Move register definitions and macros out of interp.c and into sim-main.h

This commit is contained in:
Andrew Cagney 1997-10-16 03:50:48 +00:00
parent 085c1cb988
commit ea985d2472
4 changed files with 362 additions and 274 deletions

View File

@ -1,3 +1,39 @@
Thu Oct 16 10:31:39 1997 Andrew Cagney <cagney@b1.cygnus.com>
start-sanitize-r5900
* sim-main.h (BYTES_IN_MMI_REGS, ..., SUB_REG_FETCH, ..., GPR_SB,
...): Move to sim-main.h
end-sanitize-r5900
* interp.c (sync_operation): Rename from SyncOperation, make
global, add SD argument.
(prefetch): Rename from Prefetch, make global, add SD argument.
(decode_coproc): Make global.
* sim-main.h (SyncOperation, DecodeCoproc, Pefetch): Define.
* gencode.c (build_instruction): Generate DecodeCoproc not
decode_coproc calls.
* interp.c (SETFCC, GETFCC, PREVCOC1): Move to sim-main.h
(SizeFGR): Move to sim-main.h
(simHALTEX, simHALTIN, simTRACE, simPROFILE, simDELAYSLOT,
simSIGINT, simJALDELAYSLOT): Move to sim-main.h
(FP_FLAGS, FP_ENABLE, FP_CAUSE, IR, UF, OF, DZ, IO, UO): Move to
sim-main.h.
(FP_FS, FP_MASK_RM, FP_SH_RM, FP_RM_NEAREST, FP_RM_TOPINF,
FP_RM_TOMINF, GETRM): Move to sim-main.h.
(Uncached, CachedNoncoherent, CachedCoherent, Cached,
isINSTRUCTION, ..., AccessLength_BYTE, ...): Move to sim-main.h.
(UserMode, BigEndianMem, ByteSwapMem, ReverseEndian,
BigEndianCPU, status_KSU_mask, ...). Moved to sim-main.h
* sim-main.h (ALU32_END, ALU64_END): Define. When overflow raise
exception.
(sim-alu.h): Include.
(NULLIFY_NIA, NULL_CIA, CPU_CIA): Define.
(sim_cia): Typedef to instruction_address.
Thu Oct 16 10:31:41 1997 Andrew Cagney <cagney@b1.cygnus.com>
* Makefile.in (interp.o): Rename generated file engine.c to

View File

@ -2759,7 +2759,7 @@ build_instruction (doisa, features, mips16, insn)
break ;
case DECODE:
printf(" decode_coproc(instruction);\n");
printf(" DecodeCoproc(instruction);\n");
break ;
case CACHE:

View File

@ -97,39 +97,6 @@ char* pr_uword64 PARAMS ((uword64 addr));
#define RSVD_INSTRUCTION_ARG_MASK 0xFFFFF
/* The following are generic to all versions of the MIPS architecture
to date: */
/* Memory Access Types (for CCA): */
#define Uncached (0)
#define CachedNoncoherent (1)
#define CachedCoherent (2)
#define Cached (3)
#define isINSTRUCTION (1 == 0) /* FALSE */
#define isDATA (1 == 1) /* TRUE */
#define isLOAD (1 == 0) /* FALSE */
#define isSTORE (1 == 1) /* TRUE */
#define isREAL (1 == 0) /* FALSE */
#define isRAW (1 == 1) /* TRUE */
#define isTARGET (1 == 0) /* FALSE */
#define isHOST (1 == 1) /* TRUE */
/* The "AccessLength" specifications for Loads and Stores. NOTE: This
is the number of bytes minus 1. */
#define AccessLength_BYTE (0)
#define AccessLength_HALFWORD (1)
#define AccessLength_TRIPLEBYTE (2)
#define AccessLength_WORD (3)
#define AccessLength_QUINTIBYTE (4)
#define AccessLength_SEXTIBYTE (5)
#define AccessLength_SEPTIBYTE (6)
#define AccessLength_DOUBLEWORD (7)
#define AccessLength_QUADWORD (15)
/* Bits in the Debug register */
#define Debug_DBD 0x80000000 /* Debug Branch Delay */
#define Debug_DM 0x40000000 /* Debug Mode */
@ -137,176 +104,7 @@ char* pr_uword64 PARAMS ((uword64 addr));
/* start-sanitize-r5900 */
#define BYTES_IN_MMI_REGS (sizeof(signed_word) + sizeof(signed_word))
#define HALFWORDS_IN_MMI_REGS (BYTES_IN_MMI_REGS/2)
#define WORDS_IN_MMI_REGS (BYTES_IN_MMI_REGS/4)
#define DOUBLEWORDS_IN_MMI_REGS (BYTES_IN_MMI_REGS/8)
#define BYTES_IN_MIPS_REGS (sizeof(signed_word))
#define HALFWORDS_IN_MIPS_REGS (BYTES_IN_MIPS_REGS/2)
