/* BFD semi-generic back-end for a.out binaries. Copyright 1990, 1991, 1992, 1993 Free Software Foundation, Inc. Written by Cygnus Support. This file is part of BFD, the Binary File Descriptor library. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* SECTION a.out backends DESCRIPTION BFD supports a number of different flavours of a.out format, though the major differences are only the sizes of the structures on disk, and the shape of the relocation information. The support is split into a basic support file @code{aoutx.h} and other files which derive functions from the base. One derivation file is @code{aoutf1.h} (for a.out flavour 1), and adds to the basic a.out functions support for sun3, sun4, 386 and 29k a.out files, to create a target jump vector for a specific target. This information is further split out into more specific files for each machine, including @code{sunos.c} for sun3 and sun4, @code{newsos3.c} for the Sony NEWS, and @code{demo64.c} for a demonstration of a 64 bit a.out format. The base file @code{aoutx.h} defines general mechanisms for reading and writing records to and from disk, and various other methods which BFD requires. It is included by @code{aout32.c} and @code{aout64.c} to form the names aout_32_swap_exec_header_in, aout_64_swap_exec_header_in, etc. As an example, this is what goes on to make the back end for a sun4, from aout32.c | #define ARCH_SIZE 32 | #include "aoutx.h" Which exports names: | ... | aout_32_canonicalize_reloc | aout_32_find_nearest_line | aout_32_get_lineno | aout_32_get_reloc_upper_bound | ... from sunos.c | #define ARCH 32 | #define TARGET_NAME "a.out-sunos-big" | #define VECNAME sunos_big_vec | #include "aoutf1.h" requires all the names from aout32.c, and produces the jump vector | sunos_big_vec The file host-aout.c is a special case. It is for a large set of hosts that use ``more or less standard'' a.out files, and for which cross-debugging is not interesting. It uses the standard 32-bit a.out support routines, but determines the file offsets and addresses of the text, data, and BSS sections, the machine architecture and machine type, and the entry point address, in a host-dependent manner. Once these values have been determined, generic code is used to handle the object file. When porting it to run on a new system, you must supply: | HOST_PAGE_SIZE | HOST_SEGMENT_SIZE | HOST_MACHINE_ARCH (optional) | HOST_MACHINE_MACHINE (optional) | HOST_TEXT_START_ADDR | HOST_STACK_END_ADDR in the file <<../include/sys/h-XXX.h>> (for your host). These values, plus the structures and macros defined in <> on your host system, will produce a BFD target that will access ordinary a.out files on your host. To configure a new machine to use <., specify: | TDEFAULTS = -DDEFAULT_VECTOR=host_aout_big_vec | TDEPFILES= host-aout.o trad-core.o in the <> file, and modify configure.in to use the <> file (by setting "<>") when your configuration is selected. */ /* Some assumptions: * Any BFD with D_PAGED set is ZMAGIC, and vice versa. Doesn't matter what the setting of WP_TEXT is on output, but it'll get set on input. * Any BFD with D_PAGED clear and WP_TEXT set is NMAGIC. * Any BFD with both flags clear is OMAGIC. (Just want to make these explicit, so the conditions tested in this file make sense if you're more familiar with a.out than with BFD.) */ #define KEEPIT flags #define KEEPITTYPE int #include #include /* For strchr and friends */ #include "bfd.h" #include #include struct external_exec; #include "libaout.h" #include "libbfd.h" #include "aout/aout64.h" #include "aout/stab_gnu.h" #include "aout/ar.h" extern void (*bfd_error_trap)(); /* SUBSECTION relocations DESCRIPTION The file @code{aoutx.h} caters for both the @emph{standard} and @emph{extended} forms of a.out relocation records. The standard records are characterised by containing only an address, a symbol index and a type field. The extended records (used on 29ks and sparcs) also have a full integer for an addend. */ #define CTOR_TABLE_RELOC_IDX 2 #define howto_table_ext NAME(aout,ext_howto_table) #define howto_table_std NAME(aout,std_howto_table) reloc_howto_type howto_table_ext[] = { HOWTO(RELOC_8, 0, 0, 8, false, 0, true, true,0,"8", false, 0,0x000000ff, false), HOWTO(RELOC_16, 0, 1, 16, false, 0, true, true,0,"16", false, 0,0x0000ffff, false), HOWTO(RELOC_32, 0, 2, 32, false, 0, true, true,0,"32", false, 0,0xffffffff, false), HOWTO(RELOC_DISP8, 0, 0, 8, true, 0, false, true,0,"DISP8", false, 0,0x000000ff, false), HOWTO(RELOC_DISP16, 0, 1, 16, true, 0, false, true,0,"DISP16", false, 0,0x0000ffff, false), HOWTO(RELOC_DISP32, 0, 2, 32, true, 0, false, true,0,"DISP32", false, 0,0xffffffff, false), HOWTO(RELOC_WDISP30,2, 2, 30, true, 0, false, true,0,"WDISP30", false, 0,0x3fffffff, false), HOWTO(RELOC_WDISP22,2, 2, 22, true, 0, false, true,0,"WDISP22", false, 0,0x003fffff, false), HOWTO(RELOC_HI22, 10, 2, 22, false, 0, false, true,0,"HI22", false, 0,0x003fffff, false), HOWTO(RELOC_22, 0, 2, 22, false, 0, false, true,0,"22", false, 0,0x003fffff, false), HOWTO(RELOC_13, 0, 2, 13, false, 0, false, true,0,"13", false, 0,0x00001fff, false), HOWTO(RELOC_LO10, 0, 2, 10, false, 0, false, true,0,"LO10", false, 0,0x000003ff, false), HOWTO(RELOC_SFA_BASE,0, 2, 32, false, 0, false, true,0,"SFA_BASE", false, 0,0xffffffff, false), HOWTO(RELOC_SFA_OFF13,0,2, 32, false, 0, false, true,0,"SFA_OFF13",false, 0,0xffffffff, false), HOWTO(RELOC_BASE10, 0, 2, 16, false, 0, false, true,0,"BASE10", false, 0,0x0000ffff, false), HOWTO(RELOC_BASE13, 0, 2, 13, false, 0, false, true,0,"BASE13", false, 0,0x00001fff, false), HOWTO(RELOC_BASE22, 0, 2, 0, false, 0, false, true,0,"BASE22", false, 0,0x00000000, false), HOWTO(RELOC_PC10, 0, 2, 10, false, 0, false, true,0,"PC10", false, 0,0x000003ff, false), HOWTO(RELOC_PC22, 0, 2, 22, false, 0, false, true,0,"PC22", false, 0,0x003fffff, false), HOWTO(RELOC_JMP_TBL,0, 2, 32, false, 0, false, true,0,"JMP_TBL", false, 0,0xffffffff, false), HOWTO(RELOC_SEGOFF16,0, 2, 0, false, 0, false, true,0,"SEGOFF16", false, 0,0x00000000, false), HOWTO(RELOC_GLOB_DAT,0, 2, 0, false, 0, false, true,0,"GLOB_DAT", false, 0,0x00000000, false), HOWTO(RELOC_JMP_SLOT,0, 2, 0, false, 0, false, true,0,"JMP_SLOT", false, 0,0x00000000, false), HOWTO(RELOC_RELATIVE,0, 2, 0, false, 0, false, true,0,"RELATIVE", false, 0,0x00000000, false), }; /* Convert standard reloc records to "arelent" format (incl byte swap). */ reloc_howto_type howto_table_std[] = { /* type rs size bsz pcrel bitpos abs ovrf sf name part_inpl readmask setmask pcdone */ HOWTO( 0, 0, 0, 8, false, 0, true, true,0,"8", true, 0x000000ff,0x000000ff, false), HOWTO( 1, 0, 1, 16, false, 0, true, true,0,"16", true, 0x0000ffff,0x0000ffff, false), HOWTO( 2, 0, 2, 32, false, 0, true, true,0,"32", true, 0xffffffff,0xffffffff, false), HOWTO( 3, 0, 3, 64, false, 0, true, true,0,"64", true, 0xdeaddead,0xdeaddead, false), HOWTO( 4, 0, 0, 8, true, 0, false, true,0,"DISP8", true, 0x000000ff,0x000000ff, false), HOWTO( 5, 0, 1, 16, true, 0, false, true,0,"DISP16", true, 0x0000ffff,0x0000ffff, false), HOWTO( 6, 0, 2, 32, true, 0, false, true,0,"DISP32", true, 0xffffffff,0xffffffff, false), HOWTO( 7, 0, 3, 64, true, 0, false, true,0,"DISP64", true, 0xfeedface,0xfeedface, false), }; CONST struct reloc_howto_struct * DEFUN(NAME(aout,reloc_type_lookup),(abfd,code), bfd *abfd AND bfd_reloc_code_real_type code) { #define EXT(i,j) case i: return &howto_table_ext[j] #define STD(i,j) case i: return &howto_table_std[j] int ext = obj_reloc_entry_size (abfd) == RELOC_EXT_SIZE; if (code == BFD_RELOC_CTOR) switch (bfd_get_arch_info (abfd)->bits_per_address) { case 32: code = BFD_RELOC_32; break; } if (ext) switch (code) { EXT (BFD_RELOC_32, 2); EXT (BFD_RELOC_HI22, 8); EXT (BFD_RELOC_LO10, 11); EXT (BFD_RELOC_32_PCREL_S2, 6); default: return (CONST struct reloc_howto_struct *) 0; } else /* std relocs */ switch (code) { STD (BFD_RELOC_16, 1); STD (BFD_RELOC_32, 2); STD (BFD_RELOC_8_PCREL, 4); STD (BFD_RELOC_16_PCREL, 5); STD (BFD_RELOC_32_PCREL, 6); default: return (CONST struct reloc_howto_struct *) 0; } } extern bfd_error_vector_type bfd_error_vector; /* SUBSECTION Internal Entry Points DESCRIPTION @code{aoutx.h} exports several routines for accessing the contents of an a.out file, which are gathered and exported in turn by various format specific files (eg sunos.c). */ /* FUNCTION aout__swap_exec_header_in DESCRIPTION Swaps the information in an executable header taken from a raw byte stream memory image, into the internal exec_header structure. SYNOPSIS void