darling-gdb/gold/script.cc
2006-11-29 17:56:40 +00:00

1194 lines
29 KiB
C++

// script.cc -- handle linker scripts for gold.
#include "gold.h"
#include <string>
#include <vector>
#include <cstdio>
#include <cstdlib>
#include "options.h"
#include "fileread.h"
#include "workqueue.h"
#include "readsyms.h"
#include "yyscript.h"
#include "script.h"
#include "script-c.h"
namespace gold
{
// A token read from a script file. We don't implement keywords here;
// all keywords are simply represented as a string.
class Token
{
public:
// Token classification.
enum Classification
{
// Token is invalid.
TOKEN_INVALID,
// Token indicates end of input.
TOKEN_EOF,
// Token is a string of characters.
TOKEN_STRING,
// Token is an operator.
TOKEN_OPERATOR,
// Token is a number (an integer).
TOKEN_INTEGER
};
// We need an empty constructor so that we can put this STL objects.
Token()
: classification_(TOKEN_INVALID), value_(), opcode_(0),
lineno_(0), charpos_(0)
{ }
// A general token with no value.
Token(Classification classification, int lineno, int charpos)
: classification_(classification), value_(), opcode_(0),
lineno_(lineno), charpos_(charpos)
{
gold_assert(classification == TOKEN_INVALID
|| classification == TOKEN_EOF);
}
// A general token with a value.
Token(Classification classification, const std::string& value,
int lineno, int charpos)
: classification_(classification), value_(value), opcode_(0),
lineno_(lineno), charpos_(charpos)
{
gold_assert(classification != TOKEN_INVALID
&& classification != TOKEN_EOF);
}
// A token representing a string of characters.
Token(const std::string& s, int lineno, int charpos)
: classification_(TOKEN_STRING), value_(s), opcode_(0),
lineno_(lineno), charpos_(charpos)
{ }
// A token representing an operator.
Token(int opcode, int lineno, int charpos)
: classification_(TOKEN_OPERATOR), value_(), opcode_(opcode),
lineno_(lineno), charpos_(charpos)
{ }
// Return whether the token is invalid.
bool
is_invalid() const
{ return this->classification_ == TOKEN_INVALID; }
// Return whether this is an EOF token.
bool
is_eof() const
{ return this->classification_ == TOKEN_EOF; }
// Return the token classification.
Classification
classification() const
{ return this->classification_; }
// Return the line number at which the token starts.
int
lineno() const
{ return this->lineno_; }
// Return the character position at this the token starts.
int
charpos() const
{ return this->charpos_; }
// Get the value of a token.
const std::string&
string_value() const
{
gold_assert(this->classification_ == TOKEN_STRING);
return this->value_;
}
int
operator_value() const
{
gold_assert(this->classification_ == TOKEN_OPERATOR);
return this->opcode_;
}
int64_t
integer_value() const
{
gold_assert(this->classification_ == TOKEN_INTEGER);
return strtoll(this->value_.c_str(), NULL, 0);
}
private:
// The token classification.
Classification classification_;
// The token value, for TOKEN_STRING or TOKEN_INTEGER.
std::string value_;
// The token value, for TOKEN_OPERATOR.
int opcode_;
// The line number where this token started (one based).
int lineno_;
// The character position within the line where this token started
// (one based).
int charpos_;
};
// This class handles lexing a file into a sequence of tokens. We
// don't expect linker scripts to be large, so we just read them and
// tokenize them all at once.
class Lex
{
public:
Lex(Input_file* input_file)
: input_file_(input_file), tokens_()
{ }
// Tokenize the file. Return the final token, which will be either
// an invalid token or an EOF token. An invalid token indicates
// that tokenization failed.
Token
tokenize();
// A token sequence.
typedef std::vector<Token> Token_sequence;
// Return the tokens.
const Token_sequence&
tokens() const
{ return this->tokens_; }
private:
Lex(const Lex&);
Lex& operator=(const Lex&);
// Read the file into a string buffer.
void
read_file(std::string*);
// Make a general token with no value at the current location.