#define WORDS_IN_MIPS_REGS (BYTES_IN_MIPS_REGS/4)
#define DOUBLEWORDS_IN_MIPS_REGS (BYTES_IN_MIPS_REGS/8)
/*
SUB_REG_FETCH - return as lvalue some sub-part of a "register"
T - type of the sub part
TC - # of T's in the mips part of the "register"
I - index (from 0) of desired sub part
A - low part of "register"
A1 - high part of register
*/
#define SUB_REG_FETCH(T,TC,A,A1,I) \
(*(((I) < (TC) ? (T*)(A) : (T*)(A1)) \
+ (CURRENT_HOST_BYTE_ORDER == BIG_ENDIAN \
? ((TC) - 1 - (I) % (TC)) \
: ((I) % (TC)) \
) \
) \
)
/*
GPR_<type>(R,I) - return, as lvalue, the I'th <type> of general register R
where <type> has two letters:
1 is S=signed or U=unsigned
2 is B=byte H=halfword W=word D=doubleword
*/
#define SUB_REG_SB(A,A1,I) SUB_REG_FETCH(signed8, BYTES_IN_MIPS_REGS, A, A1, I)
#define SUB_REG_SH(A,A1,I) SUB_REG_FETCH(signed16, HALFWORDS_IN_MIPS_REGS, A, A1, I)
#define SUB_REG_SW(A,A1,I) SUB_REG_FETCH(signed32, WORDS_IN_MIPS_REGS, A, A1, I)
#define SUB_REG_SD(A,A1,I) SUB_REG_FETCH(signed64, DOUBLEWORDS_IN_MIPS_REGS, A, A1, I)
#define SUB_REG_UB(A,A1,I) SUB_REG_FETCH(unsigned8, BYTES_IN_MIPS_REGS, A, A1, I)
#define SUB_REG_UH(A,A1,I) SUB_REG_FETCH(unsigned16, HALFWORDS_IN_MIPS_REGS, A, A1, I)
#define SUB_REG_UW(A,A1,I) SUB_REG_FETCH(unsigned32, WORDS_IN_MIPS_REGS, A, A1, I)
#define SUB_REG_UD(A,A1,I) SUB_REG_FETCH(unsigned64, DOUBLEWORDS_IN_MIPS_REGS, A, A1, I)
#define GPR_SB(R,I) SUB_REG_SB(&REGISTERS[R], &REGISTERS1[R], I)
#define GPR_SH(R,I) SUB_REG_SH(&REGISTERS[R], &REGISTERS1[R], I)
#define GPR_SW(R,I) SUB_REG_SW(&REGISTERS[R], &REGISTERS1[R], I)
#define GPR_SD(R,I) SUB_REG_SD(&REGISTERS[R], &REGISTERS1[R], I)
#define GPR_UB(R,I) SUB_REG_UB(&REGISTERS[R], &REGISTERS1[R], I)
#define GPR_UH(R,I) SUB_REG_UH(&REGISTERS[R], &REGISTERS1[R], I)
#define GPR_UW(R,I) SUB_REG_UW(&REGISTERS[R], &REGISTERS1[R], I)
#define GPR_UD(R,I) SUB_REG_UD(&REGISTERS[R], &REGISTERS1[R], I)
#define RS_SB(I) SUB_REG_SB(&rs_reg, &rs_reg1, I)
#define RS_SH(I) SUB_REG_SH(&rs_reg, &rs_reg1, I)
#define RS_SW(I) SUB_REG_SW(&rs_reg, &rs_reg1, I)
#define RS_SD(I) SUB_REG_SD(&rs_reg, &rs_reg1, I)
#define RS_UB(I) SUB_REG_UB(&rs_reg, &rs_reg1, I)
#define RS_UH(I) SUB_REG_UH(&rs_reg, &rs_reg1, I)
#define RS_UW(I) SUB_REG_UW(&rs_reg, &rs_reg1, I)
#define RS_UD(I) SUB_REG_UD(&rs_reg, &rs_reg1, I)
#define RT_SB(I) SUB_REG_SB(&rt_reg, &rt_reg1, I)
#define RT_SH(I) SUB_REG_SH(&rt_reg, &rt_reg1, I)
#define RT_SW(I) SUB_REG_SW(&rt_reg, &rt_reg1, I)
#define RT_SD(I) SUB_REG_SD(&rt_reg, &rt_reg1, I)
#define RT_UB(I) SUB_REG_UB(&rt_reg, &rt_reg1, I)
#define RT_UH(I) SUB_REG_UH(&rt_reg, &rt_reg1, I)
#define RT_UW(I) SUB_REG_UW(&rt_reg, &rt_reg1, I)
#define RT_UD(I) SUB_REG_UD(&rt_reg, &rt_reg1, I)
#define LO_SB(I) SUB_REG_SB(&LO, &LO1, I)
#define LO_SH(I) SUB_REG_SH(&LO, &LO1, I)
#define LO_SW(I) SUB_REG_SW(&LO, &LO1, I)
#define LO_SD(I) SUB_REG_SD(&LO, &LO1, I)
#define LO_UB(I) SUB_REG_UB(&LO, &LO1, I)
#define LO_UH(I) SUB_REG_UH(&LO, &LO1, I)
#define LO_UW(I) SUB_REG_UW(&LO, &LO1, I)
#define LO_UD(I) SUB_REG_UD(&LO, &LO1, I)
#define HI_SB(I) SUB_REG_SB(&HI, &HI1, I)
#define HI_SH(I) SUB_REG_SH(&HI, &HI1, I)
#define HI_SW(I) SUB_REG_SW(&HI, &HI1, I)
#define HI_SD(I) SUB_REG_SD(&HI, &HI1, I)
#define HI_UB(I) SUB_REG_UB(&HI, &HI1, I)
#define HI_UH(I) SUB_REG_UH(&HI, &HI1, I)
#define HI_UW(I) SUB_REG_UW(&HI, &HI1, I)
#define HI_UD(I) SUB_REG_UD(&HI, &HI1, I)
/* end-sanitize-r5900 */
/* TODO : these should be the bitmasks for these bits within the
status register. At the moment the following are VR4300
