mirror of
https://github.com/darlinghq/darling-gdb.git
synced 2025-01-22 17:16:29 +00:00
732 lines
16 KiB
C
732 lines
16 KiB
C
/* BFD library support routines for architectures.
|
|
Copyright (C) 1990-1991 Free Software Foundation, Inc.
|
|
Hacked by John Gilmore and Steve Chamberlain of Cygnus Support.
|
|
|
|
|
|
This file is part of BFD, the Binary File Descriptor library.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
|
|
|
|
/*
|
|
|
|
SECTION
|
|
Architectures
|
|
|
|
BFD keeps one atom in a BFD describing the
|
|
architecture of the data attached to the BFD: a pointer to a
|
|
<<bfd_arch_info_type>>.
|
|
|
|
Pointers to structures can be requested independently of a BFD
|
|
so that an architecture's information can be interrogated
|
|
without access to an open BFD.
|
|
|
|
The architecture information is provided by each architecture package.
|
|
The set of default architectures is selected by the macro
|
|
<<SELECT_ARCHITECTURES>>. This is normally set up in the
|
|
<<config/target.mt>> file of your choice. If the name is not
|
|
defined, then all the architectures supported are included.
|
|
|
|
When BFD starts up, all the architectures are called with an
|
|
initialize method. It is up to the architecture back end to
|
|
insert as many items into the list of architectures as it wants to;
|
|
generally this would be one for each machine and one for the
|
|
default case (an item with a machine field of 0).
|
|
|
|
BFD's idea of an architecture is implemented in <<archures.c>>.
|
|
*/
|
|
|
|
/*
|
|
|
|
SUBSECTION
|
|
bfd_architecture
|
|
|
|
DESCRIPTION
|
|
This enum gives the object file's CPU architecture, in a
|
|
global sense---i.e., what processor family does it belong to?
|
|
Another field indicates which processor within
|
|
the family is in use. The machine gives a number which
|
|
distinguishes different versions of the architecture,
|
|
containing, for example, 2 and 3 for Intel i960 KA and i960 KB,
|
|
and 68020 and 68030 for Motorola 68020 and 68030.
|
|
|
|
.enum bfd_architecture
|
|
.{
|
|
. bfd_arch_unknown, {* File arch not known *}
|
|
. bfd_arch_obscure, {* Arch known, not one of these *}
|
|
. bfd_arch_m68k, {* Motorola 68xxx *}
|
|
. bfd_arch_vax, {* DEC Vax *}
|
|
. bfd_arch_i960, {* Intel 960 *}
|
|
. {* The order of the following is important.
|
|
. lower number indicates a machine type that
|
|
. only accepts a subset of the instructions
|
|
. available to machines with higher numbers.
|
|
. The exception is the "ca", which is
|
|
. incompatible with all other machines except
|
|
. "core". *}
|
|
.
|
|
.#define bfd_mach_i960_core 1
|
|
.#define bfd_mach_i960_ka_sa 2
|
|
.#define bfd_mach_i960_kb_sb 3
|
|
.#define bfd_mach_i960_mc 4
|
|
.#define bfd_mach_i960_xa 5
|
|
.#define bfd_mach_i960_ca 6
|
|
.
|
|
. bfd_arch_a29k, {* AMD 29000 *}
|
|
. bfd_arch_sparc, {* SPARC *}
|
|
. bfd_arch_mips, {* MIPS Rxxxx *}
|
|
. bfd_arch_i386, {* Intel 386 *}
|
|
. bfd_arch_we32k, {* AT&T WE32xxx *}
|
|
. bfd_arch_tahoe, {* CCI/Harris Tahoe *}
|
|
. bfd_arch_i860, {* Intel 860 *}
|
|
. bfd_arch_romp, {* IBM ROMP PC/RT *}
|
|
. bfd_arch_alliant, {* Alliant *}
|
|
. bfd_arch_convex, {* Convex *}
|
|
. bfd_arch_m88k, {* Motorola 88xxx *}
|
|
. bfd_arch_pyramid, {* Pyramid Technology *}
|
|
. bfd_arch_h8300, {* Hitachi H8/300 *}
|
|
.#define bfd_mach_h8300 1
|
|
.#define bfd_mach_h8300h 2
|
|
. bfd_arch_rs6000, {* IBM RS/6000 *}
|
|
. bfd_arch_hppa, {* HP PA RISC *}
|
|
. bfd_arch_z8k, {* Zilog Z8000 *}
|
|
.#define bfd_mach_z8001 1
|
|
.#define bfd_mach_z8002 2
|
|
. bfd_arch_h8500, {* Hitachi H8/500 *}
|
|
. bfd_arch_sh, {* Hitachi SH *}
|
|
. bfd_arch_alpha, {* Dec Alpha *}
|
|
. bfd_arch_last
|
|
. };
|
|
|
|
|
|
*/
|
|
|
|
#include "bfd.h"
|
|
#include "sysdep.h"
|
|
#include "libbfd.h"
|
|
|
|
/*
|
|
|
|
SUBSECTION
|
|
bfd_arch_info
|
|
|
|
DESCRIPTION
|
|
This structure contains information on architectures for use
|
|
within BFD.