aout__swap_exec_header_in, (bfd *abfd, struct external_exec *raw_bytes, struct internal_exec *execp); */ #ifndef NAME_swap_exec_header_in void DEFUN(NAME(aout,swap_exec_header_in),(abfd, raw_bytes, execp), bfd *abfd AND struct external_exec *raw_bytes AND struct internal_exec *execp) { struct external_exec *bytes = (struct external_exec *)raw_bytes; /* The internal_exec structure has some fields that are unused in this configuration (IE for i960), so ensure that all such uninitialized fields are zero'd out. There are places where two of these structs are memcmp'd, and thus the contents do matter. */ memset (execp, 0, sizeof (struct internal_exec)); /* Now fill in fields in the execp, from the bytes in the raw data. */ execp->a_info = bfd_h_get_32 (abfd, bytes->e_info); execp->a_text = GET_WORD (abfd, bytes->e_text); execp->a_data = GET_WORD (abfd, bytes->e_data); execp->a_bss = GET_WORD (abfd, bytes->e_bss); execp->a_syms = GET_WORD (abfd, bytes->e_syms); execp->a_entry = GET_WORD (abfd, bytes->e_entry); execp->a_trsize = GET_WORD (abfd, bytes->e_trsize); execp->a_drsize = GET_WORD (abfd, bytes->e_drsize); } #define NAME_swap_exec_header_in NAME(aout,swap_exec_header_in) #endif /* FUNCTION aout__swap_exec_header_out DESCRIPTION Swaps the information in an internal exec header structure into the supplied buffer ready for writing to disk. SYNOPSIS void aout__swap_exec_header_out (bfd *abfd, struct internal_exec *execp, struct external_exec *raw_bytes); */ void DEFUN(NAME(aout,swap_exec_header_out),(abfd, execp, raw_bytes), bfd *abfd AND struct internal_exec *execp AND struct external_exec *raw_bytes) { struct external_exec *bytes = (struct external_exec *)raw_bytes; /* Now fill in fields in the raw data, from the fields in the exec struct. */ bfd_h_put_32 (abfd, execp->a_info , bytes->e_info); PUT_WORD (abfd, execp->a_text , bytes->e_text); PUT_WORD (abfd, execp->a_data , bytes->e_data); PUT_WORD (abfd, execp->a_bss , bytes->e_bss); PUT_WORD (abfd, execp->a_syms , bytes->e_syms); PUT_WORD (abfd, execp->a_entry , bytes->e_entry); PUT_WORD (abfd, execp->a_trsize, bytes->e_trsize); PUT_WORD (abfd, execp->a_drsize, bytes->e_drsize); } /* FUNCTION aout__some_aout_object_p DESCRIPTION Some A.OUT variant thinks that the file whose format we're checking is an a.out file. Do some more checking, and set up for access if it really is. Call back to the calling environments "finish up" function just before returning, to handle any last-minute setup. SYNOPSIS bfd_target *aout__some_aout_object_p (bfd *abfd, bfd_target *(*callback_to_real_object_p)()); */ bfd_target * DEFUN(NAME(aout,some_aout_object_p),(abfd, execp, callback_to_real_object_p), bfd *abfd AND struct internal_exec *execp AND bfd_target *(*callback_to_real_object_p) PARAMS ((bfd *))) { struct aout_data_struct *rawptr, *oldrawptr; bfd_target *result; rawptr = (struct aout_data_struct *) bfd_zalloc (abfd, sizeof (struct aout_data_struct )); if (rawptr == NULL) { bfd_error = no_memory; return 0; } oldrawptr = abfd->tdata.aout_data; abfd->tdata.aout_data = rawptr; abfd->tdata.aout_data->a.hdr = &rawptr->e; *(abfd->tdata.aout_data->a.hdr) = *execp; /* Copy in the internal_exec struct */ execp = abfd->tdata.aout_data->a.hdr; /* Set the file flags */ abfd->flags = NO_FLAGS; if (execp->a_drsize || execp->a_trsize) abfd->flags |= HAS_RELOC; /* Setting of EXEC_P has been deferred to the bottom of this function */ if (execp->a_syms) abfd->flags |= HAS_LINENO | HAS_DEBUG | HAS_SYMS | HAS_LOCALS; if (N_MAGIC (*execp) == ZMAGIC) { abfd->flags |= D_PAGED|WP_TEXT; adata(abfd).magic = z_magic; } else if (N_MAGIC (*execp) == NMAGIC) { abfd->flags |= WP_TEXT; adata(abfd).magic = n_magic; } else adata(abfd).magic = o_magic; bfd_get_start_address (abfd) = execp->a_entry; obj_aout_symbols (abfd) = (aout_symbol_type *)NULL; bfd_get_symcount (abfd) = execp->a_syms / sizeof (struct external_nlist); /* The default relocation entry size is that of traditional V7 Unix. */ obj_reloc_entry_size (abfd) = RELOC_STD_SIZE; /* The default symbol entry size is that of traditional Unix. */ obj_symbol_entry_size (abfd) = EXTERNAL_NLIST_SIZE; /* create the sections. This is raunchy, but bfd_close wants to reclaim them */ obj_textsec (abfd) = bfd_make_section_old_way (abfd, ".text"); obj_datasec (abfd) = bfd_make_section_old_way (abfd, ".data"); obj_bsssec (abfd) = bfd_make_section_old_way (abfd, ".bss"); #if 0 (void)bfd_make_section (abfd, ".text"); (void)bfd_make_section (abfd, ".data"); (void)bfd_make_section (abfd, ".bss"); #endif obj_datasec (abfd)->_raw_size = execp->a_data; obj_bsssec (abfd)->_raw_size = execp->a_bss; obj_textsec (abfd)->flags = (execp->a_trsize != 0 ? (SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS | SEC_RELOC) : (SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS)); obj_datasec (abfd)->flags = (execp->a_drsize != 0 ? (SEC_ALLOC | SEC_LOAD | SEC_DATA | SEC_HAS_CONTENTS | SEC_RELOC) : (SEC_ALLOC | SEC_LOAD | SEC_DATA | SEC_HAS_CONTENTS)); obj_bsssec (abfd)->flags = SEC_ALLOC; #ifdef THIS_IS_ONLY_DOCUMENTATION /* The common code can't fill in these things because they depend on either the start address of the text segment, the rounding up of virtual addersses between segments, or the starting file position of the text segment -- all of which varies among different versions of a.out. */ /* Call back to the format-dependent code to fill in the rest of the fields and do any further cleanup. Things that should be filled in by the callback: */ struct exec *execp = exec_hdr (abfd); obj_textsec (abfd)->size = N_TXTSIZE(*execp); obj_textsec (abfd)->raw_size = N_TXTSIZE(*execp); /* data and bss are already filled in since they're so standard */ /* The virtual memory addresses of the sections */ obj_textsec (abfd)->vma = N_TXTADDR(*execp); obj_datasec (abfd)->vma = N_DATADDR(*execp); obj_bsssec (abfd)->vma = N_BSSADDR(*execp); /* The file offsets of the sections */ obj_textsec (abfd)->filepos = N_TXTOFF(*execp); obj_datasec (abfd)->filepos = N_DATOFF(*execp); /* The file offsets of the relocation info */ obj_textsec (abfd)->rel_filepos = N_TRELOFF(*execp); obj_datasec (abfd)->rel_filepos = N_DRELOFF(*execp); /* The file offsets of the string table and symbol table. */ obj_str_filepos (abfd) = N_STROFF (*execp); obj_sym_filepos (abfd) = N_SYMOFF (*execp); /* Determine the architecture and machine type of the object file. */ switch (N_MACHTYPE (*exec_hdr (abfd))) { default: abfd->obj_arch = bfd_arch_obscure; break; } adata(abfd)->page_size = PAGE_SIZE; adata(abfd)->segment_size = SEGMENT_SIZE; adata(abfd)->exec_bytes_size = EXEC_BYTES_SIZE; return abfd->xvec; /* The architecture is encoded in various ways in various a.out variants, or is not encoded at all in some of them. The relocation size depends on the architecture and the a.out variant. Finally, the return value is the bfd_target vector in use. If an error occurs, return zero and set bfd_error to the appropriate error code. Formats such as b.out, which have additional fields in the a.out header, should cope with them in this callback as well. */ #endif /* DOCUMENTATION */ result = (*callback_to_real_object_p)(abfd); /* Now that the segment addresses have been worked out, take a better guess at whether the file is executable. If the entry point is within the text segment, assume it is. (This makes files executable even if their entry point address is 0, as long as their text starts at zero.) At some point we should probably break down and stat the file and declare it executable if (one of) its 'x' bits are on... */ if ((execp->a_entry >= obj_textsec(abfd)->vma) && (execp->a_entry < obj_textsec(abfd)->vma + obj_textsec(abfd)->_raw_size)) abfd->flags |= EXEC_P; if (result) { #if 0 /* These should be set correctly anyways. */ abfd->sections = obj_textsec (abfd); obj_textsec (abfd)->next = obj_datasec (abfd); obj_datasec (abfd)->next = obj_bsssec (abfd); #endif } else { free (rawptr); abfd->tdata.aout_data = oldrawptr; } return result; } /* FUNCTION aout__mkobject DESCRIPTION This routine initializes a BFD for use with a.out files. SYNOPSIS boolean aout__mkobject, (bfd *); */ boolean DEFUN(NAME(aout,mkobject),(abfd), bfd *abfd) { struct aout_data_struct *rawptr; bfd_error = system_call_error; /* Use an intermediate variable for clarity */ rawptr = (struct aout_data_struct *)bfd_zalloc (abfd, sizeof (struct aout_data_struct )); if (rawptr == NULL) { bfd_error = no_memory; return false; } abfd->tdata.aout_data = rawptr; exec_hdr (abfd) = &(rawptr->e); /* For simplicity's sake we just