/* Target-machine dependent code for Hitachi H8/500, for GDB. Copyright (C) 1993 Free Software Foundation, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* Contributed by Steve Chamberlain sac@cygnus.com */ #include "defs.h" #include "frame.h" #include "obstack.h" #include "symtab.h" #include "gdbtypes.h" #include "gdbcmd.h" #include "value.h" #include "dis-asm.h" #include "../opcodes/h8500-opc.h" ; #define UNSIGNED_SHORT(X) ((X) & 0xffff) /* Shape of an H8/500 frame : arg-n .. arg-2 arg-1 return address <2 or 4 bytes> old fp <2 bytes> auto-n .. auto-1 saved registers */ /* an easy to debug H8 stack frame looks like: 0x6df6 push r6 0x0d76 mov.w r7,r6 0x6dfn push reg 0x7905 nnnn mov.w #n,r5 or 0x1b87 subs #2,sp 0x1957 sub.w r5,sp */ #define IS_PUSH(x) ((x & 0xff00)==0x6d00) #define IS_LINK_8(x) ((x) == 0x17) #define IS_LINK_16(x) ((x) == 0x1f) #define IS_MOVE_FP(x) (x == 0x0d76) #define IS_MOV_SP_FP(x) (x == 0x0d76) #define IS_SUB2_SP(x) (x==0x1b87) #define IS_MOVK_R5(x) (x==0x7905) #define IS_SUB_R5SP(x) (x==0x1957) #define LINK_8 0x17 #define LINK_16 0x1f int minimum_mode = 1; CORE_ADDR examine_prologue (); void frame_find_saved_regs (); int regoff[NUM_REGS] = {0, 2, 4, 6, 8, 10, 12, 14, /* r0->r7 */ 16, 18, /* ccr, pc */ 20, 21, 22, 23}; /* cp, dp, ep, tp */ CORE_ADDR h8500_skip_prologue (start_pc) CORE_ADDR start_pc; { short int w; w = read_memory_integer (start_pc, 1); if (w == LINK_8) { start_pc += 2; w = read_memory_integer (start_pc, 1); } if (w == LINK_16) { start_pc += 3; w = read_memory_integer (start_pc, 2); } return start_pc; } int print_insn (memaddr, stream) CORE_ADDR memaddr; FILE *stream; { disassemble_info info; GDB_INIT_DISASSEMBLE_INFO (info, stream); return print_insn_h8500 (memaddr, &info); } /* Given a GDB frame, determine the address of the calling function's frame. This will be used to create a new GDB frame struct, and then INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame. For us, the frame address is its stack pointer value, so we look up the function prologue to determine the caller's sp value, and return it. */ FRAME_ADDR h8500_frame_chain (thisframe) FRAME thisframe; { if (!inside_entry_file (thisframe->pc)) return (read_memory_integer (thisframe->frame, 2) & 0xffff) | (read_register (SEG_T_REGNUM) << 16); else return 0; } /* Put here the code to store, into a struct frame_saved_regs, the addresses of the saved registers of frame described by FRAME_INFO. This includes special registers such as pc and fp saved in special ways in the stack frame. sp is even more special: the address we return for it IS the sp for the next frame. We cache the result of doing this in the frame_cache_obstack, since it is fairly expensive. */ #if 0 void frame_find_saved_regs (fi, fsr) struct frame_info *fi; struct frame_saved_regs *fsr; { register CORE_ADDR next_addr; register CORE_ADDR *saved_regs; register int regnum; register struct frame_saved_regs *cache_fsr; extern struct obstack frame_cache_obstack; CORE_ADDR ip; struct symtab_and_line sal; CORE_ADDR limit; if (!fi->fsr) { cache_fsr = (struct frame_saved_regs *) obstack_alloc (&frame_cache_obstack, sizeof (struct frame_saved_regs)); bzero (cache_fsr, sizeof (struct frame_saved_regs)); fi->fsr = cache_fsr; /* Find the start and end of the function prologue. If the PC is in the function prologue, we only consider the part that has executed already. */ ip = get_pc_function_start (fi->pc); sal = find_pc_line (ip, 0); limit = (sal.end && sal.end < fi->pc) ? sal.end : fi->pc; /* This will fill in fields in *fi as well as in cache_fsr. */ examine_prologue (ip, limit, fi->frame, cache_fsr, fi); } if (fsr) *fsr = *fi->fsr; } #endif /* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or is not the address of a valid instruction, the address of the next instruction beyond ADDR otherwise. *PWORD1 receives the first word of the instruction.