|
|
|
|
.
|
|
.typedef struct bfd_arch_info
|
|
.{
|
|
. int bits_per_word;
|
|
. int bits_per_address;
|
|
. int bits_per_byte;
|
|
. enum bfd_architecture arch;
|
|
. long mach;
|
|
. char *arch_name;
|
|
. CONST char *printable_name;
|
|
. unsigned int section_align_power;
|
|
. {* true if this is the default machine for the architecture *}
|
|
. boolean the_default;
|
|
. CONST struct bfd_arch_info * (*compatible)
|
|
. PARAMS ((CONST struct bfd_arch_info *a,
|
|
. CONST struct bfd_arch_info *b));
|
|
.
|
|
. boolean (*scan) PARAMS ((CONST struct bfd_arch_info *, CONST char *));
|
|
. {* How to disassemble an instruction, producing a printable
|
|
. representation on a specified stdio stream. This isn't
|
|
. defined for most processors at present, because of the size
|
|
. of the additional tables it would drag in, and because gdb
|
|
. wants to use a different interface. *}
|
|
. unsigned int (*disassemble) PARAMS ((bfd_vma addr, CONST char *data,
|
|
. PTR stream));
|
|
.
|
|
. struct bfd_arch_info *next;
|
|
.} bfd_arch_info_type;
|
|
*/
|
|
|
|
bfd_arch_info_type *bfd_arch_info_list;
|
|
|
|
|
|
/*
|
|
FUNCTION
|
|
bfd_printable_name
|
|
|
|
SYNOPSIS
|
|
CONST char *bfd_printable_name(bfd *abfd);
|
|
|
|
DESCRIPTION
|
|
Return a printable string representing the architecture and machine
|
|
from the pointer to the architecture info structure.
|
|
|
|
*/
|
|
|
|
CONST char *
|
|
DEFUN(bfd_printable_name, (abfd),
|
|
bfd *abfd)
|
|
{
|
|
return abfd->arch_info->printable_name;
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
FUNCTION
|
|
bfd_scan_arch
|
|
|
|
SYNOPSIS
|
|
bfd_arch_info_type *bfd_scan_arch(CONST char *string);
|
|
|
|
DESCRIPTION
|
|
Figure out if BFD supports any cpu which could be described with
|
|
the name @var{string}. Return a pointer to an <<arch_info>>
|
|
structure if a machine is found, otherwise NULL.
|
|
|
|
*/
|
|
|
|
bfd_arch_info_type *
|
|
DEFUN(bfd_scan_arch,(string),
|
|
CONST char *string)
|
|
{
|
|
struct bfd_arch_info *ap;
|
|
|
|
/* Look through all the installed architectures */
|
|
for (ap = bfd_arch_info_list;
|
|
ap != (bfd_arch_info_type *)NULL;
|
|
ap = ap->next) {
|
|
|
|
if (ap->scan(ap, string))
|
|
return ap;
|
|
}
|
|
return (bfd_arch_info_type *)NULL;
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
FUNCTION
|
|
bfd_arch_get_compatible
|
|
|
|
SYNOPSIS
|
|
CONST bfd_arch_info_type *bfd_arch_get_compatible(
|
|
CONST bfd *abfd,
|
|
CONST bfd *bbfd);
|
|
|
|
DESCRIPTION
|
|
Determine whether two BFDs'
|
|
architectures and machine types are compatible. Calculates
|
|
the lowest common denominator between the two architectures
|
|
and machine types implied by the BFDs and returns a pointer to
|
|
an <<arch_info>> structure describing the compatible machine.