bit-positions: */
#define status_KSU_mask (0x3) /* mask for KSU bits */
#define status_KSU_shift (3) /* shift for field */
#define ksu_kernel (0x0)
#define ksu_supervisor (0x1)
#define ksu_user (0x2)
#define ksu_unknown (0x3)
#define status_IE (1 << 0) /* Interrupt enable */
#define status_EXL (1 << 1) /* Exception level */
#define status_RE (1 << 25) /* Reverse Endian in user mode */
#define status_FR (1 << 26) /* enables MIPS III additional FP registers */
#define status_SR (1 << 20) /* soft reset or NMI */
#define status_BEV (1 << 22) /* Location of general exception vectors */
#define status_TS (1 << 21) /* TLB shutdown has occurred */
#define status_ERL (1 << 2) /* Error level */
#define status_RP (1 << 27) /* Reduced Power mode */
#define cause_BD ((unsigned)1 << 31) /* Exception in branch delay slot */
#if defined(HASFPU)
/* Macro to update FPSR condition-code field. This is complicated by
the fact that there is a hole in the index range of the bits within
the FCSR register. Also, the number of bits visible depends on the
MIPS ISA version being supported. */
#define SETFCC(cc,v) {\
int bit = ((cc == 0) ? 23 : (24 + (cc)));\
FCSR = ((FCSR & ~(1 << bit)) | ((v) << bit));\
}
#define GETFCC(cc) (((((cc) == 0) ? (FCSR & (1 << 23)) : (FCSR & (1 << (24 + (cc))))) != 0) ? 1 : 0)
/* This should be the COC1 value at the start of the preceding
instruction: */
#define PREVCOC1() ((STATE & simPCOC1) ? 1 : 0)
#endif /* HASFPU */
/* Standard FCRS bits: */
#define IR (0) /* Inexact Result */
#define UF (1) /* UnderFlow */
#define OF (2) /* OverFlow */
#define DZ (3) /* Division by Zero */
#define IO (4) /* Invalid Operation */
#define UO (5) /* Unimplemented Operation */
/* Get masks for individual flags: */
#if 1 /* SAFE version */
#define FP_FLAGS(b) (((unsigned)(b) < 5) ? (1 << ((b) + 2)) : 0)
#define FP_ENABLE(b) (((unsigned)(b) < 5) ? (1 << ((b) + 7)) : 0)
#define FP_CAUSE(b) (((unsigned)(b) < 6) ? (1 << ((b) + 12)) : 0)
#else
#define FP_FLAGS(b) (1 << ((b) + 2))
#define FP_ENABLE(b) (1 << ((b) + 7))
#define FP_CAUSE(b) (1 << ((b) + 12))
#endif
#define FP_FS (1 << 24) /* MIPS III onwards : Flush to Zero */
#define FP_MASK_RM (0x3)
#define FP_SH_RM (0)
#define FP_RM_NEAREST (0) /* Round to nearest (Round) */
#define FP_RM_TOZERO (1) /* Round to zero (Trunc) */
#define FP_RM_TOPINF (2) /* Round to Plus infinity (Ceil) */
#define FP_RM_TOMINF (3) /* Round to Minus infinity (Floor) */
#define GETRM() (int)((FCSR >> FP_SH_RM) & FP_MASK_RM)
/*---------------------------------------------------------------------------*/
/*-- GDB simulator interface ------------------------------------------------*/
@ -322,55 +120,8 @@ static void mips_size PARAMS((SIM_DESC sd, int n));
/*---------------------------------------------------------------------------*/
/* The following are not used for MIPS IV onwards: */
#define PENDING_FILL(r,v) {\
/* printf("DBG: FILL BEFORE pending_in = %d, pending_out = %d, pending_total = %d\n",PENDING_IN,PENDING_OUT,PENDING_TOTAL); */\
if (PENDING_SLOT_REG[PENDING_IN] != (LAST_EMBED_REGNUM + 1))\
sim_io_eprintf(sd,"Attempt to over-write pending value\n");\
PENDING_SLOT_COUNT[PENDING_IN] = 2;\
PENDING_SLOT_REG[PENDING_IN] = (r);\
PENDING_SLOT_VALUE[PENDING_IN] = (uword64)(v);\
/*printf("DBG: FILL reg %d value = 0x%s\n",(r),pr_addr(v));*/\
PENDING_TOTAL++;\
PENDING_IN++;\
if (PENDING_IN == PSLOTS)\
PENDING_IN = 0;\
/*printf("DBG: FILL AFTER pending_in = %d, pending_out = %d, pending_total = %d\n",PENDING_IN,PENDING_OUT,PENDING_TOTAL);*/\