make all the sections right here. */ obj_textsec (abfd) = (asection *)NULL; obj_datasec (abfd) = (asection *)NULL; obj_bsssec (abfd) = (asection *)NULL; bfd_make_section (abfd, ".text"); bfd_make_section (abfd, ".data"); bfd_make_section (abfd, ".bss"); bfd_make_section (abfd, BFD_ABS_SECTION_NAME); bfd_make_section (abfd, BFD_UND_SECTION_NAME); bfd_make_section (abfd, BFD_COM_SECTION_NAME); return true; } /* FUNCTION aout__machine_type DESCRIPTION Keep track of machine architecture and machine type for a.out's. Return the machine_type for a particular arch&machine, or M_UNKNOWN if that exact arch&machine can't be represented in a.out format. If the architecture is understood, machine type 0 (default) should always be understood. SYNOPSIS enum machine_type aout__machine_type (enum bfd_architecture arch, unsigned long machine)); */ enum machine_type DEFUN(NAME(aout,machine_type),(arch, machine), enum bfd_architecture arch AND unsigned long machine) { enum machine_type arch_flags; arch_flags = M_UNKNOWN; switch (arch) { case bfd_arch_sparc: if (machine == 0) arch_flags = M_SPARC; break; case bfd_arch_m68k: switch (machine) { case 0: arch_flags = M_68010; break; case 68000: arch_flags = M_UNKNOWN; break; case 68010: arch_flags = M_68010; break; case 68020: arch_flags = M_68020; break; default: arch_flags = M_UNKNOWN; break; } break; case bfd_arch_i386: if (machine == 0) arch_flags = M_386; break; case bfd_arch_a29k: if (machine == 0) arch_flags = M_29K; break; case bfd_arch_mips: switch (machine) { case 0: case 2000: case 3000: arch_flags = M_MIPS1; break; case 4000: case 4400: case 6000: arch_flags = M_MIPS2; break; default: arch_flags = M_UNKNOWN; break; } break; default: arch_flags = M_UNKNOWN; } return arch_flags; } /* FUNCTION aout__set_arch_mach DESCRIPTION Sets the architecture and the machine of the BFD to those values supplied. Verifies that the format can support the architecture required. SYNOPSIS boolean aout__set_arch_mach, (bfd *, enum bfd_architecture, unsigned long machine)); */ boolean DEFUN(NAME(aout,set_arch_mach),(abfd, arch, machine), bfd *abfd AND enum bfd_architecture arch AND unsigned long machine) { bfd_default_set_arch_mach(abfd, arch, machine); if (arch != bfd_arch_unknown && NAME(aout,machine_type) (arch, machine) == M_UNKNOWN) return false; /* We can't represent this type */ /* Determine the size of a relocation entry */ switch (arch) { case bfd_arch_sparc: case bfd_arch_a29k: case bfd_arch_mips: obj_reloc_entry_size (abfd) = RELOC_EXT_SIZE; break; default: obj_reloc_entry_size (abfd) = RELOC_STD_SIZE; break; } return (*aout_backend_info(abfd)->set_sizes) (abfd); } boolean DEFUN (NAME (aout,adjust_sizes_and_vmas), (abfd, text_size, text_end), bfd *abfd AND bfd_size_type *text_size AND file_ptr *text_end) { struct internal_exec *execp = exec_hdr (abfd); if ((obj_textsec (abfd) == NULL) || (obj_datasec (abfd) == NULL)) { bfd_error = invalid_operation; return false; } if (adata(abfd).magic != undecided_magic) return true; obj_textsec(abfd)->_raw_size = align_power(obj_textsec(abfd)->_raw_size, obj_textsec(abfd)->alignment_power); *text_size = obj_textsec (abfd)->_raw_size; /* Rule (heuristic) for when to pad to a new page. Note that there * are (at least) two ways demand-paged (ZMAGIC) files have been * handled. Most Berkeley-based systems start the text segment at * (PAGE_SIZE). However, newer versions of SUNOS start the text * segment right after the exec header; the latter is counted in the * text segment size, and is paged in by the kernel with the rest of * the text. */ /* This perhaps isn't the right way to do this, but made it simpler for me to understand enough to implement it. Better would probably be to go right from BFD flags to alignment/positioning characteristics. But the old code was sloppy enough about handling the flags, and had enough other magic, that it was a little hard for me to understand. I think I understand it better now, but I haven't time to do the cleanup this minute. */ if (adata(abfd).magic == undecided_magic) { if (abfd->flags & D_PAGED) /* whether or not WP_TEXT is set */ adata(abfd).magic = z_magic; else if (abfd->flags & WP_TEXT) adata(abfd).magic = n_magic; else adata(abfd).magic = o_magic; } #ifdef BFD_AOUT_DEBUG /* requires gcc2 */ #if __GNUC__ >= 2 fprintf (stderr, "%s text=<%x,%x,%x> data=<%x,%x,%x> bss=<%x,%x,%x>\n", ({ char *str; switch (adata(abfd).magic) { case n_magic: str = "NMAGIC"; break; case o_magic: str = "OMAGIC"; break; case z_magic: str = "ZMAGIC"; break; default: abort (); } str; }), obj_textsec(abfd)->vma, obj_textsec(abfd)->_raw_size, obj_textsec(abfd)->alignment_power, obj_datasec(abfd)->vma, obj_datasec(abfd)->_raw_size, obj_datasec(abfd)->alignment_power, obj_bsssec(abfd)->vma, obj_bsssec(abfd)->_raw_size, obj_bsssec(abfd)->alignment_power); #endif #endif switch (adata(abfd).magic) { case o_magic: { file_ptr pos = adata (abfd).exec_bytes_size; bfd_vma vma = 0; int pad = 0; obj_textsec(abfd)->filepos = pos; pos += obj_textsec(abfd)->_raw_size; vma += obj_textsec(abfd)->_raw_size; if (!obj_datasec(abfd)->user_set_vma) { #if 0 /* ?? Does alignment in the file image really matter? */ pad = align_power (vma, obj_datasec(abfd)->alignment_power) - vma; #endif obj_textsec(abfd)->_raw_size += pad; pos += pad; vma += pad; obj_datasec(abfd)->vma = vma; } obj_datasec(abfd)->filepos = pos; pos += obj_datasec(abfd)->_raw_size; vma += obj_datasec(abfd)->_raw_size; if (!obj_bsssec(abfd)->user_set_vma) { #if 0 pad = align_power (vma, obj_bsssec(abfd)->alignment_power) - vma; #endif obj_datasec(abfd)->_raw_size += pad; pos += pad; vma += pad; obj_bsssec(abfd)->vma = vma; } obj_bsssec(abfd)->filepos = pos; execp->a_text = obj_textsec(abfd)->_raw_size; execp->a_data = obj_datasec(abfd)->_raw_size; execp->a_bss = obj_bsssec(abfd)->_raw_size; N_SET_MAGIC (*execp, OMAGIC); } break; case z_magic: { bfd_size_type data_pad, text_pad; file_ptr text_end; CONST struct aout_backend_data *abdp; int ztih; bfd_vma data_vma; abdp = aout_backend_info (abfd); ztih = abdp && abdp->text_includes_header; obj_textsec(abfd)->filepos = (ztih ? adata(abfd).exec_bytes_size : adata(abfd).page_size); if (! obj_textsec(abfd)->user_set_vma) /* ?? Do we really need to check for relocs here? */ obj_textsec(abfd)->vma = ((abfd->flags & HAS_RELOC) ? 0 : (ztih ? (abdp->default_text_vma + adata(abfd).exec_bytes_size) : abdp->default_text_vma)); /* Could take strange alignment of text section into account here? */ /* Find start of data. */ text_end = obj_textsec(abfd)->filepos + obj_textsec(abfd)->_raw_size; text_pad = BFD_ALIGN (text_end, adata(abfd).page_size) - text_end; obj_textsec(abfd)->_raw_size += text_pad; text_end += text_pad; if (!obj_datasec(abfd)->user_set_vma) { bfd_vma vma; vma = obj_textsec(abfd)->vma + obj_textsec(abfd)->_raw_size; obj_datasec(abfd)->vma = BFD_ALIGN (vma, adata(abfd).segment_size); } data_vma = obj_datasec(abfd)->vma; if (abdp && abdp->zmagic_mapped_contiguous) { text_pad = (obj_datasec(abfd)->vma - obj_textsec(abfd)->vma - obj_textsec(abfd)->_raw_size); obj_textsec(abfd)->_raw_size += text_pad; } obj_datasec(abfd)->filepos = (obj_textsec(abfd)->filepos + obj_textsec(abfd)->_raw_size); /* Fix up exec header while we're at it. */ execp->a_text = obj_textsec(abfd)->_raw_size; if (ztih && (!abdp || (abdp && !abdp->exec_header_not_counted))) execp->a_text += adata(abfd).exec_bytes_size; N_SET_MAGIC (*execp, ZMAGIC); /* Spec says data section should be rounded up to page boundary. */ /* If extra space in page is left after data section, fudge data in the header so that the bss section looks smaller by that amount. We'll start the bss section there, and lie to the OS. */ obj_datasec(abfd)->_raw_size = align_power (obj_datasec(abfd)->_raw_size, obj_bsssec(abfd)->alignment_power); execp->a_data = BFD_ALIGN (obj_datasec(abfd)->_raw_size, adata(abfd).page_size); data_pad = execp->a_data - obj_datasec(abfd)->_raw_size; if (!obj_bsssec(abfd)->user_set_vma) obj_bsssec(abfd)->vma = (obj_datasec(abfd)->vma + obj_datasec(abfd)->_raw_size); if (data_pad > obj_bsssec(abfd)->_raw_size) execp->a_bss = 0; else execp->a_bss = obj_bsssec(abfd)->_raw_size - data_pad; } break; case n_magic: { file_ptr pos = adata(abfd).exec_bytes_size; bfd_vma vma = 0; int pad; obj_textsec(abfd)->filepos = pos; if (!obj_textsec(abfd)->user_set_vma) obj_textsec(abfd)->vma = vma; else vma = obj_textsec(abfd)->vma; pos += obj_textsec(abfd)->_raw_size; vma += obj_textsec(abfd)->_raw_size; obj_datasec(abfd)->filepos = pos; if (!obj_datasec(abfd)->user_set_vma) obj_datasec(abfd)->vma = BFD_ALIGN (vma, adata(abfd).segment_size); vma = obj_datasec(abfd)->vma; /* Since BSS follows data immediately, see if it needs alignment. */ vma += obj_datasec(abfd)->_raw_size; pad = align_power (vma, obj_bsssec(abfd)->alignment_power) - vma; obj_datasec(abfd)->_raw_size += pad; pos += obj_datasec(abfd)->_raw_size; if (!obj_bsssec(abfd)->user_set_vma) obj_bsssec(abfd)->vma = vma; else vma = obj_bsssec(abfd)->vma; } execp->a_text = obj_textsec(abfd)->_raw_size; execp->a_data = obj_datasec(abfd)->_raw_size; execp->a_bss = obj_bsssec(abfd)->_raw_size; N_SET_MAGIC (*execp, NMAGIC); break; default: abort (); } #ifdef BFD_AOUT_DEBUG fprintf (stderr, " text=<%x,%x,%x> data=<%x,%x,%x> bss=<%x,%x>\n", obj_textsec(abfd)->vma, obj_textsec(abfd)->_raw_size, obj_textsec(abfd)->filepos, obj_datasec(abfd)->vma, obj_datasec(abfd)->_raw_size, obj_datasec(abfd)->filepos, obj_bsssec(abfd)->vma, obj_bsssec(abfd)->_raw_size); #endif return true; } /* FUNCTION aout__new_section_hook DESCRIPTION Called by the BFD in response to a @code{bfd_make_section} request. SYNOPSIS boolean aout__new_section_hook, (bfd *abfd, asection *newsect)); */ boolean DEFUN(NAME(aout,new_section_hook),(abfd, newsect), bfd *abfd AND asection *newsect) { /* align to double at least */ newsect->alignment_power = bfd_get_arch_info(abfd)->section_align_power; if (bfd_get_format (abfd) == bfd_object) { if (obj_textsec(abfd) == NULL && !strcmp(newsect->name, ".text")) { obj_textsec(abfd)= newsect; newsect->target_index = N_TEXT | N_EXT; return true; } if (obj_datasec(abfd) == NULL && !strcmp(newsect->name, ".data")) { obj_datasec(abfd) = newsect; newsect->target_index = N_DATA | N_EXT; return true; } if (obj_bsssec(abfd) == NULL && !strcmp(newsect->name, ".bss")) { obj_bsssec(abfd) = newsect; newsect->target_index = N_BSS | N_EXT; return true; } } /* We allow more than three sections internally */ return true; } boolean DEFUN(NAME(aout,set_section_contents),(abfd, section, location, offset, count), bfd *abfd AND sec_ptr section AND PTR location AND file_ptr offset AND bfd_size_type count) { file_ptr text_end; bfd_size_type text_size; if (abfd->output_has_begun == false) { /* set by bfd.c handler */ switch (abfd->direction) { case read_direction: case no_direction: bfd_error = invalid_operation; return false; case write_direction: if (NAME(aout,adjust_sizes_and_vmas) (abfd, &text_size, &text_end) == false) return false; case both_direction: break; } } /* regardless, once we know what we're doing, we might as well get going */ if (section != obj_bsssec(abfd)) { bfd_seek (abfd, section->filepos + offset, SEEK_SET); if (count) { return (bfd_write ((PTR)location, 1, count, abfd) == count) ? true : false; } return true; } return true; } /* Classify stabs symbols */ #define sym_in_text_section(sym) \ (((sym)->type & (N_ABS | N_TEXT | N_DATA | N_BSS))== N_TEXT) #define sym_in_data_section(sym) \ (((sym)->type & (N_ABS | N_TEXT | N_DATA | N_BSS))== N_DATA) #define sym_in_bss_section(sym) \ (((sym)->type & (N_ABS | N_TEXT | N_DATA | N_BSS))== N_BSS) /* Symbol is undefined if type is N_UNDF|N_EXT and if it has zero in the "value" field. Nonzeroes there are fortrancommon symbols. */ #define sym_is_undefined(sym) \ ((sym)->type == (N_UNDF | N_EXT) && (sym)->symbol.value == 0) /* Symbol is a global definition if N_EXT is on and if it has a nonzero type field. */ #define sym_is_global_defn(sym) \ (((sym)->type & N_EXT) && (sym)->type & N_TYPE) /* Symbol is debugger info if any bits outside N_TYPE or N_EXT are on. */ #define sym_is_debugger_info(sym) \ ((sym)->type & ~(N_EXT | N_TYPE)) #define sym_is_fortrancommon(sym) \ (((sym)->type == (N_EXT)) && (sym)->symbol.value != 0) /* Symbol is absolute if it has N_ABS set */ #define sym_is_absolute(sym) \ (((sym)->type & N_TYPE)== N_ABS) #define sym_is_indirect(sym) \ (((sym)->type & N_ABS)== N_ABS) /* Only in their own functions for ease of debugging; when sym flags have stabilised these should be inlined into their (single) caller */ static void DEFUN (translate_from_native_sym_flags, (sym_pointer, cache_ptr, abfd, statep), struct external_nlist *sym_pointer AND aout_symbol_type * cache_ptr AND bfd * abfd AND int *statep) { cache_ptr->symbol.section = 0; if (*statep) { /* This is an indirect symbol */ cache_ptr->symbol.flags = BSF_DEBUGGING; cache_ptr->symbol.section = &bfd_und_section; *statep = 0; } else { switch (cache_ptr->type & N_TYPE) { case N_SETA: case N_SETT: case N_SETD: case N_SETB: { char *copy = bfd_alloc (abfd, strlen (cache_ptr->symbol.name) + 1); asection *section; asection *into_section; arelent_chain *reloc = (arelent_chain *) bfd_alloc (abfd, sizeof (arelent_chain)); strcpy (copy, cache_ptr->symbol.name); /* Make sure that this bfd has a section with the right contructor name */ section = bfd_get_section_by_name (abfd, copy); if (!section) section = bfd_make_section (abfd, copy); /* Build a relocation entry for the constructor */ switch ((cache_ptr->type & N_TYPE)) { case N_SETA: into_section = &bfd_abs_section; cache_ptr->type = N_ABS; break; case N_SETT: into_section = (asection *) obj_textsec (abfd); cache_ptr->type = N_TEXT; break; case N_SETD: into_section = (asection *) obj_datasec (abfd); cache_ptr->type = N_DATA; break; case N_SETB: into_section = (asection *) obj_bsssec (abfd); cache_ptr->type = N_BSS; break; default: abort (); } /* Build a relocation pointing into the constuctor section pointing at the symbol in the set vector specified */ reloc->relent.addend = cache_ptr->symbol.value; cache_ptr->symbol.section = into_section->symbol->section; reloc->relent.sym_ptr_ptr = into_section->symbol_ptr_ptr; /* We modify the symbol to belong to a section depending upon the name of the symbol - probably __CTOR__ or __DTOR__ but we don't really care, and add to the size of the section to contain a pointer to the symbol. Build a reloc entry to relocate to this symbol attached to this section. */ section->flags = SEC_CONSTRUCTOR; section->reloc_count++; section->alignment_power = 2; reloc->next = section->constructor_chain; section->constructor_chain = reloc; reloc->relent.address = section->_raw_size; section->_raw_size += sizeof (int *); reloc->relent.howto = (obj_reloc_entry_size(abfd) == RELOC_EXT_SIZE ? howto_table_ext : howto_table_std) + CTOR_TABLE_RELOC_IDX; cache_ptr->symbol.flags |= BSF_CONSTRUCTOR; } break; default: if (cache_ptr->type == N_WARNING) { /* This symbol is the text of a warning message, the next symbol is the symbol to associate the warning with */ cache_ptr->symbol.flags = BSF_DEBUGGING | BSF_WARNING; cache_ptr->symbol.value = (bfd_vma) ((cache_ptr + 1)); /* We furgle with the next symbol in place. We don't want it to be undefined, we'll trample the type */ (sym_pointer + 1)->e_type[0] = 0xff; break; } if ((cache_ptr->type | N_EXT) == (N_INDR | N_EXT)) { /* Two symbols in a row for an INDR message. The first symbol contains the name we will match, the second symbol contains the name the first name is translated into. It is supplied to us undefined. This is good, since we want to pull in any files which define it */ cache_ptr->symbol.flags = BSF_DEBUGGING | BSF_INDIRECT; cache_ptr->symbol.value = (bfd_vma) ((cache_ptr + 1)); cache_ptr->symbol.section = &bfd_ind_section; *statep = 1; } else if (sym_is_debugger_info (cache_ptr)) { cache_ptr->symbol.flags = BSF_DEBUGGING; /* Work out the section correct for this symbol */ switch (cache_ptr->type & N_TYPE) { case N_TEXT: case N_FN: cache_ptr->symbol.section = obj_textsec (abfd); cache_ptr->symbol.value -= obj_textsec (abfd)->vma; break; case N_DATA: cache_ptr->symbol.value -= obj_datasec (abfd)->vma; cache_ptr->symbol.section = obj_datasec (abfd); break; case N_BSS: cache_ptr->symbol.section = obj_bsssec (abfd); cache_ptr->symbol.value -= obj_bsssec (abfd)->vma; break; default: case N_ABS: cache_ptr->symbol.section = &bfd_abs_section; break; } } else { if (sym_is_fortrancommon (cache_ptr)) { cache_ptr->symbol.flags = 0; cache_ptr->symbol.section = &bfd_com_section; } else { } /* In a.out, the value of a symbol is always relative to the * start of the file, if this is a data symbol we'll subtract * the size of the text section to get the section relative * value. If this is a bss symbol (which would be strange) * we'll subtract the size of the previous two sections * to find the section relative address. */ if (sym_in_text_section (cache_ptr)) { cache_ptr->symbol.value -= obj_textsec (abfd)->vma; cache_ptr->symbol.section = obj_textsec (abfd); } else if (sym_in_data_section (cache_ptr)) { cache_ptr->symbol.value -= obj_datasec (abfd)->vma; cache_ptr->symbol.section = obj_datasec (abfd); } else if (sym_in_bss_section (cache_ptr)) { cache_ptr->symbol.section = obj_bsssec (abfd); cache_ptr->symbol.value -= obj_bsssec (abfd)->vma; } else if (sym_is_undefined (cache_ptr)) { cache_ptr->symbol.flags = 0; cache_ptr->symbol.section = &bfd_und_section; } else if (sym_is_absolute (cache_ptr)) { cache_ptr->symbol.section = &bfd_abs_section; } if (sym_is_global_defn (cache_ptr)) { cache_ptr->symbol.flags = BSF_GLOBAL | BSF_EXPORT; } else { cache_ptr->symbol.flags = BSF_LOCAL; } } } } if (cache_ptr->symbol.section == 0) abort (); } static void DEFUN(translate_to_native_sym_flags,(sym_pointer, cache_ptr, abfd), struct external_nlist *sym_pointer AND asymbol *cache_ptr AND bfd *abfd) { bfd_vma value = cache_ptr->value; /* mask out any existing type bits in case copying from one section to another */ sym_pointer->e_type[0] &= ~N_TYPE; if (bfd_get_output_section(cache_ptr) == obj_bsssec (abfd)) { sym_pointer->e_type[0] |= N_BSS; } else if (bfd_get_output_section(cache_ptr) == obj_datasec (abfd)) { sym_pointer->e_type[0] |= N_DATA; } else if (bfd_get_output_section(cache_ptr) == obj_textsec (abfd)) { sym_pointer->e_type[0] |= N_TEXT; } else if (bfd_get_output_section(cache_ptr) == &bfd_abs_section) { sym_pointer->e_type[0] |= N_ABS; } else if (bfd_get_output_section(cache_ptr) == &bfd_und_section) { sym_pointer->e_type[0] = (N_UNDF | N_EXT); } else if (bfd_get_output_section(cache_ptr) == &bfd_ind_section) { sym_pointer->e_type[0] = N_INDR; } else if (bfd_is_com_section (bfd_get_output_section (cache_ptr))) { sym_pointer->e_type[0] = (N_UNDF | N_EXT); } else { if (cache_ptr->section->output_section) { bfd_error_vector.nonrepresentable_section(abfd, bfd_get_output_section(cache_ptr)->name); } else { bfd_error_vector.nonrepresentable_section(abfd, cache_ptr->section->name); } } /* Turn the symbol from section relative to absolute again */ value += cache_ptr->section->output_section->vma + cache_ptr->section->output_offset ; if (cache_ptr->flags & (BSF_WARNING)) { (sym_pointer+1)->e_type[0] = 1; } if (cache_ptr->flags & (BSF_GLOBAL | BSF_EXPORT)) { sym_pointer->e_type[0] |= N_EXT; } if (cache_ptr->flags & BSF_DEBUGGING) { sym_pointer->e_type[0] = ((aout_symbol_type *)cache_ptr)->type; } if (cache_ptr->flags & BSF_CONSTRUCTOR) { int type = ((aout_symbol_type *)cache_ptr)->type; switch (type) { case N_ABS: type = N_SETA; break; case N_TEXT: type = N_SETT; break; case N_DATA: type = N_SETD; break; case N_BSS: type = N_SETB; break; } sym_pointer->e_type[0] = type; } PUT_WORD(abfd, value, sym_pointer->e_value); } /* Native-level interface to symbols. */ /* We read the symbols into a buffer, which is discarded when this function exits. We read the strings into a buffer large enough to hold them all plus all the cached symbol entries. */ asymbol * DEFUN(NAME(aout,make_empty_symbol),(abfd), bfd *abfd) { aout_symbol_type *new = (aout_symbol_type *)bfd_zalloc (abfd, sizeof (aout_symbol_type)); new->symbol.the_bfd = abfd; return &new->symbol; } boolean DEFUN(NAME(aout,slurp_symbol_table),(abfd), bfd *abfd) { bfd_size_type symbol_size; bfd_size_type string_size; unsigned char string_chars[BYTES_IN_WORD]; struct external_nlist *syms; char *strings; aout_symbol_type *cached; /* If there's no work to be done, don't do any */ if (obj_aout_symbols (abfd) != (aout_symbol_type *)NULL) return true; symbol_size = exec_hdr(abfd)->a_syms; if (symbol_size == 0) { bfd_error = no_symbols; return false; } bfd_seek (abfd, obj_str_filepos (abfd), SEEK_SET); if (bfd_read ((PTR)string_chars, BYTES_IN_WORD, 1, abfd) != BYTES_IN_WORD) return false; string_size = GET_WORD (abfd, string_chars); strings =(char *) bfd_alloc(abfd, string_size + 1); cached = (aout_symbol_type *) bfd_zalloc(abfd, (bfd_size_type)(bfd_get_symcount (abfd) * sizeof(aout_symbol_type))); /* malloc this, so we can free it if simply. The symbol caching might want to allocate onto the bfd's obstack */ syms = (struct external_nlist *) bfd_xmalloc(symbol_size); bfd_seek (abfd, obj_sym_filepos (abfd), SEEK_SET); if (bfd_read ((PTR)syms, 1, symbol_size, abfd) != symbol_size) { bailout: if (syms) free (syms); if (cached) bfd_release (abfd, cached); if (strings) bfd_release (abfd, strings); return false; } bfd_seek (abfd, obj_str_filepos (abfd), SEEK_SET); if (bfd_read ((PTR)strings, 1, string_size, abfd) != string_size) { goto bailout; } strings[string_size] = 0; /* Just in case. */ /* OK, now walk the new symtable, cacheing symbol properties */ { register struct external_nlist *sym_pointer; int state = 0; register struct external_nlist *sym_end = syms + bfd_get_symcount (abfd); register aout_symbol_type *cache_ptr = cached; /* Run through table and copy values */ for (sym_pointer = syms, cache_ptr = cached; sym_pointer < sym_end; sym_pointer ++, cache_ptr++) { long x = GET_WORD(abfd, sym_pointer->e_strx); cache_ptr->symbol.the_bfd = abfd; if (x == 0) cache_ptr->symbol.name = ""; else if (x >= 0 && x < string_size) cache_ptr->symbol.name = x + strings; else goto bailout; cache_ptr->symbol.value = GET_SWORD(abfd, sym_pointer->e_value); cache_ptr->desc = bfd_h_get_16(abfd, sym_pointer->e_desc); cache_ptr->other = bfd_h_get_8(abfd, sym_pointer->e_other); cache_ptr->type = bfd_h_get_8(abfd, sym_pointer->e_type); cache_ptr->symbol.udata = 0; translate_from_native_sym_flags (sym_pointer, cache_ptr, abfd, &state); } } obj_aout_symbols (abfd) = cached; free((PTR)syms); return true; } /* Possible improvements: + look for strings matching trailing substrings of other strings + better data structures? balanced trees? + smaller per-string or per-symbol data? re-use some of the symbol's data fields? + also look at reducing memory use elsewhere -- maybe if we didn't have to construct the entire symbol table at once, we could get by with smaller amounts of VM? (What effect does that have on the string table reductions?) + rip this out of here, put it into its own file in bfd or libiberty, so coff and elf can use it too. I'll work on this soon, but have more pressing tasks right now. A hash table might(?) be more efficient for handling exactly the cases that are handled now, but for trailing substring matches, I think we want to examine the `nearest' values (reverse-)lexically, not merely impose a strict order, nor look only for exact-match or not-match. I don't think a hash table would be very useful for that, and I don't feel like fleshing out two completely different implementations. [raeburn:930419.0331EDT] */ #if __GNUC__ >= 2 #define INLINE __inline__ #else #define INLINE #endif struct stringtab_entry { /* Hash value for this string. Only useful so long as we aren't doing substring matches. */ int hash; /* Next node to look at, depending on whether the hash value of the string being searched for is less than or greater than the hash value of the current node. For now, `equal to' is lumped in with `greater than', for space efficiency. It's not a common enough case to warrant another field to be used for all nodes. */ struct stringtab_entry *less; struct stringtab_entry *greater; /* The string itself. */ CONST char *string; /* The index allocated for this string. */ bfd_size_type index; #ifdef GATHER_STATISTICS /* How many references have there been to this string? (Not currently used; could be dumped out for anaylsis, if anyone's interested.) */ unsigned long count; #endif /* Next node in linked list, in suggested output order. */ struct stringtab_entry *next_to_output; }; struct stringtab_data { /* Tree of string table entries. */ struct stringtab_entry *strings; /* Fudge factor used to center top node of tree. */ int hash_zero; /* Next index value to issue. */ bfd_size_type index; /* Index used for empty strings. Cached here because checking for them is really easy, and we can avoid searching the tree. */ bfd_size_type empty_string_index; /* These fields indicate the two ends of a singly-linked list that indicates the order strings should be written out in. Use this order, and no seeking will need to be done, so output efficiency should be maximized. */ struct stringtab_entry **end; struct stringtab_entry *output_order; #ifdef GATHER_STATISTICS /* Number of strings which duplicate strings already in the table. */ unsigned long duplicates; /* Number of bytes saved by not having to write all the duplicate strings. */ unsigned long bytes_saved; /* Number of zero-length strings. Currently, these all turn into references to the null byte