|
|
*/
|
|
|
|
CONST bfd_arch_info_type *
|
|
DEFUN(bfd_arch_get_compatible,(abfd, bbfd),
|
|
CONST bfd *abfd AND
|
|
CONST bfd *bbfd)
|
|
|
|
{
|
|
return abfd->arch_info->compatible(abfd->arch_info,bbfd->arch_info);
|
|
}
|
|
|
|
|
|
/*
|
|
INTERNAL_DEFINITION
|
|
bfd_default_arch_struct
|
|
|
|
DESCRIPTION
|
|
The <<bfd_default_arch_struct>> is an item of
|
|
<<bfd_arch_info_type>> which has been initialized to a fairly
|
|
generic state. A BFD starts life by pointing to this
|
|
structure, until the correct back end has determined the real
|
|
architecture of the file.
|
|
|
|
.extern bfd_arch_info_type bfd_default_arch_struct;
|
|
|
|
*/
|
|
|
|
bfd_arch_info_type bfd_default_arch_struct =
|
|
{
|
|
32,32,8,bfd_arch_unknown,0,"unknown","unknown",2,true,
|
|
bfd_default_compatible,
|
|
bfd_default_scan,
|
|
0,
|
|
};
|
|
|
|
/*
|
|
FUNCTION
|
|
bfd_set_arch_info
|
|
|
|
SYNOPSIS
|
|
void bfd_set_arch_info(bfd *abfd, bfd_arch_info_type *arg);
|
|
|
|
DESCRIPTION
|
|
Set the architecture info of @var{abfd} to @var{arg}.
|
|
*/
|
|
|
|
void DEFUN(bfd_set_arch_info,(abfd, arg),
|
|
bfd *abfd AND
|
|
bfd_arch_info_type *arg)
|
|
{
|
|
abfd->arch_info = arg;
|
|
}
|
|
|
|
/*
|
|
INTERNAL_FUNCTION
|
|
bfd_default_set_arch_mach
|
|
|
|
SYNOPSIS
|
|
boolean bfd_default_set_arch_mach(bfd *abfd,
|
|
enum bfd_architecture arch,
|
|
unsigned long mach);
|
|
|
|
DESCRIPTION
|
|
Set the architecture and machine type in BFD @var{abfd}
|
|
to @var{arch} and @var{mach}. Find the correct
|
|
pointer to a structure and insert it into the <<arch_info>>
|
|
pointer.
|
|
*/
|
|
|
|
boolean DEFUN(bfd_default_set_arch_mach,(abfd, arch, mach),
|
|
bfd *abfd AND
|
|
enum bfd_architecture arch AND
|
|
unsigned long mach)
|
|
{
|
|
static struct bfd_arch_info *old_ptr = &bfd_default_arch_struct;
|
|
boolean found = false;
|
|
/* run through the table to find the one we want, we keep a little
|
|
cache to speed things up */
|
|
if (old_ptr == 0 || arch != old_ptr->arch || mach != old_ptr->mach) {
|
|
bfd_arch_info_type *ptr;
|
|
old_ptr = (bfd_arch_info_type *)NULL;
|
|
for (ptr = bfd_arch_info_list;
|
|
ptr != (bfd_arch_info_type *)NULL;
|
|
ptr= ptr->next) {
|
|
if (ptr->arch == arch &&
|
|
((ptr->mach == mach) || (ptr->the_default && mach == 0))) {
|
|
old_ptr = ptr;
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
if (found==false) {
|
|
/*looked for it and it wasn't there, so put in the default */
|
|
old_ptr = &bfd_default_arch_struct;
|
|
bfd_error = bad_value;
|
|
}
|
|
}
|
|
else {
|
|
/* it was in the cache */
|
|
found = true;
|
|
}
|
|
|
|
abfd->arch_info = old_ptr;
|
|
|
|
return found;
|
|
}
|
|
|
|
|
|
/*
|
|
FUNCTION
|
|
bfd_get_arch
|
|
|
|
SYNOPSIS
|
|
enum bfd_architecture bfd_get_arch(bfd *abfd);
|
|
|
|
DESCRIPTION
|
|
Return the enumerated type which describes the BFD @var{abfd}'s
|
|
architecture.