}
/* NOTE: We keep the following status flags as bit values (1 for true,
0 for false). This allows them to be used in binary boolean
operations without worrying about what exactly the non-zero true
value is. */
/* UserMode */
#define UserMode ((((SR & status_KSU_mask) >> status_KSU_shift) == ksu_user) ? 1 : 0)
/* BigEndianMem */
/* Hardware configuration. Affects endianness of LoadMemory and
StoreMemory and the endianness of Kernel and Supervisor mode
execution. The value is 0 for little-endian; 1 for big-endian. */
#define BigEndianMem (CURRENT_TARGET_BYTE_ORDER == BIG_ENDIAN)
/*(state & simBE) ? 1 : 0)*/
/* ByteSwapMem */
/* This is true if the host and target have different endianness. */
#define ByteSwapMem (CURRENT_TARGET_BYTE_ORDER != CURRENT_HOST_BYTE_ORDER)
/* ReverseEndian */
/* This mode is selected if in User mode with the RE bit being set in
SR (Status Register). It reverses the endianness of load and store
instructions. */
#define ReverseEndian (((SR & status_RE) && UserMode) ? 1 : 0)
/* BigEndianCPU */
/* The endianness for load and store instructions (0=little;1=big). In
User mode this endianness may be switched by setting the state_RE
bit in the SR register. Thus, BigEndianCPU may be computed as
(BigEndianMem EOR ReverseEndian). */
#define BigEndianCPU (BigEndianMem ^ ReverseEndian) /* Already bits */
#if !defined(FASTSIM) || defined(PROFILE)
/* At the moment these values will be the same, since we do not have
access to the pipeline cycle count information from the simulator
@ -380,17 +131,6 @@ static unsigned int instruction_fetches = 0;
static unsigned int instruction_fetch_overflow = 0;
#endif
/* Flags in the "state" variable: */
#define simHALTEX (1 << 2) /* 0 = run; 1 = halt on exception */
#define simHALTIN (1 << 3) /* 0 = run; 1 = halt on interrupt */
#define simTRACE (1 << 8) /* 0 = do nothing; 1 = trace address activity */
#define simPROFILE (1 << 9) /* 0 = do nothing; 1 = gather profiling samples */
#define simPCOC0 (1 << 17) /* COC[1] from current */
#define simPCOC1 (1 << 18) /* COC[1] from previous */
#define simDELAYSLOT (1 << 24) /* 0 = do nothing; 1 = delay slot entry exists */
#define simSKIPNEXT (1 << 25) /* 0 = do nothing; 1 = skip instruction */
#define simSIGINT (1 << 28) /* 0 = do nothing; 1 = SIGINT has occured */
#define simJALDELAYSLOT (1 << 29) /* 1 = in jal delay slot */
#define DELAYSLOT() {\
if (STATE & simDELAYSLOT)\
@ -2076,8 +1816,9 @@ address_translation(sd,vAddr,IorD,LorS,pAddr,CCA,host,raw)
may increase performance, but must not change the meaning of the
program, or alter architecturally-visible state. */
static void UNUSED
Prefetch(CCA,pAddr,vAddr,DATA,hint)
void
prefetch(sd,CCA,pAddr,vAddr,DATA,hint)
SIM_DESC sd;
int CCA;
uword64 pAddr;
uword64 vAddr;
@ -2477,8 +2218,9 @@ store_memory(sd,CCA,AccessLength,MemElem,MemElem1,pAddr,vAddr,raw)
action necessary to make the effects of groups of synchronizable
loads and stores indicated by stype occur in the same order for all
processors. */
static void
SyncOperation(stype)
void
sync_operation(sd,stype)
SIM_DESC sd;
int stype;
{
#ifdef DEBUG
@ -2812,13 +2554,6 @@ cache_op(sd,op,pAddr,vAddr,instruction)
#if defined(HASFPU) /* Only needed when building FPU aware simulators */
#if 1
#define SizeFGR() (GPRLEN)
#else
/* They depend on the CPU being simulated */
#define SizeFGR() ((PROCESSOR_64BIT && ((SR & status_FR) == 1)) ? 64 : 32)
#endif
/* Numbers are held in normalized form. The SINGLE and DOUBLE binary