at the end of the first string. In some cases (possibly not all? explore this...), it should be possible to simply write out a zero index value. */ unsigned long empty_strings; /* Number of times the hash values matched but the strings were different. Note that this includes the number of times the other string(s) occurs, so there may only be two strings hashing to the same value, even if this number is very large. */ unsigned long bad_hash_matches; /* Null strings aren't counted in this one. This will probably only be nonzero if we've got an input file which was produced by `ld -r' (i.e., it's already been processed through this code). Under some operating systems, native tools may make all empty strings have the same index; but the pointer check won't catch those, because to get to that stage we'd already have to compute the checksum, which requires reading the string, so we short-circuit that case with empty_string_index above. */ unsigned long pointer_matches; /* Number of comparisons done. I figure with the algorithms in use below, the average number of comparisons done (per symbol) should be roughly log-base-2 of the number of unique strings. */ unsigned long n_compares; #endif }; /* Some utility functions for the string table code. */ static INLINE int hash (string) char *string; { unsigned int sum = 0; while (*string) { #if 0 /* This expression borrowed from some code in gnu make. */ sum += *string++, sum = (sum << 7) + (sum >> 20); #endif /* This appears to get a better distribution, at least for my one test case. Do some analysis on this later, get a real hash algorithm. */ sum ^= sum >> 20; sum ^= sum << 7; sum += *string++; } return sum; } static INLINE void stringtab_init (tab) struct stringtab_data *tab; { tab->strings = 0; tab->output_order = 0; tab->end = &tab->output_order; /* Initial string table length includes size of length field. */ tab->index = BYTES_IN_WORD; tab->empty_string_index = -1; #ifdef GATHER_STATISTICS tab->duplicates = 0; tab->empty_strings = 0; tab->bad_hash_matches = 0; tab->pointer_matches = 0; tab->bytes_saved = 0; tab->n_compares = 0; #endif } static INLINE int compare (entry, str, hash) struct stringtab_entry *entry; CONST char *str; int hash; { if (hash == entry->hash) return 0; if (hash > entry->hash) return 1; if (hash < entry->hash) return -1; abort (); } #ifdef GATHER_STATISTICS /* Don't want to have to link in math library with all bfd applications... */ static INLINE double log2 (num) int num; { double d = num; #if defined (__i386__) && __GNUC__ >= 2 asm ("fyl2x" : "=t" (d) : "0" (d), "u" (1.0)); return d; #else int n = 0; while (d >= 2.0) n++, d /= 2.0; return ((d > 1.41) ? 0.5 : 0) + n; #endif } #endif /* Main string table routines. */ /* Returns index in string table. Whether or not this actually adds an entry into the string table should be irrelevant -- it just has to return a valid index. */ static bfd_size_type add_to_stringtab (abfd, str, tab, check) bfd *abfd; CONST char *str; struct stringtab_data *tab; int check; { struct stringtab_entry **ep; struct stringtab_entry *entry; int hashval, len; if (str[0] == 0) { bfd_size_type index; CONST bfd_size_type minus_one = -1; #ifdef GATHER_STATISTICS tab->empty_strings++; #endif index = tab->empty_string_index; if (index != minus_one) { got_empty: #ifdef GATHER_STATISTICS tab->bytes_saved++; tab->duplicates++; #endif return index; } /* Need to find it. */ entry = tab->strings; if (entry) { index = entry->index + strlen (entry->string); tab->empty_string_index = index; goto got_empty; } len = 0; } else len = strlen (str); /* The hash_zero value is chosen such that the first symbol gets a value of zero. With a balanced tree, this wouldn't be very useful, but without it, we might get a more even split at the top level, instead of skewing it badly should hash("/usr/lib/crt0.o") (or whatever) be far from zero. */ hashval = hash (str) ^ tab->hash_zero; ep = &tab->strings; if (!*ep) { tab->hash_zero = hashval; hashval = 0; goto add_it; } while (*ep) { int cmp; entry = *ep; #ifdef GATHER_STATISTICS tab->n_compares++; #endif cmp = compare (entry, str, hashval); if (cmp == 0) { if (entry->string == str) { #ifdef GATHER_STATISTICS tab->pointer_matches++; #endif goto match; } if (!strcmp (entry->string, str)) { match: #ifdef GATHER_STATISTICS entry->count++; tab->bytes_saved += len + 1; tab->duplicates++; #endif /* If we're in the linker, and the new string is from a new input file which might have already had these reductions run over it, we want to keep the new string pointer. I don't think we're likely to see any (or nearly as many, at least) cases where a later string is in the same location as an earlier one rather than this one. */ entry->string = str; return entry->index; } #ifdef GATHER_STATISTICS tab->bad_hash_matches++; #endif ep = &entry->greater; } else if (cmp > 0) ep = &entry->greater; else /* cmp < 0 */ ep = &entry->less; } /* If we get here, nothing that's in the table already matched. EP points to the `next' field at the end of the chain; stick a new entry on here. */ add_it: entry = (struct stringtab_entry *) bfd_alloc_by_size_t (abfd, sizeof (struct stringtab_entry)); entry->less = entry->greater = 0; entry->hash = hashval; entry->index = tab->index; entry->string = str; entry->next_to_output = 0; #ifdef GATHER_STATISTICS entry->count = 1; #endif assert (*tab->end == 0); *(tab->end) = entry; tab->end = &entry->next_to_output; assert (*tab->end == 0); { tab->index += len + 1; if (len == 0) tab->empty_string_index = entry->index; } assert (*ep == 0); *ep = entry; return entry->index; } static void emit_strtab (abfd, tab) bfd *abfd; struct stringtab_data *tab; { struct stringtab_entry *entry; #ifdef GATHER_STATISTICS int count = 0; #endif /* Be sure to put string length into correct byte ordering before writing it out. */ char buffer[BYTES_IN_WORD]; PUT_WORD (abfd, tab->index, (unsigned char *) buffer); bfd_write ((PTR) buffer, 1, BYTES_IN_WORD, abfd); for (entry = tab->output_order; entry; entry = entry->next_to_output) { bfd_write ((PTR) entry->string, 1, strlen (entry->string) + 1, abfd); #ifdef GATHER_STATISTICS count++; #endif } #ifdef GATHER_STATISTICS /* Short form only, for now. To do: Specify output file. Conditionalize on environment? Detailed analysis if desired. */ { int n_syms = bfd_get_symcount (abfd); fprintf (stderr, "String table data for output file:\n"); fprintf (stderr, " %8d symbols output\n", n_syms); fprintf (stderr, " %8d duplicate strings\n", tab->duplicates); fprintf (stderr, " %8d empty strings\n", tab->empty_strings); fprintf (stderr, " %8d unique strings output\n", count); fprintf (stderr, " %8d pointer matches\n", tab->pointer_matches); fprintf (stderr, " %8d bytes saved\n", tab->bytes_saved); fprintf (stderr, " %8d bad hash matches\n", tab->bad_hash_matches); fprintf (stderr, " %8d hash-val comparisons\n", tab->n_compares); if (n_syms) { double n_compares = tab->n_compares; double avg_compares = n_compares / n_syms; /* The second value here should usually be near one. */ fprintf (stderr, "\t average %f per symbol (%f * log2 nstrings)\n", avg_compares, avg_compares / log2 (count)); } } #endif /* Old code: unsigned int count; generic = bfd_get_outsymbols(abfd); for (count = 0; count < bfd_get_symcount(abfd); count++) { asymbol *g = *(generic++); if (g->name) { size_t length = strlen(g->name)+1; bfd_write((PTR)g->name, 1, length, abfd); } g->KEEPIT = (KEEPITTYPE) count; } */ } void DEFUN(NAME(aout,write_syms),(abfd), bfd *abfd) { unsigned int count ; asymbol **generic = bfd_get_outsymbols (abfd); struct stringtab_data strtab; stringtab_init (&strtab); for (count = 0; count < bfd_get_symcount (abfd); count++) { asymbol *g = generic[count]; struct external_nlist nsp; if (g->name) PUT_WORD (abfd, add_to_stringtab (abfd, g->name, &strtab), (unsigned char *) nsp.e_strx); else PUT_WORD (abfd, 0, (unsigned char *)nsp.e_strx); if (bfd_asymbol_flavour(g) == abfd->xvec->flavour) { bfd_h_put_16(abfd, aout_symbol(g)->desc, nsp.e_desc); bfd_h_put_8(abfd, aout_symbol(g)->other, nsp.e_other); bfd_h_put_8(abfd, aout_symbol(g)->type, nsp.e_type); } else { bfd_h_put_16(abfd,0, nsp.e_desc); bfd_h_put_8(abfd, 0, nsp.e_other); bfd_h_put_8(abfd, 0, nsp.e_type); } translate_to_native_sym_flags (&nsp, g, abfd); bfd_write((PTR)&nsp,1,EXTERNAL_NLIST_SIZE, abfd); /* NB: `KEEPIT' currently overlays `flags', so set this only here, at the end. */ g->KEEPIT = count; } emit_strtab (abfd, &strtab); } unsigned int DEFUN(NAME(aout,get_symtab),(abfd, location), bfd *abfd AND