|
|
|
|
*/
|
|
|
|
enum bfd_architecture DEFUN(bfd_get_arch, (abfd), bfd *abfd)
|
|
{
|
|
return abfd->arch_info->arch;
|
|
}
|
|
|
|
/*
|
|
FUNCTION
|
|
bfd_get_mach
|
|
|
|
SYNOPSIS
|
|
unsigned long bfd_get_mach(bfd *abfd);
|
|
|
|
DESCRIPTION
|
|
Return the long type which describes the BFD @var{abfd}'s
|
|
machine.
|
|
*/
|
|
|
|
unsigned long
|
|
DEFUN(bfd_get_mach, (abfd), bfd *abfd)
|
|
{
|
|
return abfd->arch_info->mach;
|
|
}
|
|
|
|
/*
|
|
FUNCTION
|
|
bfd_arch_bits_per_byte
|
|
|
|
SYNOPSIS
|
|
unsigned int bfd_arch_bits_per_byte(bfd *abfd);
|
|
|
|
DESCRIPTION
|
|
Return the number of bits in one of the BFD @var{abfd}'s
|
|
architecture's bytes.
|
|
|
|
*/
|
|
|
|
unsigned int DEFUN(bfd_arch_bits_per_byte, (abfd), bfd *abfd)
|
|
{
|
|
return abfd->arch_info->bits_per_byte;
|
|
}
|
|
|
|
/*
|
|
FUNCTION
|
|
bfd_arch_bits_per_address
|
|
|
|
SYNOPSIS
|
|
unsigned int bfd_arch_bits_per_address(bfd *abfd);
|
|
|
|
DESCRIPTION
|
|
Return the number of bits in one of the BFD @var{abfd}'s
|
|
architecture's addresses.
|
|
*/
|
|
|
|
unsigned int DEFUN(bfd_arch_bits_per_address, (abfd), bfd *abfd)
|
|
{
|
|
return abfd->arch_info->bits_per_address;
|
|
}
|
|
|
|
|
|
extern void bfd_a29k_arch PARAMS ((void));
|
|
extern void bfd_alpha_arch PARAMS ((void));
|
|
extern void bfd_h8300_arch PARAMS ((void));
|
|
extern void bfd_h8500_arch PARAMS ((void));
|
|
extern void bfd_hppa_arch PARAMS ((void));
|
|
extern void bfd_i386_arch PARAMS ((void));
|
|
extern void bfd_i960_arch PARAMS ((void));
|
|
extern void bfd_m68k_arch PARAMS ((void));
|
|
extern void bfd_m88k_arch PARAMS ((void));
|
|
extern void bfd_mips_arch PARAMS ((void));
|
|
extern void bfd_rs6000_arch PARAMS ((void));
|
|
extern void bfd_sh_arch PARAMS ((void));
|
|
extern void bfd_sparc_arch PARAMS ((void));
|
|
extern void bfd_vax_arch PARAMS ((void));
|
|
extern void bfd_we32k_arch PARAMS ((void));
|
|
extern void bfd_z8k_arch PARAMS ((void));
|
|
|
|
static void (*archures_init_table[]) PARAMS ((void)) =
|
|
{
|
|
#ifdef SELECT_ARCHITECTURES
|
|
SELECT_ARCHITECTURES,
|
|
#else
|
|
bfd_a29k_arch,
|
|
bfd_alpha_arch,
|
|
bfd_h8300_arch,
|
|
bfd_h8500_arch,
|
|
bfd_hppa_arch,
|
|
bfd_i386_arch,
|
|
bfd_i960_arch,
|
|
bfd_m68k_arch,
|
|
bfd_m88k_arch,
|
|
bfd_mips_arch,
|
|
bfd_rs6000_arch,
|
|
bfd_sh_arch,
|
|
bfd_sparc_arch,
|
|
bfd_vax_arch,
|
|
bfd_we32k_arch,
|
|
bfd_z8k_arch,
|
|
#endif
|
|
0
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
INTERNAL_FUNCTION
|
|
bfd_arch_init
|
|
|
|
SYNOPSIS
|
|
void bfd_arch_init(void);
|
|
|
|
DESCRIPTION
|
|
Initialize the architecture dispatch table by
|
|
calling all installed architecture packages and getting them
|
|
to poke around.
