizeP)
int type;
char *litP;
int *sizeP;
{
return "";
int prec;
LITTLENUM_TYPE words[4];
char *t;
int i;
switch (type)
{
case 'f':
prec = 2;
break;
case 'd':
prec = 4;
break;
default:
*sizeP = 0;
return "bad call to md_atof";
}
t = atof_ieee (input_line_pointer, type, words);
if (t)
input_line_pointer = t;
*sizeP = prec * 2;
for (i = 0; i < prec; i++)
{
md_number_to_chars (litP, (valueT) words[i], 2);
litP += 2;
}
return NULL;
}
void
@ -466,16 +513,14 @@ build_insn (opcode, opers, insn)
/*
printf("need a fixup: ");
print_expr_1(stdout,&opers[i]);
printf("\n");ddd
printf("\n");
*/
if (fixups->fc >= MAX_INSN_FIXUPS)
as_fatal ("too many fixups");
fixups->fix[fixups->fc].exp = opers[i];
/* put the operand number here for now. We can look up
the reloc type and/or fixup the instruction in md_apply_fix() */
fixups->fix[fixups->fc].reloc = opcode->operands[i];
fixups->fix[fixups->fc].operand = opcode->operands[i];
fixups->fix[fixups->fc].pcrel = (flags & OPERAND_ADDR) ? true : false;
(fixups->fc)++;
}
@ -511,7 +556,7 @@ write_long (opcode, insn, fx)
for (i=0; i < fx->fc; i++)
{
if (get_reloc((struct d10v_operand *)&d10v_operands[fx->fix[i].reloc]))
if (get_reloc((struct d10v_operand *)&d10v_operands[fx->fix[i].operand]))
{
/*
printf("fix_new_exp: where:%x size:4\n ",f - frag_now->fr_literal);
@ -523,8 +568,8 @@ write_long (opcode, insn, fx)
f - frag_now->fr_literal,
4,
&(fx->fix[i].exp),
1,
fx->fix[i].reloc|2048);
fx->fix[i].pcrel,
fx->fix[i].operand|2048);
}
}
fx->fc = 0;
@ -541,7 +586,7 @@ write_1_short (opcode, insn, fx)
char *f = frag_more(4);
int i;
if (opcode->exec_type == PARONLY)
if (opcode->exec_type & PARONLY)
as_fatal ("Instruction must be executed in parallel with another instruction.");
/* the other container needs to be NOP */
@ -557,7 +602,7 @@ write_1_short (opcode, insn, fx)
for (i=0; i < fx->fc; i++)
{
bfd_reloc_code_real_type reloc;
reloc = get_reloc((struct d10v_operand *)&d10v_operands[fx->fix[i].reloc]);
reloc = get_reloc((struct d10v_operand *)&d10v_operands[fx->fix[i].operand]);
if (reloc)
{
/*
@ -568,14 +613,14 @@ write_1_short (opcode, insn, fx)
/* if it's an R reloc, we may have to switch it to L */
if ( (reloc == BFD_RELOC_D10V_10_PCREL_R) && (opcode->unit != IU) )
fx->fix[i].reloc |= 1024;
fx->fix[i].operand |= 1024;
fix_new_exp (frag_now,
f - frag_now->fr_literal,
4,
&(fx->fix[i].exp),
1,
fx->fix[i].reloc|2048);
fx->fix[i].pcrel,
fx->fix[i].operand|2048);
}
}
fx->fc = 0;
@ -594,14 +639,14 @@ write_2_short (opcode1, insn1, opcode2, insn2, exec_type, fx)
char *f;
int i,j;
if ( (exec_type != 1) && ((opcode1->exec_type == PARONLY)
|| (opcode2->exec_type == PARONLY)))
if ( (exec_type != 1) && ((opcode1->exec_type & PARONLY)
|| (opcode2->exec_type & PARONLY)))
as_fatal("Instruction must be executed in parallel");
if ( (opcode1->format & LONG_OPCODE) || (opcode2->format & LONG_OPCODE))
as_fatal ("Long instructions may not be combined.");
if(opcode1->exec_type == BRANCH_LINK)
if(opcode1->exec_type & BRANCH_LINK)
{
/* subroutines must be called from 32-bit boundaries */
/* so the return address will be correct */
@ -611,20 +656,34 @@ write_2_short (opcode1, insn1, opcode2, insn2, exec_type, fx)
switch (exec_type)
{
case 0:
if (opcode1->unit == IU)
case 0: /* order not specified */
if ( Optimizing && parallel_ok (opcode1, insn1, opcode2, insn2))
{
/* parallel */
if (opcode1->unit == IU)
insn = FM00 | (insn2 << 15) | insn1;
else if (opcode2->unit == MU)
insn = FM00 | (insn2 << 15) | insn1;