asymbol **location) { unsigned int counter = 0; aout_symbol_type *symbase; if (!NAME(aout,slurp_symbol_table)(abfd)) return 0; for (symbase = obj_aout_symbols(abfd); counter++ < bfd_get_symcount (abfd);) *(location++) = (asymbol *)( symbase++); *location++ =0; return bfd_get_symcount (abfd); } /* Standard reloc stuff */ /* Output standard relocation information to a file in target byte order. */ void DEFUN(NAME(aout,swap_std_reloc_out),(abfd, g, natptr), bfd *abfd AND arelent *g AND struct reloc_std_external *natptr) { int r_index; asymbol *sym = *(g->sym_ptr_ptr); int r_extern; unsigned int r_length; int r_pcrel; int r_baserel, r_jmptable, r_relative; unsigned int r_addend; asection *output_section = sym->section->output_section; PUT_WORD(abfd, g->address, natptr->r_address); r_length = g->howto->size ; /* Size as a power of two */ r_pcrel = (int) g->howto->pc_relative; /* Relative to PC? */ /* r_baserel, r_jmptable, r_relative??? FIXME-soon */ r_baserel = 0; r_jmptable = 0; r_relative = 0; r_addend = g->addend + (*(g->sym_ptr_ptr))->section->output_section->vma; /* name was clobbered by aout_write_syms to be symbol index */ /* If this relocation is relative to a symbol then set the r_index to the symbols index, and the r_extern bit. Absolute symbols can come in in two ways, either as an offset from the abs section, or as a symbol which has an abs value. check for that here */ if (bfd_is_com_section (output_section) || output_section == &bfd_abs_section || output_section == &bfd_und_section) { if (bfd_abs_section.symbol == sym) { /* Whoops, looked like an abs symbol, but is really an offset from the abs section */ r_index = 0; r_extern = 0; } else { /* Fill in symbol */ r_extern = 1; r_index = stoi((*(g->sym_ptr_ptr))->KEEPIT); } } else { /* Just an ordinary section */ r_extern = 0; r_index = output_section->target_index; } /* now the fun stuff */ if (abfd->xvec->header_byteorder_big_p != false) { natptr->r_index[0] = r_index >> 16; natptr->r_index[1] = r_index >> 8; natptr->r_index[2] = r_index; natptr->r_type[0] = (r_extern? RELOC_STD_BITS_EXTERN_BIG: 0) | (r_pcrel? RELOC_STD_BITS_PCREL_BIG: 0) | (r_baserel? RELOC_STD_BITS_BASEREL_BIG: 0) | (r_jmptable? RELOC_STD_BITS_JMPTABLE_BIG: 0) | (r_relative? RELOC_STD_BITS_RELATIVE_BIG: 0) | (r_length << RELOC_STD_BITS_LENGTH_SH_BIG); } else { natptr->r_index[2] = r_index >> 16; natptr->r_index[1] = r_index >> 8; natptr->r_index[0] = r_index; natptr->r_type[0] = (r_extern? RELOC_STD_BITS_EXTERN_LITTLE: 0) | (r_pcrel? RELOC_STD_BITS_PCREL_LITTLE: 0) | (r_baserel? RELOC_STD_BITS_BASEREL_LITTLE: 0) | (r_jmptable? RELOC_STD_BITS_JMPTABLE_LITTLE: 0) | (r_relative? RELOC_STD_BITS_RELATIVE_LITTLE: 0) | (r_length << RELOC_STD_BITS_LENGTH_SH_LITTLE); } } /* Extended stuff */ /* Output extended relocation information to a file in target byte order. */ void DEFUN(NAME(aout,swap_ext_reloc_out),(abfd, g, natptr), bfd *abfd AND arelent *g AND register struct reloc_ext_external *natptr) { int r_index; int r_extern; unsigned int r_type; unsigned int r_addend; asymbol *sym = *(g->sym_ptr_ptr); asection *output_section = sym->section->output_section; PUT_WORD (abfd, g->address, natptr->r_address); r_type = (unsigned int) g->howto->type; r_addend = g->addend + (*(g->sym_ptr_ptr))->section->output_section->vma; /* If this relocation is relative to a symbol then set the r_index to the symbols index, and the r_extern bit. Absolute symbols can come in in two ways, either as an offset from the abs section, or as a symbol which has an abs value. check for that here */ if (bfd_is_com_section (output_section) || output_section == &bfd_abs_section || output_section == &bfd_und_section) { if (bfd_abs_section.symbol == sym) { /* Whoops, looked like an abs symbol, but is really an offset from the abs section */ r_index = 0; r_extern = 0; } else { r_extern = 1; r_index = stoi((*(g->sym_ptr_ptr))->KEEPIT); } } else { /* Just an ordinary section */ r_extern = 0; r_index = output_section->target_index; } /* now the fun stuff */ if (abfd->xvec->header_byteorder_big_p != false) { natptr->r_index[0] = r_index >> 16; natptr->r_index[1] = r_index >> 8; natptr->r_index[2] = r_index; natptr->r_type[0] = (r_extern? RELOC_EXT_BITS_EXTERN_BIG: 0) | (r_type << RELOC_EXT_BITS_TYPE_SH_BIG); } else { natptr->r_index[2] = r_index >> 16; natptr->r_index[1] = r_index >> 8; natptr->r_index[0] = r_index; natptr->r_type[0] = (r_extern? RELOC_EXT_BITS_EXTERN_LITTLE: 0) | (r_type << RELOC_EXT_BITS_TYPE_SH_LITTLE); } PUT_WORD (abfd, r_addend, natptr->r_addend); } /* BFD deals internally with all things based from the section they're in. so, something in 10 bytes into a text section with a base of 50 would have a symbol (.text+10) and know .text vma was 50. Aout keeps all it's symbols based from zero, so the symbol would contain 60. This macro subs the base of each section from the value to give the true offset from the section */ #define MOVE_ADDRESS(ad) \ if (r_extern) { \ /* undefined symbol */ \ cache_ptr->sym_ptr_ptr = symbols + r_index; \ cache_ptr->addend = ad; \ } else { \ /* defined, section relative. replace symbol with pointer to \ symbol which points to section */ \ switch (r_index) { \ case N_TEXT: \ case N_TEXT | N_EXT: \ cache_ptr->sym_ptr_ptr = obj_textsec(abfd)->symbol_ptr_ptr; \ cache_ptr->addend = ad - su->textsec->vma; \ break; \ case N_DATA: \ case N_DATA | N_EXT: \ cache_ptr->sym_ptr_ptr = obj_datasec(abfd)->symbol_ptr_ptr; \ cache_ptr->addend = ad - su->datasec->vma; \ break; \ case N_BSS: \ case N_BSS | N_EXT: \ cache_ptr->sym_ptr_ptr = obj_bsssec(abfd)->symbol_ptr_ptr; \ cache_ptr->addend = ad - su->bsssec->vma; \ break; \ default: \ case N_ABS: \ case N_ABS | N_EXT: \ cache_ptr->sym_ptr_ptr = bfd_abs_section.symbol_ptr_ptr; \ cache_ptr->addend = ad; \ break; \ } \ } \ void DEFUN(NAME(aout,swap_ext_reloc_in), (abfd, bytes, cache_ptr, symbols), bfd *abfd AND struct reloc_ext_external *bytes AND arelent *cache_ptr AND asymbol **symbols) { int r_index; int r_extern; unsigned int r_type; struct aoutdata *su = &(abfd->tdata.aout_data->a); cache_ptr->address = (GET_SWORD (abfd, bytes->r_address)); /* now the fun stuff */ if (abfd->xvec->header_byteorder_big_p != false) { r_index = (bytes->r_index[0] << 16) | (bytes->r_index[1] << 8) | bytes->r_index[2]; r_extern = (0 != (bytes->r_type[0] & RELOC_EXT_BITS_EXTERN_BIG)); r_type = (bytes->r_type[0] & RELOC_EXT_BITS_TYPE_BIG) >> RELOC_EXT_BITS_TYPE_SH_BIG; } else { r_index = (bytes->r_index[2] << 16) | (bytes->r_index[1] << 8) | bytes->r_index[0]; r_extern = (0 != (bytes->r_type[0] & RELOC_EXT_BITS_EXTERN_LITTLE)); r_type = (bytes->r_type[0] & RELOC_EXT_BITS_TYPE_LITTLE) >> RELOC_EXT_BITS_TYPE_SH_LITTLE; } cache_ptr->howto = howto_table_ext + r_type; MOVE_ADDRESS(GET_SWORD(abfd, bytes->r_addend)); } void DEFUN(NAME(aout,swap_std_reloc_in), (abfd, bytes, cache_ptr, symbols), bfd *abfd AND struct reloc_std_external *bytes AND arelent *cache_ptr AND asymbol **symbols) { int r_index; int r_extern; unsigned int r_length; int r_pcrel; int r_baserel, r_jmptable, r_relative; struct aoutdata *su = &(abfd->tdata.aout_data->a); cache_ptr->address = bfd_h_get_32 (abfd, bytes->r_address); /* now the fun stuff */ if (abfd->xvec->header_byteorder_big_p != false) { r_index = (bytes->r_index[0] << 16) | (bytes->r_index[1] << 8) | bytes->r_index[2]; r_extern = (0 != (bytes->r_type[0] & RELOC_STD_BITS_EXTERN_BIG)); r_pcrel = (0 != (bytes->r_type[0] & RELOC_STD_BITS_PCREL_BIG)); r_baserel = (0 != (bytes->r_type[0] & RELOC_STD_BITS_BASEREL_BIG)); r_jmptable= (0 != (bytes->r_type[0] & RELOC_STD_BITS_JMPTABLE_BIG)); r_relative= (0 != (bytes->r_type[0] & RELOC_STD_BITS_RELATIVE_BIG)); r_length = (bytes->r_type[0] & RELOC_STD_BITS_LENGTH_BIG) >> RELOC_STD_BITS_LENGTH_SH_BIG; } else { r_index = (bytes->r_index[2] << 16) | (bytes->r_index[1] << 8) | bytes->r_index[0]; r_extern = (0 != (bytes->r_type[0] & RELOC_STD_BITS_EXTERN_LITTLE)); r_pcrel = (0 != (bytes->r_type[0] & RELOC_STD_BITS_PCREL_LITTLE)); r_baserel = (0 != (bytes->r_type[0] & RELOC_STD_BITS_BASEREL_LITTLE)); r_jmptable= (0 != (bytes->r_type[0] & RELOC_STD_BITS_JMPTABLE_LITTLE)); r_relative= (0 != (bytes->r_type[0] & RELOC_STD_BITS_RELATIVE_LITTLE)); r_length = (bytes->r_type[0] & RELOC_STD_BITS_LENGTH_LITTLE) >> RELOC_STD_BITS_LENGTH_SH_LITTLE; } cache_ptr->howto = howto_table_std + r_length + 4 * r_pcrel; /* FIXME-soon: Roll baserel, jmptable, relative bits into howto setting */ MOVE_ADDRESS(0); } /* Reloc hackery */ boolean DEFUN(NAME(aout,slurp_reloc_table),(abfd, asect, symbols), bfd *abfd AND sec_ptr asect AND asymbol **symbols) { unsigned int count; bfd_size_type reloc_size; PTR relocs; arelent *reloc_cache; size_t each_size; if (asect->relocation) return true; if (asect->flags & SEC_CONSTRUCTOR) return true; if (asect == obj_datasec (abfd)) { reloc_size = exec_hdr(abfd)->a_drsize; goto doit; } if (asect == obj_textsec (abfd)) { reloc_size = exec_hdr(abfd)->a_trsize; goto doit; } bfd_error = invalid_operation; return false; doit: bfd_seek (abfd, asect->rel_filepos, SEEK_SET); each_size = obj_reloc_entry_size (abfd); count = reloc_size / each_size; reloc_cache = (arelent *) bfd_zalloc (abfd, (size_t)(count * sizeof (arelent))); if (!reloc_cache) { nomem: bfd_error = no_memory; return false; } relocs = (PTR) bfd_alloc (abfd, reloc_size); if (!relocs) { bfd_release (abfd, reloc_cache); goto nomem; } if (bfd_read (relocs, 1, reloc_size, abfd) != reloc_size) { bfd_release (abfd, relocs); bfd_release (abfd, reloc_cache); bfd_error = system_call_error; return false; } if (each_size == RELOC_EXT_SIZE) { register struct reloc_ext_external *rptr = (struct reloc_ext_external *) relocs; unsigned int counter = 0; arelent *cache_ptr = reloc_cache; for (; counter < count; counter++, rptr++, cache_ptr++) { NAME(aout,swap_ext_reloc_in)(abfd, rptr, cache_ptr, symbols); } } else { register struct reloc_std_external *rptr = (struct reloc_std_external*) relocs; unsigned int counter = 0; arelent *cache_ptr = reloc_cache; for (; counter < count; counter++, rptr++, cache_ptr++) { NAME(aout,swap_std_reloc_in)(abfd, rptr, cache_ptr, symbols); } } bfd_release (abfd,relocs); asect->relocation = reloc_cache; asect->reloc_count = count; return true; } /* Write out a relocation section into an object file. */ boolean DEFUN(NAME(aout,squirt_out_relocs),(abfd, section), bfd *abfd AND asection *section) { arelent **generic; unsigned char *native, *natptr; size_t each_size; unsigned int count = section->reloc_count; size_t natsize; if (count == 0) return true; each_size = obj_reloc_entry_size (abfd); natsize = each_size * count; native = (unsigned char *) bfd_zalloc (abfd, natsize); if (!native) { bfd_error = no_memory; return false; } generic = section->orelocation; if (each_size == RELOC_EXT_SIZE) { for (natptr = native; count != 0; --count, natptr += each_size, ++generic) NAME(aout,swap_ext_reloc_out) (abfd, *generic, (struct reloc_ext_external *)natptr); } else { for (natptr = native; count != 0; --count, natptr += each_size, ++generic) NAME(aout,swap_std_reloc_out)(abfd, *generic, (struct reloc_std_external *)natptr); } if ( bfd_write ((PTR) native, 1, natsize, abfd) != natsize) { bfd_release(abfd, native); return false; } bfd_release (abfd, native); return true; } /* This is stupid. This function should be a boolean predicate */ unsigned int DEFUN(NAME(aout,canonicalize_reloc),(abfd, section, relptr, symbols), bfd *abfd AND sec_ptr section AND arelent **relptr AND asymbol **symbols) { arelent *tblptr = section->relocation; unsigned int count; if (!(tblptr || NAME(aout,slurp_reloc_table)(abfd, section, symbols))) return 0; if (section->flags & SEC_CONSTRUCTOR) { arelent_chain *chain = section->constructor_chain; for (count = 0; count < section->reloc_count; count ++) { *relptr ++ = &chain->relent; chain = chain->next; } } else { tblptr = section->relocation; if (!tblptr) return 0; for (count = 0; count++ < section->reloc_count;) { *relptr++ = tblptr++; } } *relptr = 0; return section->reloc_count; } unsigned int DEFUN(NAME(aout,get_reloc_upper_bound),(abfd, asect), bfd *abfd AND sec_ptr asect) { if (bfd_get_format (abfd) != bfd_object) { bfd_error = invalid_operation; return 0; } if (asect->flags & SEC_CONSTRUCTOR) { return (sizeof (arelent *) * (asect->reloc_count+1)); } if (asect == obj_datasec (abfd)) return (sizeof (arelent *) * ((exec_hdr(abfd)->a_drsize / obj_reloc_entry_size (abfd)) +1)); if (asect == obj_textsec (abfd)) return (sizeof (arelent *) * ((exec_hdr(abfd)->a_trsize / obj_reloc_entry_size (abfd)) +1)); bfd_error = invalid_operation; return 0; } unsigned int DEFUN(NAME(aout,get_symtab_upper_bound),(abfd), bfd *abfd) { if (!NAME(aout,slurp_symbol_table)(abfd)) return 0; return (bfd_get_symcount (abfd)+1) * (sizeof (aout_symbol_type *)); } alent * DEFUN(NAME(aout,get_lineno),(ignore_abfd, ignore_symbol), bfd *ignore_abfd AND asymbol *ignore_symbol) { return (alent *)NULL; } void DEFUN(NAME(aout,get_symbol_info),(ignore_abfd, symbol, ret), bfd *ignore_abfd AND asymbol *symbol AND symbol_info *ret) { bfd_symbol_info (symbol, ret); if (ret->type == '?') { int type_code = aout_symbol(symbol)->type & 0xff; CONST char *stab_name = aout_stab_name(type_code); static char buf[10]; if (stab_name == NULL) { sprintf(buf, "(%d)", type_code); stab_name = buf; } ret->type = '-'; ret->stab_other = (unsigned)(aout_symbol(symbol)->other & 0xff); ret->stab_desc = (unsigned)(aout_symbol(symbol)->desc & 0xffff); ret->stab_name = stab_name; } } void DEFUN(NAME(aout,print_symbol),(ignore_abfd, afile, symbol, how), bfd *ignore_abfd AND PTR afile AND asymbol *symbol AND bfd_print_symbol_type how) { FILE *file = (FILE *)afile; switch (how) { case bfd_print_symbol_name: if (symbol->name) fprintf(file,"%s", symbol->name); break; case bfd_print_symbol_more: fprintf(file,"%4x %2x %2x",(unsigned)(aout_symbol(symbol)->desc & 0xffff), (unsigned)(aout_symbol(symbol)->other & 0xff), (unsigned)(aout_symbol(symbol)->type)); break; case bfd_print_symbol_all: { CONST char *section_name = symbol->section->name; bfd_print_symbol_vandf((PTR)file,symbol); fprintf(file," %-5s %04x %02x %02x", section_name, (unsigned)(aout_symbol(symbol)->desc & 0xffff), (unsigned)(aout_symbol(symbol)->other & 0xff), (unsigned)(aout_symbol(symbol)->type & 0xff)); if (symbol->name) fprintf(file," %s", symbol->name); } break; } } /* provided a BFD, a section and an offset into the section, calculate and return the name of the source file and the line nearest to the wanted location. */ boolean DEFUN(NAME(aout,find_nearest_line),(abfd, section, symbols, offset, filename_ptr, functionname_ptr, line_ptr), bfd *abfd AND asection *section AND asymbol **symbols AND bfd_vma offset AND CONST char **filename_ptr AND CONST char **functionname_ptr AND unsigned int *line_ptr) { /* Run down the file looking for the filename, function and linenumber */ asymbol **p; static char buffer[100]; static char filename_buffer[200]; CONST char *directory_name = NULL; CONST char *main_file_name = NULL; CONST char *current_file_name = NULL; CONST char *line_file_name = NULL; /* Value of current_file_name at line number. */ bfd_vma high_line_vma = ~0; bfd_vma low_func_vma = 0; asymbol *func = 0; *filename_ptr = abfd->filename; *functionname_ptr = 0; *line_ptr = 0; if (symbols != (asymbol **)NULL) { for (p = symbols; *p; p++) { aout_symbol_type *q = (aout_symbol_type *)(*p); next: switch (q->type){ case N_SO: main_file_name = current_file_name = q->symbol.name; /* Look ahead to next symbol to check if that too is an N_SO. */ p++; if (*p == NULL) break; q = (aout_symbol_type *)(*p); if (q->type != (int)N_SO) goto next; /* Found a second N_SO First is directory; second is filename. */ directory_name = current_file_name; main_file_name = current_file_name = q->symbol.name; if (obj_textsec(abfd) != section) goto done; break; case N_SOL: current_file_name = q->symbol.name; break; case N_SLINE: case N_DSLINE: case N_BSLINE: /* We'll keep this if it resolves nearer than the one we have already */ if (q->symbol.value >= offset && q->symbol.value < high_line_vma) { *line_ptr = q->desc; high_line_vma = q->symbol.value; line_file_name = current_file_name; } break; case N_FUN: { /* We'll keep this if it is nearer than the one we have already */ if (q->symbol.value >= low_func_vma && q->symbol.value <= offset) { low_func_vma = q->symbol.value; func = (asymbol *)q; } if (*line_ptr && func) { CONST char *function = func->name; char *p; strncpy(buffer, function, sizeof(buffer)-1); buffer[sizeof(buffer)-1] = 0; /* Have to remove : stuff */ p = strchr(buffer,':'); if (p != NULL) { *p = '\0'; } *functionname_ptr = buffer; goto done; } } break; } } } done: if (*line_ptr) main_file_name = line_file_name; if (main_file_name) { if (main_file_name[0] == '/' || directory_name == NULL) *filename_ptr = main_file_name; else { sprintf(filename_buffer, "%.140s%.50s", directory_name, main_file_name); *filename_ptr = filename_buffer; } } return true; } int DEFUN(NAME(aout,sizeof_headers),(abfd, execable), bfd *abfd AND boolean execable) { return adata(abfd).exec_bytes_size; }