Token
make_token(Token::Classification c, const char* p) const
{ return Token(c, this->lineno_, p - this->linestart_ + 1); }
// Make a general token with a value at the current location.
Token
make_token(Token::Classification c, const std::string& v, const char* p)
const
{ return Token(c, v, this->lineno_, p - this->linestart_ + 1); }
// Make an operator token at the current location.
Token
make_token(int opcode, const char* p) const
{ return Token(opcode, this->lineno_, p - this->linestart_ + 1); }
// Make an invalid token at the current location.
Token
make_invalid_token(const char* p)
{ return this->make_token(Token::TOKEN_INVALID, p); }
// Make an EOF token at the current location.
Token
make_eof_token(const char* p)
{ return this->make_token(Token::TOKEN_EOF, p); }
// Return whether C can be the first character in a name. C2 is the
// next character, since we sometimes need that.
static inline bool
can_start_name(char c, char c2);
// Return whether C can appear in a name which has already started.
static inline bool
can_continue_name(char c);
// Return whether C, C2, C3 can start a hex number.
static inline bool
can_start_hex(char c, char c2, char c3);
// Return whether C can appear in a hex number.
static inline bool
can_continue_hex(char c);
// Return whether C can start a non-hex number.
static inline bool
can_start_number(char c);
// Return whether C can appear in a non-hex number.
static inline bool
can_continue_number(char c)
{ return Lex::can_start_number(c); }
// If C1 C2 C3 form a valid three character operator, return the
// opcode. Otherwise return 0.
static inline int
three_char_operator(char c1, char c2, char c3);
// If C1 C2 form a valid two character operator, return the opcode.
// Otherwise return 0.
static inline int
two_char_operator(char c1, char c2);
// If C1 is a valid one character operator, return the opcode.
// Otherwise return 0.
static inline int
one_char_operator(char c1);
// Read the next token.
Token
get_token(const char**);
// Skip a C style /* */ comment. Return false if the comment did
// not end.
bool
skip_c_comment(const char**);
// Skip a line # comment. Return false if there was no newline.
bool
skip_line_comment(const char**);
// Build a token CLASSIFICATION from all characters that match
// CAN_CONTINUE_FN. The token starts at START. Start matching from
// MATCH. Set *PP to the character following the token.
inline Token
gather_token(Token::Classification, bool (*can_continue_fn)(char),
const char* start, const char* match, const char** pp);
// Build a token from a quoted string.
Token
gather_quoted_string(const char** pp);
// The file we are reading.
Input_file* input_file_;
// The token sequence we create.
Token_sequence tokens_;
// The current line number.
int lineno_;
// The start of the current line in the buffer.
const char* linestart_;
};
// Read the whole file into memory. We don't expect linker scripts to
// be large, so we just use a std::string as a buffer. We ignore the
// data we've already read, so that we read aligned buffers.
void
Lex::read_file(std::string* contents)
{
contents->clear();
off_t off = 0;
off_t got;
unsigned char buf[BUFSIZ];
do
{
this->input_file_->file().read(off, sizeof buf, buf, &got);
contents->append(reinterpret_cast<char*>(&buf[0]), got);
}
while (got == sizeof buf);
}
// Return whether C can be the start of a name, if the next character
// is C2. A name can being with a letter, underscore, period, or
// dollar sign. Because a name can be a file name, we also permit
// forward slash, backslash, and tilde. Tilde is the tricky case
// here; GNU ld also uses it as a bitwise not operator. It is only
// recognized as the operator if it is not immediately followed by
// some character which can appear in a symbol. That is, "~0" is a
// symbol name, and "~ 0" is an expression using bitwise not. We are
// compatible.