*/ CORE_ADDR NEXT_PROLOGUE_INSN (addr, lim, pword1) CORE_ADDR addr; CORE_ADDR lim; char *pword1; { if (addr < lim + 8) { read_memory (addr, pword1, 1); read_memory (addr, pword1 + 1, 1); return 1; } return 0; } /* Examine the prologue of a function. `ip' points to the first instruction. `limit' is the limit of the prologue (e.g. the addr of the first linenumber, or perhaps the program counter if we're stepping through). `frame_sp' is the stack pointer value in use in this frame. `fsr' is a pointer to a frame_saved_regs structure into which we put info about the registers saved by this frame. `fi' is a struct frame_info pointer; we fill in various fields in it to reflect the offsets of the arg pointer and the locals pointer. */ #if 0 static CORE_ADDR examine_prologue (ip, limit, after_prolog_fp, fsr, fi) register CORE_ADDR ip; register CORE_ADDR limit; FRAME_ADDR after_prolog_fp; struct frame_saved_regs *fsr; struct frame_info *fi; { register CORE_ADDR next_ip; int r; int i; int have_fp = 0; register int src; register struct pic_prologue_code *pcode; char insn[2]; int size, offset; unsigned int reg_save_depth = 2; /* Number of things pushed onto stack, starts at 2, 'cause the PC is already there */ unsigned int auto_depth = 0; /* Number of bytes of autos */ char in_frame[8]; /* One for each reg */ memset (in_frame, 1, 8); for (r = 0; r < 8; r++) { fsr->regs[r] = 0; } if (after_prolog_fp == 0) { after_prolog_fp = read_register (SP_REGNUM); } if (ip == 0 || ip & ~0xffffff) return 0; ok = NEXT_PROLOGUE_INSN (ip, limit, &insn[0]); /* Skip over any fp push instructions */ fsr->regs[6] = after_prolog_fp; if (ok && IS_LINK_8 (insn[0])) { ip++; in_frame[6] = reg_save_depth; reg_save_depth += 2; } next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word); /* Is this a move into the fp */ if (next_ip && IS_MOV_SP_FP (insn_word)) { ip = next_ip; next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word); have_fp = 1; } /* Skip over any stack adjustment, happens either with a number of sub#2,sp or a mov #x,r5 sub r5,sp */ if (next_ip && IS_SUB2_SP (insn_word)) { while (next_ip && IS_SUB2_SP (insn_word)) { auto_depth += 2; ip = next_ip; next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word); } } else { if (next_ip && IS_MOVK_R5 (insn_word)) { ip = next_ip; next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word); auto_depth += insn_word; next_ip = NEXT_PROLOGUE_INSN (next_ip, limit, &insn_word); auto_depth += insn_word; } } /* Work out which regs are stored where */ while (next_ip && IS_PUSH (insn_word)) { ip = next_ip; next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word); fsr->regs[r] = after_prolog_fp + auto_depth; auto_depth += 2; } /* The args are always reffed based from the stack pointer */ fi->args_pointer = after_prolog_fp; /* Locals are always reffed based from the fp */ fi->locals_pointer = after_prolog_fp; /* The PC is at a known place */ fi->from_pc = read_memory_short (after_prolog_fp + 2); /* Rememeber any others too */ in_frame[PC_REGNUM] = 0; if (have_fp) /* We keep the old FP in the SP spot */ fsr->regs[SP_REGNUM] = (read_memory_short (fsr->regs[6])); else fsr->regs[SP_REGNUM] = after_prolog_fp + auto_depth; return (ip); } #endif /* Return the saved PC from this frame. */ CORE_ADDR frame_saved_pc (frame) FRAME frame; { return read_memory_integer ((frame)->frame + 2, PTR_SIZE); } CORE_ADDR frame_locals_address (fi) struct frame_info *fi; { return fi->frame; } /* Return the address of the argument block for the frame described by FI. Returns 0 if the address is unknown. */ CORE_ADDR frame_args_address (fi) struct frame_info *fi; { return fi->frame; } void h8300_pop_frame () { unsigned regnum; struct frame_saved_regs fsr; struct frame_info *fi; FRAME frame = get_current_frame (); fi = get_frame_info (frame); get_frame_saved_regs (fi, &fsr); for (regnum = 0; regnum < 8; regnum++) { if (fsr.regs[regnum]) { write_register (regnum, read_memory_short (fsr.regs[regnum])); } flush_cached_frames (); set_current_frame (create_new_frame (read_register (FP_REGNUM), read_pc ())); } } void print_register_hook (regno) { if (regno == CCR_REGNUM) { /* CCR register */ int C, Z, N, V; unsigned char b[2]; unsigned char l; read_relative_register_raw_bytes (regno, b); l = b[1]; printf ("\t"); printf ("I-%d - ", (l & 0x80) != 0); N = (l & 0x8) != 0; Z = (l & 0x4) != 0; V = (l & 0x2) != 0; C = (l & 0x1) != 0; printf ("N-%d ", N); printf ("Z-%d ", Z); printf ("V-%d ", V); printf ("C-%d ", C); if ((C | Z) == 0) printf ("u> "); if ((C | Z) == 1) printf ("u<= "); if ((C == 0)) printf ("u>= "); if (C == 1) printf ("u< "); if (Z == 0) printf ("!