/* Machine-dependent hooks for the unix child process stratum. This code is for the HP PA-RISC cpu. Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993 Free Software Foundation, Inc. Contributed by the Center for Software Science at the University of Utah (pa-gdb-bugs@cs.utah.edu). This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include "defs.h" #include "inferior.h" #include "target.h" #include #ifndef PT_ATTACH #define PT_ATTACH PTRACE_ATTACH #endif #ifndef PT_DETACH #define PT_DETACH PTRACE_DETACH #endif /* This function simply calls ptrace with the given arguments. It exists so that all calls to ptrace are isolated in this machine-dependent file. */ #ifdef WANT_NATIVE_TARGET int call_ptrace (request, pid, addr, data) int request, pid; PTRACE_ARG3_TYPE addr; int data; { return ptrace (request, pid, addr, data); } #endif /* WANT_NATIVE_TARGET */ #ifdef DEBUG_PTRACE /* For the rest of the file, use an extra level of indirection */ /* This lets us breakpoint usefully on call_ptrace. */ #define ptrace call_ptrace #endif void kill_inferior () { if (inferior_pid == 0) return; ptrace (PT_KILL, inferior_pid, (PTRACE_ARG3_TYPE) 0, 0); wait ((int *)0); target_mourn_inferior (); } #ifdef ATTACH_DETACH /* Start debugging the process whose number is PID. */ int attach (pid) int pid; { errno = 0; ptrace (PT_ATTACH, pid, (PTRACE_ARG3_TYPE) 0, 0); if (errno) perror_with_name ("ptrace"); attach_flag = 1; return pid; } /* Stop debugging the process whose number is PID and continue it with signal number SIGNAL. SIGNAL = 0 means just continue it. */ void detach (signal) int signal; { errno = 0; ptrace (PT_DETACH, inferior_pid, (PTRACE_ARG3_TYPE) 1, signal); if (errno) perror_with_name ("ptrace"); attach_flag = 0; } #endif /* ATTACH_DETACH */ #if !defined (FETCH_INFERIOR_REGISTERS) /* KERNEL_U_ADDR is the amount to subtract from u.u_ar0 to get the offset in the core file of the register values. */ #if defined (KERNEL_U_ADDR_BSD) /* Get kernel_u_addr using BSD-style nlist(). */ CORE_ADDR kernel_u_addr; #include /* For struct nlist */ void _initialize_kernel_u_addr () { struct nlist names[2]; names[0].n_un.n_name = "_u"; names[1].n_un.n_name = NULL; if (nlist ("/vmunix", names) == 0) kernel_u_addr = names[0].n_value; else fatal ("Unable to get kernel u area address."); } #endif /* KERNEL_U_ADDR_BSD. */ #if defined (KERNEL_U_ADDR_HPUX) /* Get kernel_u_addr using HPUX-style nlist(). */ CORE_ADDR kernel_u_addr; struct hpnlist { char * n_name; long n_value; unsigned char n_type; unsigned char n_length; short n_almod; short n_unused; }; static struct hpnlist nl[] = {{ "_u", -1, }, { (char *) 0, }}; /* read the value of the u area from the hp-ux kernel */ void _initialize_kernel_u_addr () { struct user u; nlist ("/hp-ux", &nl); kernel_u_addr = nl[0].n_value; } #endif /* KERNEL_U_ADDR_HPUX. */ #if !defined (offsetof) #define offsetof(TYPE, MEMBER) ((unsigned long) &((TYPE *)0)->MEMBER) #endif /* U_REGS_OFFSET is the offset of the registers within the u area. */ #if !defined (U_REGS_OFFSET) #define U_REGS_OFFSET \ ptrace (PT_READ_U, inferior_pid, \ (PTRACE_ARG3_TYPE) (offsetof (struct user, u_ar0)), 0) \ - KERNEL_U_ADDR #endif /* Registers we shouldn't try to fetch. */ #if !defined (CANNOT_FETCH_REGISTER) #define CANNOT_FETCH_REGISTER(regno) 0 #endif /* Fetch one register. */ static void fetch_register (regno) int regno; { register unsigned int regaddr; char buf[MAX_REGISTER_RAW_SIZE]; char mess[128]; /* For messages */ register int i; /* Offset of registers within the u area. */ unsigned int offset; if (CANNOT_FETCH_REGISTER (regno)) { bzero (buf, REGISTER_RAW_SIZE (regno)); /* Supply zeroes */ supply_register (regno, buf); return; } offset = U_REGS_OFFSET; regaddr = register_addr (regno, offset); for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof (int)) { errno = 0; *(int *) &buf[i] = ptrace (PT_RUREGS, inferior_pid, (PTRACE_ARG3_TYPE) regaddr, 0); regaddr += sizeof (int); if (errno != 0) { sprintf (mess, "reading register %s (#%d)", reg_names[regno], regno); perror_with_name (mess); } } supply_register (regno, buf); } #endif /* !defined (FETCH_INFERIOR_REGISTERS). */ /* Fetch all registers, or just one, from the child process. */ #ifndef FETCH_INFERIOR_REGISTERS void fetch_inferior_registers (regno) int regno; { if (regno == -1) for (regno = 0; regno < NUM_REGS; regno++) fetch_register (regno); else