formats conform to ANSI/IEEE Std 754-1985. */
/* SINGLE precision floating:
@ -3873,7 +3608,7 @@ cop_sd(sd,coproc_num,coproc_reg)
return(value);
}
static void
void
decode_coproc(sd,instruction)
SIM_DESC sd;
unsigned int instruction;

View File

@ -36,9 +36,21 @@ with this program; if not, write to the Free Software Foundation, Inc.,
#include "sim-basics.h"
#if 0
/* These are generated files. */
#include "itable.h"
#include "idecode.h"
#include "idecode.h"
/* dummy - not used */
typedef instruction_address sim_cia;
static const sim_cia null_cia = {0}; /* dummy */
#define NULL_CIA null_cia
#else
typedef int sim_cia;
#define NULL_CIA 0
#endif
#include "sim-base.h"
@ -78,6 +90,7 @@ typedef unsigned64 uword64;
#endif
/* Floating-point operations: */
/* FPU registers must be one of the following types. All other values
@ -114,6 +127,174 @@ unsigned64 SquareRoot PARAMS ((unsigned64 op, FP_formats fmt));
unsigned64 convert PARAMS ((SIM_DESC sd, int rm, unsigned64 op, FP_formats from, FP_formats to));
#define Convert(rm,op,from,to) convert(sd,rm,op,from,to)
/* Macro to update FPSR condition-code field. This is complicated by
the fact that there is a hole in the index range of the bits within
the FCSR register. Also, the number of bits visible depends on the
MIPS ISA version being supported. */
#define SETFCC(cc,v) {\
int bit = ((cc == 0) ? 23 : (24 + (cc)));\
FCSR = ((FCSR & ~(1 << bit)) | ((v) << bit));\
}
#define GETFCC(cc) (((((cc) == 0) ? (FCSR & (1 << 23)) : (FCSR & (1 << (24 + (cc))))) != 0) ? 1 : 0)
/* This should be the COC1 value at the start of the preceding
instruction: */
#define PREVCOC1() ((STATE & simPCOC1) ? 1 : 0)
#if 1
#define SizeFGR() (WITH_TARGET_WORD_BITSIZE)
#else
/* They depend on the CPU being simulated */
#define SizeFGR() ((WITH_TARGET_WORD_BITSIZE == 64 && ((SR & status_FR) == 1)) ? 64 : 32)
#endif
/* Standard FCRS bits: */
#define IR (0) /* Inexact Result */
#define UF (1) /* UnderFlow */
#define OF (2) /* OverFlow */
#define DZ (3) /* Division by Zero */
#define IO (4) /* Invalid Operation */
#define UO (5) /* Unimplemented Operation */
/* Get masks for individual flags: */
#if 1 /* SAFE version */
#define FP_FLAGS(b) (((unsigned)(b) < 5) ? (1 << ((b) + 2)) : 0)
#define FP_ENABLE(b) (((unsigned)(b) < 5) ? (1 << ((b) + 7)) : 0)
#define FP_CAUSE(b) (((unsigned)(b) < 6) ? (1 << ((b) + 12)) : 0)
#else
#define FP_FLAGS(b) (1 << ((b) + 2))
#define FP_ENABLE(b) (1 << ((b) + 7))
#define FP_CAUSE(b) (1 << ((b) + 12))
#endif
#define FP_FS (1 << 24) /* MIPS III onwards : Flush to Zero */
#define FP_MASK_RM (0x3)
#define FP_SH_RM (0)
#define FP_RM_NEAREST (0) /* Round to nearest (Round) */
#define FP_RM_TOZERO (1) /* Round to zero (Trunc) */
#define FP_RM_TOPINF (2) /* Round to Plus infinity (Ceil) */
#define FP_RM_TOMINF (3) /* Round to Minus infinity (Floor) */
#define GETRM() (int)((FCSR >> FP_SH_RM) & FP_MASK_RM)
/* Integer ALU operations: */
#include "sim-alu.h"
#define ALU32_END(ANS) \
if (ALU32_HAD_OVERFLOW) \
SignalExceptionIntegerOverflow (); \
(ANS) = alu_overflow_val;
#define ALU64_END(ANS) \
if (ALU64_HAD_OVERFLOW) \
SignalExceptionIntegerOverflow (); \
(ANS) = alu_val;
/* start-sanitize-r5900 */
#define BYTES_IN_MMI_REGS (sizeof(signed_word) + sizeof(signed_word))
#define HALFWORDS_IN_MMI_REGS (BYTES_IN_MMI_REGS/2)
#define WORDS_IN_MMI_REGS (BYTES_IN_MMI_REGS/4)
#define DOUBLEWORDS_IN_MMI_REGS (BYTES_IN_MMI_REGS/8)
#define BYTES_IN_MIPS_REGS (sizeof(signed_word))