else
{
insn = FM00 | (insn1 << 15) | insn2;
fx = fx->next;
}
}
else if (opcode1->unit == IU)
{
/* reverse sequential */
insn = FM10 | (insn2 << 15) | insn1;
}
else
{
/* sequential */
insn = FM01 | (insn1 << 15) | insn2;
fx = fx->next;
}
break;
case 1: /* parallel */
if (opcode1->exec_type == SEQ || opcode2->exec_type == SEQ)
if (opcode1->exec_type & SEQ || opcode2->exec_type & SEQ)
as_fatal ("One of these instructions may not be executed in parallel.");
if (opcode1->unit == IU)
@ -633,7 +692,6 @@ write_2_short (opcode1, insn1, opcode2, insn2, exec_type, fx)
as_fatal ("Two IU instructions may not be executed in parallel");
as_warn ("Swapping instruction order");
insn = FM00 | (insn2 << 15) | insn1;
fx = fx->next;
}
else if (opcode2->unit == MU)
{
@ -641,11 +699,12 @@ write_2_short (opcode1, insn1, opcode2, insn2, exec_type, fx)
as_fatal ("Two MU instructions may not be executed in parallel");
as_warn ("Swapping instruction order");
insn = FM00 | (insn2 << 15) | insn1;
fx = fx->next;
}
else
insn = FM00 | (insn1 << 15) | insn2;
fx = fx->next;
{
insn = FM00 | (insn1 << 15) | insn2;
fx = fx->next;
}
break;
case 2: /* sequential */
if (opcode1->unit == IU)
@ -657,6 +716,7 @@ write_2_short (opcode1, insn1, opcode2, insn2, exec_type, fx)
if (opcode2->unit == MU)
as_fatal ("MU instruction may not be in the right container");
insn = FM10 | (insn1 << 15) | insn2;
fx = fx->next;
break;
default:
as_fatal("unknown execution type passed to write_2_short()");
@ -666,38 +726,132 @@ write_2_short (opcode1, insn1, opcode2, insn2, exec_type, fx)
f = frag_more(4);
number_to_chars_bigendian (f, insn, 4);
for (j=0; j<2; j++)
{
bfd_reloc_code_real_type reloc;
for (i=0; i < fx->fc; i++)
{
reloc = get_reloc((struct d10v_operand *)&d10v_operands[fx->fix[i].reloc]);
if (reloc)
{
if ( (reloc == BFD_RELOC_D10V_10_PCREL_R) && (j == 0) )
fx->fix[i].reloc |= 1024;
/*
printf("fix_new_exp: where:%x reloc:%d\n ",f - frag_now->fr_literal,fx->fix[i].reloc);
print_expr_1(stdout,&(fx->fix[i].exp));
printf("\n");
*/
fix_new_exp (frag_now,
f - frag_now->fr_literal,
4,
&(fx->fix[i].exp),
1,
fx->fix[i].reloc|2048);
}
}
fx->fc = 0;
fx = fx->next;
}
for (j=0; j<2; j++)
{
bfd_reloc_code_real_type reloc;
for (i=0; i < fx->fc; i++)
{
reloc = get_reloc((struct d10v_operand *)&d10v_operands[fx->fix[i].operand]);
if (reloc)
{
if ( (reloc == BFD_RELOC_D10V_10_PCREL_R) && (j == 0) )
fx->fix[i].operand |= 1024;
/*
printf("fix_new_exp: where:%x reloc:%d\n ",f - frag_now->fr_literal,fx->fix[i].operand);
print_expr_1(stdout,&(fx->fix[i].exp));
printf("\n");
*/
fix_new_exp (frag_now,
f - frag_now->fr_literal,
4,
&(fx->fix[i].exp),
fx->fix[i].pcrel,
fx->fix[i].operand|2048);
}
}
fx->fc = 0;
fx = fx->next;
}
return (0);
}
/* Check 2 instructions and determine if they can be safely */
/* executed in parallel. Returns 1 if they can be. */
static int
parallel_ok (op1, insn1, op2, insn2)
struct d10v_opcode *op1, *op2;
unsigned long insn1, insn2;
{
int i, j, flags, mask, shift, regno;
unsigned long ins, mod[2], used[2];
struct d10v_opcode *op;
if (op1->exec_type & SEQ || op2->exec_type & SEQ)
return 0;
/* The idea here is to create two sets of bitmasks (mod and used) */
/* which indicate which registers are modified or used by each instruction. */
/* The operation can only be done in parallel if instruction 1 and instruction 2 */
/* modify different registers, and neither instruction modifies any registers */
/* the other is using. Accesses to control registers, PSW, and memory are treated */