|
|
*/
|
|
|
|
void
|
|
DEFUN_VOID(bfd_arch_init)
|
|
{
|
|
void (**ptable) PARAMS ((void));
|
|
for (ptable = archures_init_table;
|
|
*ptable ;
|
|
ptable++)
|
|
{
|
|
(*ptable)();
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
INTERNAL_FUNCTION
|
|
bfd_arch_linkin
|
|
|
|
SYNOPSIS
|
|
void bfd_arch_linkin(bfd_arch_info_type *ptr);
|
|
|
|
DESCRIPTION
|
|
Link the architecture info structure @var{ptr} into the list.
|
|
*/
|
|
|
|
void DEFUN(bfd_arch_linkin,(ptr),
|
|
bfd_arch_info_type *ptr)
|
|
{
|
|
ptr->next = bfd_arch_info_list;
|
|
bfd_arch_info_list = ptr;
|
|
}
|
|
|
|
|
|
/*
|
|
INTERNAL_FUNCTION
|
|
bfd_default_compatible
|
|
|
|
SYNOPSIS
|
|
CONST bfd_arch_info_type *bfd_default_compatible
|
|
(CONST bfd_arch_info_type *a,
|
|
CONST bfd_arch_info_type *b);
|
|
|
|
DESCRIPTION
|
|
The default function for testing for compatibility.
|
|
*/
|
|
|
|
CONST bfd_arch_info_type *
|
|
DEFUN(bfd_default_compatible,(a,b),
|
|
CONST bfd_arch_info_type *a AND
|
|
CONST bfd_arch_info_type *b)
|
|
{
|
|
if(a->arch != b->arch) return NULL;
|
|
|
|
if (a->mach > b->mach) {
|
|
return a;
|
|
}
|
|
if (b->mach > a->mach) {
|
|
return b;
|
|
}
|
|
return a;
|
|
}
|
|
|
|
|
|
/*
|
|
INTERNAL_FUNCTION
|
|
bfd_default_scan
|
|
|
|
SYNOPSIS
|
|
boolean bfd_default_scan(CONST struct bfd_arch_info *info, CONST char *string);
|
|
|
|
DESCRIPTION
|
|
The default function for working out whether this is an
|
|
architecture hit and a machine hit.
|
|
*/
|
|
|
|
boolean
|
|
DEFUN(bfd_default_scan,(info, string),
|
|
CONST struct bfd_arch_info *info AND
|
|
CONST char *string)
|
|
{
|
|
CONST char *ptr_src;
|
|
CONST char *ptr_tst;
|
|
unsigned long number;
|
|
enum bfd_architecture arch;
|
|
/* First test for an exact match */
|
|
if (strcmp(string, info->printable_name) == 0) return true;
|
|
|
|
/* See how much of the supplied string matches with the
|
|
architecture, eg the string m68k:68020 would match the 68k entry
|
|
up to the :, then we get left with the machine number */
|
|
|
|
for (ptr_src = string,
|
|
ptr_tst = info->arch_name;
|
|
*ptr_src && *ptr_tst;
|
|
ptr_src++,
|
|
ptr_tst++)
|
|
{
|
|
if (*ptr_src != *ptr_tst) break;
|
|
}
|
|
|
|
/* Chewed up as much of the architecture as will match, skip any
|
|
colons */
|
|
if (*ptr_src == ':') ptr_src++;
|
|
|
|
if (*ptr_src == 0) {
|
|
/* nothing more, then only keep this one if it is the default
|
|
machine for this architecture */
|
|
return info->the_default;
|
|
}
|
|
number = 0;
|
|
while (isdigit(*ptr_src)) {
|
|
number = number * 10 + *ptr_src - '0';
|
|
ptr_src++;
|
|
}
|
|
|
|
switch (number)
|
|
{
|
|
case 300:
|
|
arch = bfd_arch_h8300;
|
|
break;
|
|
|
|
case 500:
|
|
arch = bfd_arch_h8500;
|
|
break;
|
|
|
|
case 68010:
|
|
case 68020:
|
|
case 68030:
|
|
case 68040:
|
|
case 68332:
|
|
case 68050:
|
|
case 68000:
|
|
arch = bfd_arch_m68k;
|
|
break;
|
|
case 386:
|
|
case 80386:
|
|
case 486:
|
|
case 80486:
|
|
arch = bfd_arch_i386;
|
|
break;
|
|
case 29000:
|
|
arch = bfd_arch_a29k;
|
|
break;
|
|
|
|
case 8000:
|
|
arch = bfd_arch_z8k;
|
|
break;
|
|
|
|
case 32000:
|
|
arch = bfd_arch_we32k;
|
|
break;
|
|
|
|
case 860:
|
|
case 80860:
|
|
arch = bfd_arch_i860;
|
|
break;
|
|
case 960:
|
|
case 80960:
|
|
arch = bfd_arch_i960;
|
|
break;
|
|
|
|
case 2000:
|
|
case 3000:
|
|
case 4000:
|
|
case 4400:
|
|
arch = bfd_arch_mips;
|
|
break;
|
|
|
|
case 6000:
|
|
arch = bfd_arch_rs6000;
|
|
break;
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
if (arch != info->arch)
|
|
return false;
|
|
|
|
if (number != info->mach)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/*
|
|
FUNCTION
|
|
bfd_get_arch_info
|
|
|
|
SYNOPSIS
|
|
bfd_arch_info_type * bfd_get_arch_info(bfd *abfd);
|
|
|
|
DESCRIPTION
|
|
Return the architecture info struct in @var{abfd}.
|
|
*/
|
|
|
|
bfd_arch_info_type *
|
|
DEFUN(bfd_get_arch_info,(abfd),
|
|
bfd *abfd)
|
|
{
|
|
return abfd->arch_info;
|
|
}
|
|
|
|
|
|
/*
|
|
FUNCTION
|
|
bfd_lookup_arch
|
|
|
|
SYNOPSIS
|
|
bfd_arch_info_type *bfd_lookup_arch
|
|
(enum bfd_architecture
|
|
arch,
|
|
long machine);
|
|
|
|
DESCRIPTION
|
|
Look for the architecure info structure which matches the
|
|
arguments @var{arch} and @var{machine}. A machine of 0 matches the
|
|
machine/architecture structure which marks itself as the
|
|
default.
|
|
*/
|
|
|
|
bfd_arch_info_type *
|
|
DEFUN(bfd_lookup_arch,(arch, machine),
|
|
enum bfd_architecture arch AND
|
|
long machine)
|
|
{
|
|
bfd_arch_info_type *ap;
|
|
bfd_check_init();
|
|
for (ap = bfd_arch_info_list;
|
|
ap != (bfd_arch_info_type *)NULL;
|
|
ap = ap->next) {
|
|
if (ap->arch == arch &&
|
|
((ap->mach == machine)
|
|
|| (ap->the_default && machine == 0))) {
|
|
return ap;
|
|
}
|
|
}
|
|
return (bfd_arch_info_type *)NULL;
|
|
}
|
|
|
|
|
|
/*
|
|
FUNCTION
|
|
bfd_printable_arch_mach
|
|
|
|
SYNOPSIS
|
|
CONST char *bfd_printable_arch_mach
|
|
(enum bfd_architecture arch, unsigned long machine);
|
|
|
|
DESCRIPTION
|
|
Return a printable string representing the architecture and
|
|
machine type.
|
|
|
|
This routine is depreciated.
|
|
*/
|
|
|
|
CONST char *
|
|
DEFUN(bfd_printable_arch_mach,(arch, machine),
|
|
enum bfd_architecture arch AND
|
|
unsigned long machine)
|
|
{
|
|
bfd_arch_info_type *ap = bfd_lookup_arch(arch, machine);
|
|
if(ap) return ap->printable_name;
|
|
return "UNKNOWN!";
|
|
}
|