#define HALFWORDS_IN_MIPS_REGS (BYTES_IN_MIPS_REGS/2)
#define WORDS_IN_MIPS_REGS (BYTES_IN_MIPS_REGS/4)
#define DOUBLEWORDS_IN_MIPS_REGS (BYTES_IN_MIPS_REGS/8)
/* SUB_REG_FETCH - return as lvalue some sub-part of a "register"
T - type of the sub part
TC - # of T's in the mips part of the "register"
I - index (from 0) of desired sub part
A - low part of "register"
A1 - high part of register
*/
#define SUB_REG_FETCH(T,TC,A,A1,I) \
(*(((I) < (TC) ? (T*)(A) : (T*)(A1)) \
+ (CURRENT_HOST_BYTE_ORDER == BIG_ENDIAN \
? ((TC) - 1 - (I) % (TC)) \
: ((I) % (TC)) \
) \
) \
)
/*
GPR_<type>(R,I) - return, as lvalue, the I'th <type> of general register R
where <type> has two letters:
1 is S=signed or U=unsigned
2 is B=byte H=halfword W=word D=doubleword
*/
#define SUB_REG_SB(A,A1,I) SUB_REG_FETCH(signed8, BYTES_IN_MIPS_REGS, A, A1, I)
#define SUB_REG_SH(A,A1,I) SUB_REG_FETCH(signed16, HALFWORDS_IN_MIPS_REGS, A, A1, I)
#define SUB_REG_SW(A,A1,I) SUB_REG_FETCH(signed32, WORDS_IN_MIPS_REGS, A, A1, I)
#define SUB_REG_SD(A,A1,I) SUB_REG_FETCH(signed64, DOUBLEWORDS_IN_MIPS_REGS, A, A1, I)
#define SUB_REG_UB(A,A1,I) SUB_REG_FETCH(unsigned8, BYTES_IN_MIPS_REGS, A, A1, I)
#define SUB_REG_UH(A,A1,I) SUB_REG_FETCH(unsigned16, HALFWORDS_IN_MIPS_REGS, A, A1, I)
#define SUB_REG_UW(A,A1,I) SUB_REG_FETCH(unsigned32, WORDS_IN_MIPS_REGS, A, A1, I)
#define SUB_REG_UD(A,A1,I) SUB_REG_FETCH(unsigned64, DOUBLEWORDS_IN_MIPS_REGS, A, A1, I)
#define GPR_SB(R,I) SUB_REG_SB(&REGISTERS[R], &REGISTERS1[R], I)
#define GPR_SH(R,I) SUB_REG_SH(&REGISTERS[R], &REGISTERS1[R], I)
#define GPR_SW(R,I) SUB_REG_SW(&REGISTERS[R], &REGISTERS1[R], I)
#define GPR_SD(R,I) SUB_REG_SD(&REGISTERS[R], &REGISTERS1[R], I)
#define GPR_UB(R,I) SUB_REG_UB(&REGISTERS[R], &REGISTERS1[R], I)
#define GPR_UH(R,I) SUB_REG_UH(&REGISTERS[R], &REGISTERS1[R], I)
#define GPR_UW(R,I) SUB_REG_UW(&REGISTERS[R], &REGISTERS1[R], I)
#define GPR_UD(R,I) SUB_REG_UD(&REGISTERS[R], &REGISTERS1[R], I)
#define RS_SB(I) SUB_REG_SB(&rs_reg, &rs_reg1, I)
#define RS_SH(I) SUB_REG_SH(&rs_reg, &rs_reg1, I)
#define RS_SW(I) SUB_REG_SW(&rs_reg, &rs_reg1, I)
#define RS_SD(I) SUB_REG_SD(&rs_reg, &rs_reg1, I)
#define RS_UB(I) SUB_REG_UB(&rs_reg, &rs_reg1, I)
#define RS_UH(I) SUB_REG_UH(&rs_reg, &rs_reg1, I)
#define RS_UW(I) SUB_REG_UW(&rs_reg, &rs_reg1, I)
#define RS_UD(I) SUB_REG_UD(&rs_reg, &rs_reg1, I)
#define RT_SB(I) SUB_REG_SB(&rt_reg, &rt_reg1, I)
#define RT_SH(I) SUB_REG_SH(&rt_reg, &rt_reg1, I)
#define RT_SW(I) SUB_REG_SW(&rt_reg, &rt_reg1, I)
#define RT_SD(I) SUB_REG_SD(&rt_reg, &rt_reg1, I)
#define RT_UB(I) SUB_REG_UB(&rt_reg, &rt_reg1, I)
#define RT_UH(I) SUB_REG_UH(&rt_reg, &rt_reg1, I)
#define RT_UW(I) SUB_REG_UW(&rt_reg, &rt_reg1, I)
#define RT_UD(I) SUB_REG_UD(&rt_reg, &rt_reg1, I)
#define LO_SB(I) SUB_REG_SB(&LO, &LO1, I)
#define LO_SH(I) SUB_REG_SH(&LO, &LO1, I)
#define LO_SW(I) SUB_REG_SW(&LO, &LO1, I)
#define LO_SD(I) SUB_REG_SD(&LO, &LO1, I)
#define LO_UB(I) SUB_REG_UB(&LO, &LO1, I)
#define LO_UH(I) SUB_REG_UH(&LO, &LO1, I)
#define LO_UW(I) SUB_REG_UW(&LO, &LO1, I)
#define LO_UD(I) SUB_REG_UD(&LO, &LO1, I)
#define HI_SB(I) SUB_REG_SB(&HI, &HI1, I)
#define HI_SH(I) SUB_REG_SH(&HI, &HI1, I)
#define HI_SW(I) SUB_REG_SW(&HI, &HI1, I)
#define HI_SD(I) SUB_REG_SD(&HI, &HI1, I)
#define HI_UB(I) SUB_REG_UB(&HI, &HI1, I)
#define HI_UH(I) SUB_REG_UH(&HI, &HI1, I)
#define HI_UW(I) SUB_REG_UW(&HI, &HI1, I)
#define HI_UD(I) SUB_REG_UD(&HI, &HI1, I)
/* end-sanitize-r5900 */
@ -121,11 +302,16 @@ struct _sim_cpu {