= "); if (Z == 1) printf ("== "); if ((N ^ V) == 0) printf (">= "); if ((N ^ V) == 1) printf ("< "); if ((Z | (N ^ V)) == 0) printf ("> "); if ((Z | (N ^ V)) == 1) printf ("<= "); } } int h8500_register_size (regno) int regno; { if (regno <= PC_REGNUM) return 2; else return 1; } struct type * h8500_register_virtual_type (regno) int regno; { switch (regno) { case SEG_C_REGNUM: case SEG_E_REGNUM: case SEG_D_REGNUM: case SEG_T_REGNUM: return builtin_type_unsigned_char; case R0_REGNUM: case R1_REGNUM: case R2_REGNUM: case R3_REGNUM: case R4_REGNUM: case R5_REGNUM: case R6_REGNUM: case R7_REGNUM: case PC_REGNUM: case CCR_REGNUM: return builtin_type_unsigned_short; default: abort (); } } /* Put here the code to store, into a struct frame_saved_regs, the addresses of the saved registers of frame described by FRAME_INFO. This includes special registers such as pc and fp saved in special ways in the stack frame. sp is even more special: the address we return for it IS the sp for the next frame. */ void frame_find_saved_regs (frame_info, frame_saved_regs) struct frame_info *frame_info; struct frame_saved_regs *frame_saved_regs; { register int regnum; register int regmask; register CORE_ADDR next_addr; register CORE_ADDR pc; unsigned char thebyte; bzero (frame_saved_regs, sizeof *frame_saved_regs); if ((frame_info)->pc >= (frame_info)->frame - CALL_DUMMY_LENGTH - FP_REGNUM * 4 - 4 && (frame_info)->pc <= (frame_info)->frame) { next_addr = (frame_info)->frame; pc = (frame_info)->frame - CALL_DUMMY_LENGTH - FP_REGNUM * 4 - 4; } else { pc = get_pc_function_start ((frame_info)->pc); /* Verify we have a link a6 instruction next; if not we lose. If we win, find the address above the saved regs using the amount of storage from the link instruction. */ thebyte = read_memory_integer (pc, 1); if (0x1f == thebyte) next_addr = (frame_info)->frame + read_memory_integer (pc += 1, 2), pc += 2; else if (0x17 == thebyte) next_addr = (frame_info)->frame + read_memory_integer (pc += 1, 1), pc += 1; else goto lose; #if 0 fixme steve /* If have an add:g.waddal #-n, sp next, adjust next_addr. */ if ((0x0c0177777 & read_memory_integer (pc, 2)) == 0157774) next_addr += read_memory_integer (pc += 2, 4), pc += 4; #endif } thebyte = read_memory_integer (pc, 1); if (thebyte == 0x12) { /* Got stm */ pc++; regmask = read_memory_integer (pc, 1); pc++; for (regnum = 0; regnum < 8; regnum++, regmask >>= 1) { if (regmask & 1) { (frame_saved_regs)->regs[regnum] = (next_addr += 2) - 2; } } thebyte = read_memory_integer (pc, 1); } /* Maybe got a load of pushes */ while (thebyte == 0xbf) { pc++; regnum = read_memory_integer (pc, 1) & 0x7; pc++; (frame_saved_regs)->regs[regnum] = (next_addr += 2) - 2; thebyte = read_memory_integer (pc, 1); } lose:; /* Remember the address of the frame pointer */ (frame_saved_regs)->regs[FP_REGNUM] = (frame_info)->frame; /* This is where the old sp is hidden */ (frame_saved_regs)->regs[SP_REGNUM] = (frame_info)->frame; /* And the PC - remember the pushed FP is always two bytes long */ (frame_saved_regs)->regs[PC_REGNUM] = (frame_info)->frame + 2; } saved_pc_after_call (frame) { int x; int a = read_register (SP_REGNUM); x = read_memory_integer (a, PTR_SIZE); return x; } /* Nonzero if instruction at PC is a return instruction. */ about_to_return (pc) { int b1 = read_memory_integer (pc, 1); switch (b1) { case 0x14: /* rtd #8 */ case 0x1c: /* rtd #16 */ case 0x19: /* rts */ case 0x1a: /* rte */ return 1; case 0x11: { int b2 = read_memory_integer (pc + 1, 1); switch (b2) { case 0x18: /* prts */ case 0x14: /* prtd #8 */ case 0x16: /* prtd #16 */ return 1; } } } return 0; } void h8500_set_pointer_size (newsize) int newsize; { static int oldsize = 0; if (oldsize != newsize) { printf ("pointer size set to %d bits\n", newsize); oldsize = newsize; if (newsize == 32) { minimum_mode = 0; } else { minimum_mode = 1; } _initialize_gdbtypes (); } } struct cmd_list_element *setmemorylist; static void segmented_command (args, from_tty) char *args; int from_tty; { h8500_set_pointer_size (32); } static void unsegmented_command (args, from_tty) char *args; int from_tty; { h8500_set_pointer_size (16); } static void set_memory (args, from_tty) char *args; int from_tty; { printf ("\"set memory\" must be followed by the name of a memory subcommand.\n"); help_list (setmemorylist, "set memory ", -1, stdout); } /* See if variable name is ppc or pr[0-7] */ int h8500_is_trapped_internalvar (name) char *name; { if (name[0] != 'p') return 0; if (strcmp (name + 1, "pc") == 0) return 1; if (name[1] == 'r' && name[2] >= '0' && name[2] <= '7' && name[3] == '\000') return 1; else return 0; } value h8500_value_of_trapped_internalvar (var) struct internalvar *var; { LONGEST regval; unsigned char regbuf[4]; int page_regnum, regnum; regnum = var->name[2] == 'c' ? PC_REGNUM : var->name[2] - '0'; switch (var->name[2]) { case 'c': page_regnum = SEG_C_REGNUM; break; case '0': case '1': case '2': case '3': page_regnum = SEG_D_REGNUM; break; case '4': case '5': page_regnum = SEG_E_REGNUM; break; case '6': case '7': page_regnum = SEG_T_REGNUM; break; } get_saved_register (regbuf, NULL, NULL, selected_frame, page_regnum, NULL); regval = regbuf[0] << 16; get_saved_register (regbuf, NULL, NULL, selected_frame, regnum, NULL); regval |= regbuf[0] << 8 | regbuf[1]; /* XXX host/target byte order */ free (var->value); /* Free up old value */ var->value = value_from_longest (builtin_type_unsigned_long, regval); release_value (var->value); /* Unchain new value */ VALUE_LVAL (var->value) = lval_internalvar; VALUE_INTERNALVAR (var->value) = var; return var->value; } void h8500_set_trapped_internalvar (var, newval, bitpos, bitsize, offset) struct internalvar *var; int offset, bitpos, bitsize; value newval; { char *page_regnum, *regnum; char expression[100]; unsigned new_regval; struct type *type; enum type_code newval_type_code; type = VALUE_TYPE (newval); newval_type_code = TYPE_CODE (type); if ((newval_type_code != TYPE_CODE_INT && newval_type_code != TYPE_CODE_PTR) || TYPE_LENGTH (type) != sizeof (new_regval)) error ("Illegal type (%s) for assignment to $%s\n", TYPE_NAME (type), var->name); new_regval = *(long *) VALUE_CONTENTS_RAW (newval); regnum = var->name + 1; switch (var->name[2]) { case 'c': page_regnum = "cp"; break; case '0': case '1': case '2': case '3': page_regnum = "dp"; break; case '4': case '5': page_regnum = "ep"; break; case '6': case '7': page_regnum = "tp"; break; } sprintf (expression, "$%s=%d", page_regnum, new_regval >> 16); parse_and_eval (expression); sprintf (expression, "$%s=%d", regnum, new_regval & 0xffff); parse_and_eval (expression); } _initialize_h8500_tdep () { add_prefix_cmd ("memory", no_class, set_memory, "set the memory model", &setmemorylist, "set memory ", 0, &setlist); add_cmd ("segmented", class_support, segmented_command, "Set segmented memory model.", &setmemorylist); add_cmd ("unsegmented", class_support, unsegmented_command, "Set unsegmented memory model.", &setmemorylist); } CORE_ADDR target_read_sp () { return (read_register (SEG_T_REGNUM) << 16) | (read_register (SP_REGNUM)); } void target_write_sp (v) CORE_ADDR v; { write_register (SEG_T_REGNUM, v >> 16); write_register (SP_REGNUM, v & 0xffff); } CORE_ADDR target_read_pc () { return (read_register (SEG_C_REGNUM) << 16) | (read_register (PC_REGNUM)); } void target_write_pc (v) CORE_ADDR v; { write_register (SEG_C_REGNUM, v >> 16); write_register (PC_REGNUM, v & 0xffff); } CORE_ADDR target_read_fp () { return (read_register (SEG_T_REGNUM) << 16) | (read_register (FP_REGNUM)); } void target_write_fp (v) CORE_ADDR v; { write_register (SEG_T_REGNUM, v >> 16); write_register (FP_REGNUM, v & 0xffff); }