/* as accesses to a single register. So if both instructions write memory or one */
/* instruction writes memory and the other reads, then they cannot be done in parallel. */
/* Likewise, if one instruction mucks with the psw and the other reads the PSW */
/* (which includes C, F0, and F1), then they cannot operate safely in parallel. */
/* the bitmasks (mod and used) look like this (bit 31 = MSB) */
/* r0-r15 0-15 */
/* a0-a1 16-17 */
/* cr (not psw) 18 */
/* psw 19 */
/* mem 20 */
for (j=0;j<2;j++)
{
if (j == 0)
{
op = op1;
ins = insn1;
}
else
{
op = op2;
ins = insn2;
}
mod[j] = used[j] = 0;
for (i = 0; op1->operands[i]; i++)
{
flags = d10v_operands[op->operands[i]].flags;
shift = d10v_operands[op->operands[i]].shift;
mask = 0x7FFFFFFF >> (31 - d10v_operands[op->operands[i]].bits);
if (flags & OPERAND_REG)
{
regno = (ins >> shift) & mask;
if (flags & OPERAND_ACC)
regno += 16;
else if (flags & OPERAND_CONTROL) /* mvtc or mvfc */
{
if (regno == 0)
regno = 19;
else
regno = 18;
}
else if (flags & OPERAND_FLAG)
regno = 19;
if ( flags & OPERAND_DEST )
{
mod[j] |= 1 << regno;
if (flags & OPERAND_EVEN)
mod[j] |= 1 << (regno + 1);
}
else
{
used[j] |= 1 << regno ;
if (flags & OPERAND_EVEN)
used[j] |= 1 << (regno + 1);
}
}
else if (op->exec_type & RMEM)
used[j] |= 1 << 20;
else if (op->exec_type & WMEM)
mod[j] |= 1 << 20;
else if (op->exec_type & RF0)
used[j] |= 1 << 19;
else if (op->exec_type & WF0)
mod[j] |= 1 << 19;
else if (op->exec_type & WCAR)
mod[j] |= 1 << 19;
}
}
if ((mod[0] & mod[1]) == 0 && (mod[0] & used[1]) == 0 && (mod[1] & used[0]) == 0)
return 1;
return 0;
}
/* This is the main entry point for the machine-dependent assembler. str points to a
machine-dependent instruction. This function is supposed to emit the frags/bytes
it assembles to. For the D10V, it mostly handles the special VLIW parsing and packing
@ -817,11 +971,10 @@ do_assemble (str, opcode)
char *str;
struct d10v_opcode **opcode;
{
struct d10v_opcode *next_opcode;
unsigned char *op_start, *save;
unsigned char *op_end;
char name[20];
int nlen = 0, i, match, numops;
int nlen = 0;
expressionS myops[6];
unsigned long insn;
@ -853,52 +1006,75 @@ do_assemble (str, opcode)
save = input_line_pointer;
input_line_pointer = op_end;
*opcode = find_opcode (*opcode, myops);
if (*opcode == 0)
return -1;
input_line_pointer = save;
insn = build_insn ((*opcode), myops, 0);
/* printf("sub-insn = %lx\n",insn); */
return (insn);
}
/* find_opcode() gets a pointer to an entry in the opcode table. */
/* It must look at all opcodes with the same name and use the operands */
/* to choose the correct opcode. */
static struct d10v_opcode *
find_opcode (opcode, myops)
struct d10v_opcode *opcode;
expressionS myops[];
{
int i, match, done, numops;
struct d10v_opcode *next_opcode;
/* get all the operands and save them as expressions */
numops = get_operands (myops);
/* now see if the operand is a fake. If so, find the correct size */
/* instruction, if possible */
match = 0;
if ((*opcode)->format == OPCODE_FAKE)
if (opcode->format == OPCODE_FAKE)
{
int opnum = (*opcode)->operands[0];
if (myops[opnum].X_op == O_constant)
int opnum = opcode->operands[0];
if (myops[opnum].X_op == O_register)
{
next_opcode=(*opcode)+1;
for (i=0; (*opcode)->operands[i+1]; i++)
myops[opnum].X_op = O_symbol;
myops[opnum].X_add_symbol = symbol_find_or_make ((char *)myops[opnum].X_op_symbol);
myops[opnum].X_add_number = 0;
myops[opnum].X_op_symbol = NULL;