/* The following are internal simulator state variables: */
sim_cia cia;
#define CPU_CIA(CPU) ((CPU)->cia)
address_word ipc; /* internal Instruction PC */
address_word dspc; /* delay-slot PC */
#define IPC ((STATE_CPU (sd,0))->ipc)
#define DSPC ((STATE_CPU (sd,0))->dspc)
#define NULLIFY_NIA() { nia.ip = cia.dp + 4; nia.dp = nia.ip += 4; }
/* State of the simulator */
unsigned int state;
@ -133,6 +319,20 @@ struct _sim_cpu {
#define STATE ((STATE_CPU (sd,0))->state)
#define DSSTATE ((STATE_CPU (sd,0))->dsstate)
/* Flags in the "state" variable: */
#define simHALTEX (1 << 2) /* 0 = run; 1 = halt on exception */
#define simHALTIN (1 << 3) /* 0 = run; 1 = halt on interrupt */
#define simTRACE (1 << 8) /* 0 = do nothing; 1 = trace address activity */
#define simPROFILE (1 << 9) /* 0 = do nothing; 1 = gather profiling samples */
#define simPCOC0 (1 << 17) /* COC[1] from current */
#define simPCOC1 (1 << 18) /* COC[1] from previous */
#define simDELAYSLOT (1 << 24) /* 0 = do nothing; 1 = delay slot entry exists */
#define simSKIPNEXT (1 << 25) /* 0 = do nothing; 1 = skip instruction */
#define simSIGINT (1 << 28) /* 0 = do nothing; 1 = SIGINT has occured */
#define simJALDELAYSLOT (1 << 29) /* 1 = in jal delay slot */
/* This is nasty, since we have to rely on matching the register
numbers used by GDB. Unfortunately, depending on the MIPS target
@ -211,6 +411,22 @@ struct _sim_cpu {
#define PENDING_SLOT_REG ((STATE_CPU (sd, 0))->pending_slot_reg)
#define PENDING_SLOT_VALUE ((STATE_CPU (sd, 0))->pending_slot_value)
/* The following are not used for MIPS IV onwards: */
#define PENDING_FILL(r,v) {\
/* printf("DBG: FILL BEFORE pending_in = %d, pending_out = %d, pending_total = %d\n",PENDING_IN,PENDING_OUT,PENDING_TOTAL); */\
if (PENDING_SLOT_REG[PENDING_IN] != (LAST_EMBED_REGNUM + 1))\
sim_io_eprintf(sd,"Attempt to over-write pending value\n");\
PENDING_SLOT_COUNT[PENDING_IN] = 2;\
PENDING_SLOT_REG[PENDING_IN] = (r);\
PENDING_SLOT_VALUE[PENDING_IN] = (uword64)(v);\
/*printf("DBG: FILL reg %d value = 0x%s\n",(r),pr_addr(v));*/\
PENDING_TOTAL++;\
PENDING_IN++;\
if (PENDING_IN == PSLOTS)\
PENDING_IN = 0;\
/*printf("DBG: FILL AFTER pending_in = %d, pending_out = %d, pending_total = %d\n",PENDING_IN,PENDING_OUT,PENDING_TOTAL);*/\
}
/* LLBIT = Load-Linked bit. A bit of "virtual" state used by atomic
read-write instructions. It is set when a linked load occurs. It
@ -318,6 +534,65 @@ struct sim_state {
};
/* Status information: */
/* TODO : these should be the bitmasks for these bits within the
status register. At the moment the following are VR4300
bit-positions: */
#define status_KSU_mask (0x3) /* mask for KSU bits */
#define status_KSU_shift (3) /* shift for field */
#define ksu_kernel (0x0)
#define ksu_supervisor (0x1)
#define ksu_user (0x2)
#define ksu_unknown (0x3)
#define status_IE (1 << 0) /* Interrupt enable */
#define status_EXL (1 << 1) /* Exception level */
#define status_RE (1 << 25) /* Reverse Endian in user mode */
#define status_FR (1 << 26) /* enables MIPS III additional FP registers */
#define status_SR (1 << 20) /* soft reset or NMI */
#define status_BEV (1 << 22) /* Location of general exception vectors */
#define status_TS (1 << 21) /* TLB shutdown has occurred */
#define status_ERL (1 << 2) /* Error level */
#define status_RP (1 << 27) /* Reduced Power mode */
#define cause_BD ((unsigned)1 << 31) /* Exception in branch delay slot */
/* NOTE: We keep the following status flags as bit values (1 for true,
0 for false). This allows them to be used in binary boolean
operations without worrying about what exactly the non-zero true
value is. */
/* UserMode */
#define UserMode ((((SR & status_KSU_mask) >> status_KSU_shift) == ksu_user) ? 1 : 0)
/* BigEndianMem */
/* Hardware configuration. Affects endianness of LoadMemory and
StoreMemory and the endianness of Kernel and Supervisor mode
execution. The value is 0 for little-endian; 1 for big-endian. */
#define BigEndianMem (CURRENT_TARGET_BYTE_ORDER == BIG_ENDIAN)
/*(state & simBE) ? 1 : 0)*/
/* ByteSwapMem */
/* This is true if the host and target have different endianness. */
#define ByteSwapMem (CURRENT_TARGET_BYTE_ORDER != CURRENT_HOST_BYTE_ORDER)
/* ReverseEndian */
/* This mode is selected if in User mode with the RE bit being set in
SR (Status Register). It reverses the endianness of load and store
instructions. */
#define ReverseEndian (((SR & status_RE) && UserMode) ? 1 : 0)
/* BigEndianCPU */
/* The endianness for load and store instructions (0=little;1=big). In
User mode this endianness may be switched by setting the state_RE
bit in the SR register. Thus, BigEndianCPU may be computed as
(BigEndianMem EOR ReverseEndian). */
#define BigEndianCPU (BigEndianMem ^ ReverseEndian) /* Already bits */
/* Exceptions: */
/* NOTE: These numbers depend on the processor architecture being
@ -369,10 +644,43 @@ uword64 cop_sd PARAMS ((SIM_DESC sd, int coproc_num, int coproc_reg));
#define COP_SW(coproc_num,coproc_reg) cop_sw(sd,coproc_num,coproc_reg)
#define COP_SD(coproc_num,coproc_reg) cop_sd(sd,coproc_num,coproc_reg)
void decode_coproc PARAMS ((SIM_DESC sd,unsigned int instruction));
#define DecodeCoproc(instruction) decode_coproc(sd, (instruction))
/* Memory accesses */
/* The following are generic to all versions of the MIPS architecture
to date: */
/* Memory Access Types (for CCA): */
#define Uncached (0)
#define CachedNoncoherent (1)
#define CachedCoherent (2)
#define Cached (3)
#define isINSTRUCTION (1 == 0) /* FALSE */
#define isDATA (1 == 1) /* TRUE */
#define isLOAD (1 == 0) /* FALSE */
#define isSTORE (1 == 1) /* TRUE */
#define isREAL (1 == 0) /* FALSE */
#define isRAW (1 == 1) /* TRUE */
#define isTARGET (1 == 0) /* FALSE */
#define isHOST (1 == 1) /* TRUE */
/* The "AccessLength" specifications for Loads and Stores. NOTE: This
is the number of bytes minus 1. */
#define AccessLength_BYTE (0)
#define AccessLength_HALFWORD (1)
#define AccessLength_TRIPLEBYTE (2)
#define AccessLength_WORD (3)
#define AccessLength_QUINTIBYTE (4)
#define AccessLength_SEXTIBYTE (5)
#define AccessLength_SEPTIBYTE (6)
#define AccessLength_DOUBLEWORD (7)
#define AccessLength_QUADWORD (15)
int address_translation PARAMS ((SIM_DESC sd, uword64 vAddr, int IorD, int LorS, uword64 *pAddr, int *CCA, int host, int raw));
#define AddressTranslation(vAddr,IorD,LorS,pAddr,CCA,host,raw) \
address_translation(sd, vAddr,IorD,LorS,pAddr,CCA,host,raw)
@ -388,4 +696,13 @@ store_memory(sd,CCA,AccessLength,MemElem,MemElem1,pAddr,vAddr,raw)
void cache_op PARAMS ((SIM_DESC sd, int op, uword64 pAddr, uword64 vAddr, unsigned int instruction));
#define CacheOp(op,pAddr,vAddr,instruction) cache_op(sd,op,pAddr,vAddr,instruction)
void sync_operation PARAMS ((SIM_DESC sd, int stype));
#define SyncOperation(stype) sync_operation (sd, (stype))
void prefetch PARAMS ((SIM_DESC sd, int CCA, uword64 pAddr, uword64 vAddr, int DATA, int hint));
#define Prefetch(CCA,pAddr,vAddr,DATA,hint) prefetch(sd,CCA,pAddr,vAddr,DATA,hint)
#define IMEM(CIA) 0 /* FIXME */
#endif