fetch_register (regno); } /* Registers we shouldn't try to store. */ #if !defined (CANNOT_STORE_REGISTER) #define CANNOT_STORE_REGISTER(regno) 0 #endif /* Store our register values back into the inferior. If REGNO is -1, do this for all registers. Otherwise, REGNO specifies which register (so we can save time). */ void store_inferior_registers (regno) int regno; { register unsigned int regaddr; char buf[80]; extern char registers[]; register int i; unsigned int offset = U_REGS_OFFSET; if (regno >= 0) { regaddr = register_addr (regno, offset); for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof(int)) { errno = 0; ptrace (PT_WUREGS, inferior_pid, (PTRACE_ARG3_TYPE) regaddr, *(int *) ®isters[REGISTER_BYTE (regno) + i]); if (errno != 0) { sprintf (buf, "writing register number %d(%d)", regno, i); perror_with_name (buf); } regaddr += sizeof(int); } } else { for (regno = 0; regno < NUM_REGS; regno++) { if (CANNOT_STORE_REGISTER (regno)) continue; regaddr = register_addr (regno, offset); for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof(int)) { errno = 0; ptrace (PT_WUREGS, inferior_pid, (PTRACE_ARG3_TYPE) regaddr, *(int *) ®isters[REGISTER_BYTE (regno) + i]); if (errno != 0) { sprintf (buf, "writing register number %d(%d)", regno, i); perror_with_name (buf); } regaddr += sizeof(int); } } } return; } #endif /* !defined(FETCH_INFERIOR_REGISTERS) */ /* Resume execution of the inferior process. If STEP is nonzero, single-step it. If SIGNAL is nonzero, give it that signal. */ void child_resume (step, signal) int step; int signal; { errno = 0; /* An address of (PTRACE_ARG3_TYPE) 1 tells ptrace to continue from where it was. (If GDB wanted it to start some other way, we have already written a new PC value to the child.) */ if (step) ptrace (PT_STEP, inferior_pid, (PTRACE_ARG3_TYPE) 1, signal); else ptrace (PT_CONTINUE, inferior_pid, (PTRACE_ARG3_TYPE) 1, signal); if (errno) perror_with_name ("ptrace"); } /* NOTE! I tried using PTRACE_READDATA, etc., to read and write memory in the NEW_SUN_PTRACE case. It ought to be straightforward. But it appears that writing did not write the data that I specified. I cannot understand where it got the data that it actually did write. */ /* Copy LEN bytes to or from inferior's memory starting at MEMADDR to debugger memory starting at MYADDR. Copy to inferior if WRITE is nonzero. Returns the length copied, which is either the LEN argument or zero. This xfer function does not do partial moves, since child_ops doesn't allow memory operations to cross below us in the target stack anyway. */ int child_xfer_memory (memaddr, myaddr, len, write, target) CORE_ADDR memaddr; char *myaddr; int len; int write; struct target_ops *target; /* ignored */ { register int i; /* Round starting address down to longword boundary. */ register CORE_ADDR addr = memaddr & - sizeof (int); /* Round ending address up; get number of longwords that makes. */ register int count = (((memaddr + len) - addr) + sizeof (int) - 1) / sizeof (int); /* Allocate buffer of that many longwords. */ register int *buffer = (int *) alloca (count * sizeof (int)); if (write) { /* Fill start and end extra bytes of buffer with existing memory data. */ if (addr != memaddr || len < (int)sizeof (int)) { /* Need part of initial word -- fetch it. */ buffer[0] = ptrace (PT_READ_I, inferior_pid, (PTRACE_ARG3_TYPE) addr, 0); } if (count > 1) /* FIXME, avoid if even boundary */ { buffer[count - 1] = ptrace (PT_READ_I, inferior_pid, (PTRACE_ARG3_TYPE) (addr + (count - 1) * sizeof (int)), 0); } /* Copy data to be written over corresponding part of buffer */ bcopy (myaddr, (char *) buffer + (memaddr & (sizeof (int) - 1)), len); /* Write the entire buffer. */ for (i = 0; i < count; i++, addr += sizeof (int)) { errno = 0; ptrace (PT_WRITE_D, inferior_pid, (PTRACE_ARG3_TYPE) addr, buffer[i]); if (errno) { /* Using the appropriate one (I or D) is necessary for Gould NP1, at least. */ errno = 0; ptrace (PT_WRITE_I, inferior_pid, (PTRACE_ARG3_TYPE) addr, buffer[i]); } if (errno) return 0; } } else { /* Read all the longwords */ for (i = 0; i < count; i++, addr += sizeof (int)) { errno = 0; buffer[i] = ptrace (PT_READ_I, inferior_pid, (PTRACE_ARG3_TYPE) addr, 0); if (errno) return 0; QUIT; } /* Copy appropriate bytes out of the buffer. */ bcopy ((char *) buffer + (memaddr & (sizeof (int) - 1)), myaddr, len); } return len; }