}
if (myops[opnum].X_op == O_constant || S_IS_DEFINED(myops[opnum].X_add_symbol))
{
next_opcode=opcode+1;
for (i=0; opcode->operands[i+1]; i++)
{
int bits = d10v_operands[next_opcode->operands[opnum]].bits;
int flags = d10v_operands[next_opcode->operands[opnum]].flags;
if (!check_range (myops[opnum].X_add_number, bits, flags))
{
match = 1;
break;
}
return next_opcode;
next_opcode++;
}
as_fatal ("value out of range");
}
else
{
/* not a constant, so use a long instruction */
next_opcode = (*opcode)+2;
match = 1;
/* not a constant, so use a long instruction */
return opcode+2;
}
if (match)
*opcode = next_opcode;
else
as_fatal ("value out of range");
}
else
{
match = 0;
/* now search the opcode table table for one with operands */
/* that matches what we've got */
while (!match)
{
match = 1;
for (i = 0; (*opcode)->operands[i]; i++)
for (i = 0; opcode->operands[i]; i++)
{
int flags = d10v_operands[(*opcode)->operands[i]].flags;
int flags = d10v_operands[opcode->operands[i]].flags;
int X_op = myops[i].X_op;
int num = myops[i].X_add_number;
@ -928,21 +1104,20 @@ do_assemble (str, opcode)
{
match=0;
break;
}
}
}
/* we're only done if the operands matched AND there
/* we're only done if the operands matched so far AND there
are no more to check */
if (match && myops[i].X_op==0)
break;
next_opcode = (*opcode)+1;
next_opcode = opcode+1;
if (next_opcode->opcode == 0)
break;
if (strcmp(next_opcode->name, (*opcode)->name))
if (strcmp(next_opcode->name, opcode->name))
break;
(*opcode) = next_opcode;
opcode = next_opcode;
}
}
@ -955,14 +1130,14 @@ do_assemble (str, opcode)
/* Check that all registers that are required to be even are. */
/* Also, if any operands were marked as registers, but were really symbols */
/* fix that here. */
for (i=0; (*opcode)->operands[i]; i++)
for (i=0; opcode->operands[i]; i++)
{
if ((d10v_operands[(*opcode)->operands[i]].flags & OPERAND_EVEN) &&
if ((d10v_operands[opcode->operands[i]].flags & OPERAND_EVEN) &&
(myops[i].X_add_number & 1))
as_fatal("Register number must be EVEN");
if (myops[i].X_op == O_register)
{
if (!(d10v_operands[(*opcode)->operands[i]].flags & OPERAND_REG))
if (!(d10v_operands[opcode->operands[i]].flags & OPERAND_REG))
{
myops[i].X_op = O_symbol;
myops[i].X_add_symbol = symbol_find_or_make ((char *)myops[i].X_op_symbol);
@ -971,18 +1146,9 @@ do_assemble (str, opcode)
}
}
}
input_line_pointer = save;
/* at this point, we have "opcode" pointing to the opcode entry in the
d10v opcode table, with myops filled out with the operands. */
insn = build_insn ((*opcode), myops, 0);
/* printf("sub-insn = %lx\n",insn); */
return (insn);
return opcode;
}
/* if while processing a fixup, a reloc really needs to be created */
/* then it is done here */
@ -1021,8 +1187,10 @@ md_pcrel_from_section (fixp, sec)
fixS *fixp;
segT sec;
{
if (fixp->fx_addsy != (symbolS *)NULL && !S_IS_DEFINED (fixp->fx_addsy))
return 0;
/* return fixp->fx_frag->fr_address + fixp->fx_where; */
/* printf("pcrel_from_section: %x\n", fixp->fx_frag->fr_address + fixp->fx_where); */
return fixp->fx_frag->fr_address + fixp->fx_where;
}
int
@ -1086,10 +1254,7 @@ md_apply_fix3 (fixp, valuep, seg)
case BFD_RELOC_D10V_10_PCREL_L:
case BFD_RELOC_D10V_10_PCREL_R:
case BFD_RELOC_D10V_18_PCREL:
/* instruction addresses are always right-shifted by 2
and pc-relative */
if (!fixp->fx_pcrel)
value -= fixp->fx_where;
/* instruction addresses are always right-shifted by 2 */
value >>= 2;
break;
case BFD_RELOC_32: