/* nto-tdep.c - general QNX Neutrino target functionality. Copyright (C) 2003, 2004, 2007, 2008 Free Software Foundation, Inc. Contributed by QNX Software Systems Ltd. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ #include "defs.h" #include "gdb_stat.h" #include "gdb_string.h" #include "nto-tdep.h" #include "top.h" #include "cli/cli-decode.h" #include "cli/cli-cmds.h" #include "inferior.h" #include "gdbarch.h" #include "bfd.h" #include "elf-bfd.h" #include "solib-svr4.h" #include "gdbcore.h" #include "objfiles.h" #include <string.h> #ifdef __CYGWIN__ #include <sys/cygwin.h> #endif #ifdef __CYGWIN__ static char default_nto_target[] = "C:\\QNXsdk\\target\\qnx6"; #elif defined(__sun__) || defined(linux) static char default_nto_target[] = "/opt/QNXsdk/target/qnx6"; #else static char default_nto_target[] = ""; #endif struct nto_target_ops current_nto_target; static char * nto_target (void) { char *p = getenv ("QNX_TARGET"); #ifdef __CYGWIN__ static char buf[PATH_MAX]; if (p) cygwin_conv_to_posix_path (p, buf); else cygwin_conv_to_posix_path (default_nto_target, buf); return buf; #else return p ? p : default_nto_target; #endif } void nto_set_target (struct nto_target_ops *targ) { nto_regset_id = targ->regset_id; nto_supply_gregset = targ->supply_gregset; nto_supply_fpregset = targ->supply_fpregset; nto_supply_altregset = targ->supply_altregset; nto_supply_regset = targ->supply_regset; nto_register_area = targ->register_area; nto_regset_fill = targ->regset_fill; nto_fetch_link_map_offsets = targ->fetch_link_map_offsets; } /* Take a string such as i386, rs6000, etc. and map it onto CPUTYPE_X86, CPUTYPE_PPC, etc. as defined in nto-share/dsmsgs.h. */ int nto_map_arch_to_cputype (const char *arch) { if (!strcmp (arch, "i386") || !strcmp (arch, "x86")) return CPUTYPE_X86; if (!strcmp (arch, "rs6000") || !strcmp (arch, "powerpc")) return CPUTYPE_PPC; if (!strcmp (arch, "mips")) return CPUTYPE_MIPS; if (!strcmp (arch, "arm")) return CPUTYPE_ARM; if (!strcmp (arch, "sh")) return CPUTYPE_SH; return CPUTYPE_UNKNOWN; } int nto_find_and_open_solib (char *solib, unsigned o_flags, char **temp_pathname) { char *buf, *arch_path, *nto_root, *endian, *base; const char *arch; int ret; #define PATH_FMT "%s/lib:%s/usr/lib:%s/usr/photon/lib:%s/usr/photon/dll:%s/lib/dll" nto_root = nto_target (); if (strcmp (gdbarch_bfd_arch_info (current_gdbarch)->arch_name, "i386") == 0) { arch = "x86"; endian = ""; } else if (strcmp (gdbarch_bfd_arch_info (current_gdbarch)->arch_name, "rs6000") == 0 || strcmp (gdbarch_bfd_arch_info (current_gdbarch)->arch_name, "powerpc") == 0) { arch = "ppc"; endian = "be"; } else { arch = gdbarch_bfd_arch_info (current_gdbarch)->arch_name; endian = gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG ? "be" : "le"; } /* In case nto_root is short, add strlen(solib) so we can reuse arch_path below. */ arch_path = alloca (strlen (nto_root) + strlen (arch) + strlen (endian) + 2 + strlen (solib)); sprintf (arch_path, "%s/%s%s", nto_root, arch, endian); buf = alloca (strlen (PATH_FMT) + strlen (arch_path) * 5 + 1); sprintf (buf, PATH_FMT, arch_path, arch_path, arch_path, arch_path, arch_path); /* Don't assume basename() isn't destructive. */ base = strrchr (solib, '/'); if (!base) base = solib; else base++; /* Skip over '/'. */ ret = openp (buf, 1, base, o_flags, 0, temp_pathname); if (ret < 0 && base != solib) { sprintf (arch_path, "/%s", solib); ret = open (arch_path, o_flags, 0); if (temp_pathname) { if (ret >= 0) *temp_pathname = gdb_realpath (arch_path); else **temp_pathname = '\0'; } } return ret; } void nto_init_solib_absolute_prefix (void) { char buf[PATH_MAX * 2], arch_path[PATH_MAX]; char *nto_root, *endian; const char *arch; nto_root = nto_target (); if (strcmp (gdbarch_bfd_arch_info (current_gdbarch)->arch_name, "i386") == 0) { arch = "x86"; endian = ""; } else if (strcmp (gdbarch_bfd_arch_info (current_gdbarch)->arch_name, "rs6000") == 0 || strcmp (gdbarch_bfd_arch_info (current_gdbarch)->arch_name, "powerpc") == 0) { arch = "ppc"; endian = "be"; } else { arch = gdbarch_bfd_arch_info (current_gdbarch)->arch_name; endian = gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG ? "be" : "le"; } sprintf (arch_path, "%s/%s%s", nto_root, arch, endian); sprintf (buf, "set solib-absolute-prefix %s", arch_path); execute_command (buf, 0); } char ** nto_parse_redirection (char *pargv[], const char **pin, const char **pout, const char **perr) { char **argv; char *in, *out, *err, *p; int argc, i, n; for (n = 0; pargv[n]; n++); if (n == 0) return NULL; in = ""; out = ""; err = ""; argv = xcalloc (n + 1, sizeof argv[0]); argc = n; for (i = 0, n = 0; n < argc; n++) { p = pargv[n]; if (*p == '>') { p++; if (*p) out = p; else out = pargv[++n]; } else if (*p == '<') { p++; if (*p) in = p; else in = pargv[++n]; } else if (*p++ == '2' && *p++ == '>') { if (*p == '&' && *(p + 1) == '1') err = out; else if (*p) err = p; else err = pargv[++n]; } else argv[i++] = pargv[n]; } *pin = in; *pout = out; *perr = err; return argv; } /* The struct lm_info, LM_ADDR, and nto_truncate_ptr are copied from solib-svr4.c to support nto_relocate_section_addresses which is different from the svr4 version. */ /* Link map info to include in an allocated so_list entry */ struct lm_info { /* Pointer to copy of link map from inferior. The type is char * rather than void *, so that we may use byte offsets to find the various fields without the need for a cast. */ gdb_byte *lm; /* Amount by which addresses in the binary should be relocated to match the inferior. This could most often be taken directly from lm, but when prelinking is involved and the prelink base address changes, we may need a different offset, we want to warn about the difference and compute it only once. */ CORE_ADDR l_addr; /* The target location of lm. */ CORE_ADDR lm_addr; }; static CORE_ADDR LM_ADDR (struct so_list *so) { if (so->lm_info->l_addr == (CORE_ADDR)-1) { struct link_map_offsets *lmo = nto_fetch_link_map_offsets (); so->lm_info->l_addr = extract_typed_address (so->lm_info->lm + lmo->l_addr_offset, builtin_type_void_data_ptr); } return so->lm_info->l_addr; } static CORE_ADDR nto_truncate_ptr (CORE_ADDR addr) { if (gdbarch_ptr_bit (current_gdbarch) == sizeof (CORE_ADDR) * 8) /* We don't need to truncate anything, and the bit twiddling below will fail due to overflow problems. */ return addr; else return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (current_gdbarch)) - 1); } Elf_Internal_Phdr * find_load_phdr (bfd *abfd) { Elf_Internal_Phdr *phdr; unsigned int i; if (!elf_tdata (abfd)) return NULL; phdr = elf_tdata (abfd)->phdr; for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++) { if (phdr->p_type == PT_LOAD && (phdr->p_flags & PF_X)) return phdr; } return NULL; } void nto_relocate_section_addresses (struct so_list *so, struct section_table *sec) { /* Neutrino treats the l_addr base address field in link.h as different than the base address in the System V ABI and so the offset needs to be calculated and applied to relocations. */ Elf_Internal_Phdr *phdr = find_load_phdr (sec->bfd); unsigned vaddr = phdr ? phdr->p_vaddr : 0; sec->addr = nto_truncate_ptr (sec->addr + LM_ADDR (so) - vaddr); sec->endaddr = nto_truncate_ptr (sec->endaddr + LM_ADDR (so) - vaddr); } /* This is cheating a bit because our linker code is in libc.so. If we ever implement lazy linking, this may need to be re-examined. */ int nto_in_dynsym_resolve_code (CORE_ADDR pc) { if (in_plt_section (pc, NULL)) return 1; return 0; } void nto_generic_supply_gpregset (const struct regset *regset, struct regcache *regcache, int regnum, const void *gregs, size_t len) { } void nto_generic_supply_fpregset (const struct regset *regset, struct regcache *regcache, int regnum, const void *fpregs, size_t len) { } void nto_generic_supply_altregset (const struct regset *regset, struct regcache *regcache, int regnum, const void *altregs, size_t len) { } void nto_dummy_supply_regset (struct regcache *regcache, char *regs) { /* Do nothing. */ } enum gdb_osabi nto_elf_osabi_sniffer (bfd *abfd) { if (nto_is_nto_target) return nto_is_nto_target (abfd); return GDB_OSABI_UNKNOWN; } void nto_initialize_signals (void) { /* We use SIG45 for pulses, or something, so nostop, noprint and pass them. */ signal_stop_update (target_signal_from_name ("SIG45"), 0); signal_print_update (target_signal_from_name ("SIG45"), 0); signal_pass_update (target_signal_from_name ("SIG45"), 1); /* By default we don't want to stop on these two, but we do want to pass. */ #if defined(SIGSELECT) signal_stop_update (SIGSELECT, 0); signal_print_update (SIGSELECT, 0); signal_pass_update (SIGSELECT, 1); #endif #if defined(SIGPHOTON) signal_stop_update (SIGPHOTON, 0); signal_print_update (SIGPHOTON, 0); signal_pass_update (SIGPHOTON, 1); #endif } void _initialize_nto_tdep (void) { add_setshow_zinteger_cmd ("nto-debug", class_maintenance, &nto_internal_debugging, _("\ Set QNX NTO internal debugging."), _("\ Show QNX NTO internal debugging."), _("\ When non-zero, nto specific debug info is\n\ displayed. Different information is displayed\n\ for different positive values."), NULL, NULL, /* FIXME: i18n: QNX NTO internal debugging is %s. */ &setdebuglist, &showdebuglist); }