inline bool
Lex::can_start_name(char c, char c2)
{
switch (c)
{
case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
case 'G': case 'H': case 'I': case 'J': case 'K': case 'L':
case 'M': case 'N': case 'O': case 'Q': case 'P': case 'R':
case 'S': case 'T': case 'U': case 'V': case 'W': case 'X':
case 'Y': case 'Z':
case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
case 'g': case 'h': case 'i': case 'j': case 'k': case 'l':
case 'm': case 'n': case 'o': case 'q': case 'p': case 'r':
case 's': case 't': case 'u': case 'v': case 'w': case 'x':
case 'y': case 'z':
case '_': case '.': case '$': case '/': case '\\':
return true;
case '~':
return can_continue_name(c2);
default:
return false;
}
}
// Return whether C can continue a name which has already started.
// Subsequent characters in a name are the same as the leading
// characters, plus digits and "=+-:[],?*". So in general the linker
// script language requires spaces around operators.
inline bool
Lex::can_continue_name(char c)
{
switch (c)
{
case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
case 'G': case 'H': case 'I': case 'J': case 'K': case 'L':
case 'M': case 'N': case 'O': case 'Q': case 'P': case 'R':
case 'S': case 'T': case 'U': case 'V': case 'W': case 'X':
case 'Y': case 'Z':
case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
case 'g': case 'h': case 'i': case 'j': case 'k': case 'l':
case 'm': case 'n': case 'o': case 'q': case 'p': case 'r':
case 's': case 't': case 'u': case 'v': case 'w': case 'x':
case 'y': case 'z':
case '_': case '.': case '$': case '/': case '\\':
case '~':
case '0': case '1': case '2': case '3': case '4':
case '5': case '6': case '7': case '8': case '9':
case '=': case '+': case '-': case ':': case '[': case ']':
case ',': case '?': case '*':
return true;
default:
return false;
}
}
// For a number we accept 0x followed by hex digits, or any sequence
// of digits. The old linker accepts leading '$' for hex, and
// trailing HXBOD. Those are for MRI compatibility and we don't
// accept them. The old linker also accepts trailing MK for mega or
// kilo. Those are mentioned in the documentation, and we accept
// them.
// Return whether C1 C2 C3 can start a hex number.
inline bool
Lex::can_start_hex(char c1, char c2, char c3)
{
if (c1 == '0' && (c2 == 'x' || c2 == 'X'))
return Lex::can_continue_hex(c3);
return false;
}
// Return whether C can appear in a hex number.
inline bool
Lex::can_continue_hex(char c)
{
switch (c)
{
case '0': case '1': case '2': case '3': case '4':
case '5': case '6': case '7': case '8': case '9':
case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
return true;
default:
return false;
}
}
// Return whether C can start a non-hex number.
inline bool
Lex::can_start_number(char c)
{
switch (c)
{
case '0': case '1': case '2': case '3': case '4':
case '5': case '6': case '7': case '8': case '9':
return true;
default:
return false;
}
}
// If C1 C2 C3 form a valid three character operator, return the
// opcode (defined in the yyscript.h file generated from yyscript.y).
// Otherwise return 0.
inline int
Lex::three_char_operator(char c1, char c2, char c3)
{
switch (c1)
{
case '<':
if (c2 == '<' && c3 == '=')
return LSHIFTEQ;
break;
case '>':
if (c2 == '>' && c3 == '=')
return RSHIFTEQ;
break;
default:
break;
}
return 0;
}
// If C1 C2 form a valid two character operator, return the opcode
// (defined in the yyscript.h file generated from yyscript.y).
// Otherwise return 0.
inline int
Lex::two_char_operator(char c1, char c2)
{
switch (c1)
{
case '=':
if (c2 == '=')
return EQ;
break;
case '!':
if (c2 == '=')
return NE;
break;
case '+':
if (c2 == '=')
return PLUSEQ;
break;
case '-':
if (c2 == '=')
return MINUSEQ;
break;
case '*':
if (c2 == '=')
return MULTEQ;
break;
case '/':
if (c2 == '=')
return DIVEQ;
break;
case '|':
if (c2 == '=')
return OREQ;
if (c2 == '|')
return OROR;
break;
case '&':
if (c2 == '=')
return ANDEQ;
if (c2 == '&')
return ANDAND;
break;
case '>':
if (c2 == '=')
return GE;
if (c2 == '>')
return RSHIFT;
break;
case '<':
if (c2 == '=')
return LE;
if (c2 == '<')
return LSHIFT;
break;
default:
break;
}
return 0;
}
// If C1 is a valid operator, return the opcode. Otherwise return 0.
inline int
Lex::one_char_operator(char c1)
{
switch (c1)
{
case '+':
case '-':
case '*':
case '/':
case '%':
case '!':
case '&':
case '|':
case '^':
case '~':
case '<':
case '>':
case '=':
case '?':
case ',':
case '(':
case ')':
case '{':
case '}':
case '[':
case ']':
case ':':
case ';':
return c1;
default:
return 0;
}
}
// Skip a C style comment. *PP points to just after the "/*". Return
// false if the comment did not end.
bool
Lex::skip_c_comment(const char** pp)
{
const char* p = *pp;
while (p[0] != '*' || p[1] != '/')
{
if (*p == '\0')
{
*pp = p;
return false;
}
if (*p == '\n')
{
++this->lineno_;
this->linestart_ = p + 1;
}
++p;
}
*pp = p + 2;
return true;
}
// Skip a line # comment. Return false if there was no newline.
bool
Lex::skip_line_comment(const char** pp)
{
const char* p = *pp;
size_t skip = strcspn(p, "\n");
if (p[skip] == '\0')
{
*pp = p + skip;
return false;
}
p += skip + 1;
++this->lineno_;
this->linestart_ = p;
*pp = p;
return true;
}
// Build a token CLASSIFICATION from all characters that match
// CAN_CONTINUE_FN. Update *PP.
inline Token
Lex::gather_token(Token::Classification classification,
bool (*can_continue_fn)(char),
const char* start,
const char* match,
const char **pp)
{
while ((*can_continue_fn)(*match))
++match;
*pp = match;
return this->make_token(classification,
std::string(start, match - start),
start);
}
// Build a token from a quoted string.
Token
Lex::gather_quoted_string(const char** pp)
{
const char* start = *pp;
const char* p = start;
++p;
size_t skip = strcspn(p, "\"\n");
if (p[skip] != '"')
return this->make_invalid_token(start);
*pp = p + skip + 1;
return this->make_token(Token::TOKEN_STRING,
std::string(p, skip),
start);
}
// Return the next token at *PP. Update *PP. General guideline: we
// require linker scripts to be simple ASCII. No unicode linker
// scripts. In particular we can assume that any '\0' is the end of
// the input.
Token
Lex::get_token(const char** pp)
{
const char* p = *pp;
while (true)
{
if (*p == '\0')
{
*pp = p;
return this->make_eof_token(p);
}
// Skip whitespace quickly.
while (*p == ' ' || *p == '\t')
++p;
if (*p == '\n')
{
++p;
++this->lineno_;
this->linestart_ = p;
continue;
}
// Skip C style comments.
if (p[0] == '/' && p[1] == '*')
{
int lineno = this->lineno_;
int charpos = p - this->linestart_ + 1;
*pp = p + 2;
if (!this->skip_c_comment(pp))
return Token(Token::TOKEN_INVALID, lineno, charpos);
p = *pp;
continue;
}
// Skip line comments.
if (*p == '#')
{
*pp = p + 1;
if (!this->skip_line_comment(pp))
return this->make_eof_token(p);
p = *pp;
continue;
}
// Check for a name.
if (Lex::can_start_name(p[0], p[1]))
return this->gather_token(Token::TOKEN_STRING,
Lex::can_continue_name,
p, p + 2, pp);
// We accept any arbitrary name in double quotes, as long as it
// does not cross a line boundary.
if (*p == '"')
{
*pp = p;
return this->gather_quoted_string(pp);
}
// Check for a number.
if (Lex::can_start_hex(p[0], p[1], p[2]))
return this->gather_token(Token::TOKEN_INTEGER,
Lex::can_continue_hex,
p, p + 3, pp);
if (Lex::can_start_number(p[0]))
return this->gather_token(Token::TOKEN_INTEGER,
Lex::can_continue_number,
p, p + 1, pp);
// Check for operators.
int opcode = Lex::three_char_operator(p[0], p[1], p[2]);
if (opcode != 0)
{
*pp = p + 3;
return this->make_token(opcode, p);
}
opcode = Lex::two_char_operator(p[0], p[1]);
if (opcode != 0)
{
*pp = p + 2;
return this->make_token(opcode, p);
}
opcode = Lex::one_char_operator(p[0]);
if (opcode != 0)
{
*pp = p + 1;
return this->make_token(opcode, p);
}
return this->make_token(Token::TOKEN_INVALID, p);
}
}
// Tokenize the file. Return the final token.
Token
Lex::tokenize()
{
std::string contents;
this->read_file(&contents);
const char* p = contents.c_str();
this->lineno_ = 1;
this->linestart_ = p;
while (true)
{
Token t(this->get_token(&p));
// Don't let an early null byte fool us into thinking that we've
// reached the end of the file.
if (t.is_eof()
&& static_cast<size_t>(p - contents.c_str()) < contents.length())
t = this->make_invalid_token(p);
if (t.is_invalid() || t.is_eof())
return t;
this->tokens_.push_back(t);
}
}
// A trivial task which waits for THIS_BLOCKER to be clear and then
// clears NEXT_BLOCKER. THIS_BLOCKER may be NULL.
class Script_unblock : public Task
{
public:
Script_unblock(Task_token* this_blocker, Task_token* next_blocker)
: this_blocker_(this_blocker), next_blocker_(next_blocker)
{ }
~Script_unblock()
{
if (this->this_blocker_ != NULL)
delete this->this_blocker_;
}
Is_runnable_type
is_runnable(Workqueue*)
{
if (this->this_blocker_ != NULL && this->this_blocker_->is_blocked())
return IS_BLOCKED;
return IS_RUNNABLE;
}
Task_locker*
locks(Workqueue* workqueue)
{
return new Task_locker_block(*this->next_blocker_, workqueue);
}
void
run(Workqueue*)
{ }
private:
Task_token* this_blocker_;
Task_token* next_blocker_;
};
// This class holds data passed through the parser to the lexer and to
// the parser support functions. This avoids global variables. We
// can't use global variables because we need not be called in the
// main thread.
class Parser_closure
{
public:
Parser_closure(const char* filename,
const Position_dependent_options& posdep_options,
bool in_group,
const Lex::Token_sequence* tokens)
: filename_(filename), posdep_options_(posdep_options),
in_group_(in_group), tokens_(tokens),
next_token_index_(0), inputs_(NULL)
{ }
// Return the file name.
const char*
filename() const
{ return this->filename_; }
// Return the position dependent options. The caller may modify
// this.
Position_dependent_options&
position_dependent_options()
{ return this->posdep_options_; }
// Return whether this script is being run in a group.
bool
in_group() const
{ return this->in_group_; }
// Whether we are at the end of the token list.
bool
at_eof() const
{ return this->next_token_index_ >= this->tokens_->size(); }
// Return the next token.
const Token*
next_token()
{
const Token* ret = &(*this->tokens_)[this->next_token_index_];
++this->next_token_index_;
return ret;
}
// Return the list of input files, creating it if necessary. This
// is a space leak--we never free the INPUTS_ pointer.
Input_arguments*
inputs()
{
if (this->inputs_ == NULL)
this->inputs_ = new Input_arguments();
return this->inputs_;
}
// Return whether we saw any input files.
bool
saw_inputs() const
{ return this->inputs_ != NULL && !this->inputs_->empty(); }
private:
// The name of the file we are reading.
const char* filename_;
// The position dependent options.
Position_dependent_options posdep_options_;
// Whether we are currently in a --start-group/--end-group.
bool in_group_;
// The tokens to be returned by the lexer.
const Lex::Token_sequence* tokens_;
// The index of the next token to return.
unsigned int next_token_index_;
// New input files found to add to the link.
Input_arguments* inputs_;
};
// FILE was found as an argument on the command line. Try to read it
// as a script. We've already read BYTES of data into P, but we
// ignore that. Return true if the file was handled.
bool
read_input_script(Workqueue* workqueue, const General_options& options,
Symbol_table* symtab, Layout* layout,
const Dirsearch& dirsearch, Input_objects* input_objects,
Input_group* input_group,
const Input_argument* input_argument,
Input_file* input_file, const unsigned char*, off_t,
Task_token* this_blocker, Task_token* next_blocker)
{
Lex lex(input_file);
if (lex.tokenize().is_invalid())
return false;
Parser_closure closure(input_file->filename().c_str(),
input_argument->file().options(),
input_group != NULL,
&lex.tokens());
if (yyparse(&closure) != 0)
return false;
// THIS_BLOCKER must be clear before we may add anything to the
// symbol table. We are responsible for unblocking NEXT_BLOCKER
// when we are done. We are responsible for deleting THIS_BLOCKER
// when it is unblocked.
if (!closure.saw_inputs())
{
// The script did not add any files to read. Note that we are
// not permitted to call NEXT_BLOCKER->unblock() here even if
// THIS_BLOCKER is NULL, as we are not in the main thread.
workqueue->queue(new Script_unblock(this_blocker, next_blocker));
return true;
}
for (Input_arguments::const_iterator p = closure.inputs()->begin();
p != closure.inputs()->end();
++p)
{
Task_token* nb;
if (p + 1 == closure.inputs()->end())
nb = next_blocker;
else
{
nb = new Task_token();
nb->add_blocker();
}
workqueue->queue(new Read_symbols(options, input_objects, symtab,
layout, dirsearch, &*p,
input_group, this_blocker, nb));
this_blocker = nb;
}
return true;
}
// Manage mapping from keywords to the codes expected by the bison
// parser.
class Keyword_to_parsecode
{
public:
// The structure which maps keywords to parsecodes.
struct Keyword_parsecode
{
// Keyword.
const char* keyword;
// Corresponding parsecode.
int parsecode;
};
// Return the parsecode corresponding KEYWORD, or 0 if it is not a
// keyword.
static int
keyword_to_parsecode(const char* keyword);
private:
// The array of all keywords.
static const Keyword_parsecode keyword_parsecodes_[];
// The number of keywords.
static const int keyword_count;
};
// Mapping from keyword string to keyword parsecode. This array must
// be kept in sorted order. Parsecodes are looked up using bsearch.
// This array must correspond to the list of parsecodes in yyscript.y.
const Keyword_to_parsecode::Keyword_parsecode
Keyword_to_parsecode::keyword_parsecodes_[] =
{
{ "ABSOLUTE", ABSOLUTE },
{ "ADDR", ADDR },
{ "ALIGN", ALIGN_K },
{ "ASSERT", ASSERT_K },
{ "AS_NEEDED", AS_NEEDED },
{ "AT", AT },
{ "BIND", BIND },
{ "BLOCK", BLOCK },
{ "BYTE", BYTE },
{ "CONSTANT", CONSTANT },
{ "CONSTRUCTORS", CONSTRUCTORS },
{ "COPY", COPY },
{ "CREATE_OBJECT_SYMBOLS", CREATE_OBJECT_SYMBOLS },
{ "DATA_SEGMENT_ALIGN", DATA_SEGMENT_ALIGN },
{ "DATA_SEGMENT_END", DATA_SEGMENT_END },
{ "DATA_SEGMENT_RELRO_END", DATA_SEGMENT_RELRO_END },
{ "DEFINED", DEFINED },
{ "DSECT", DSECT },
{ "ENTRY", ENTRY },
{ "EXCLUDE_FILE", EXCLUDE_FILE },
{ "EXTERN", EXTERN },
{ "FILL", FILL },
{ "FLOAT", FLOAT },
{ "FORCE_COMMON_ALLOCATION", FORCE_COMMON_ALLOCATION },
{ "GROUP", GROUP },
{ "HLL", HLL },
{ "INCLUDE", INCLUDE },
{ "INFO", INFO },
{ "INHIBIT_COMMON_ALLOCATION", INHIBIT_COMMON_ALLOCATION },
{ "INPUT", INPUT },
{ "KEEP", KEEP },
{ "LENGTH", LENGTH },
{ "LOADADDR", LOADADDR },
{ "LONG", LONG },
{ "MAP", MAP },
{ "MAX", MAX_K },
{ "MEMORY", MEMORY },
{ "MIN", MIN_K },
{ "NEXT", NEXT },
{ "NOCROSSREFS", NOCROSSREFS },
{ "NOFLOAT", NOFLOAT },
{ "NOLOAD", NOLOAD },
{ "ONLY_IF_RO", ONLY_IF_RO },
{ "ONLY_IF_RW", ONLY_IF_RW },
{ "ORIGIN", ORIGIN },
{ "OUTPUT", OUTPUT },
{ "OUTPUT_ARCH", OUTPUT_ARCH },
{ "OUTPUT_FORMAT", OUTPUT_FORMAT },
{ "OVERLAY", OVERLAY },
{ "PHDRS", PHDRS },
{ "PROVIDE", PROVIDE },
{ "PROVIDE_HIDDEN", PROVIDE_HIDDEN },
{ "QUAD", QUAD },
{ "SEARCH_DIR", SEARCH_DIR },
{ "SECTIONS", SECTIONS },
{ "SEGMENT_START", SEGMENT_START },
{ "SHORT", SHORT },
{ "SIZEOF", SIZEOF },
{ "SIZEOF_HEADERS", SIZEOF_HEADERS },
{ "SORT_BY_ALIGNMENT", SORT_BY_ALIGNMENT },
{ "SORT_BY_NAME", SORT_BY_NAME },
{ "SPECIAL", SPECIAL },
{ "SQUAD", SQUAD },
{ "STARTUP", STARTUP },
{ "SUBALIGN", SUBALIGN },
{ "SYSLIB", SYSLIB },
{ "TARGET", TARGET_K },
{ "TRUNCATE", TRUNCATE },
{ "VERSION", VERSIONK },
{ "global", GLOBAL },
{ "l", LENGTH },
{ "len", LENGTH },
{ "local", LOCAL },
{ "o", ORIGIN },
{ "org", ORIGIN },
{ "sizeof_headers", SIZEOF_HEADERS },
};
const int Keyword_to_parsecode::keyword_count =
(sizeof(Keyword_to_parsecode::keyword_parsecodes_)
/ sizeof(Keyword_to_parsecode::keyword_parsecodes_[0]));
// Comparison function passed to bsearch.
extern "C"
{
static int
ktt_compare(const void* keyv, const void* kttv)
{
const char* key = static_cast<const char*>(keyv);
const Keyword_to_parsecode::Keyword_parsecode* ktt =
static_cast<const Keyword_to_parsecode::Keyword_parsecode*>(kttv);
return strcmp(key, ktt->keyword);
}
} // End extern "C".
int
Keyword_to_parsecode::keyword_to_parsecode(const char* keyword)
{
void* kttv = bsearch(keyword,
Keyword_to_parsecode::keyword_parsecodes_,
Keyword_to_parsecode::keyword_count,
sizeof(Keyword_to_parsecode::keyword_parsecodes_[0]),
ktt_compare);
if (kttv == NULL)
return 0;
Keyword_parsecode* ktt = static_cast<Keyword_parsecode*>(kttv);
return ktt->parsecode;
}
} // End namespace gold.
// The remaining functions are extern "C", so it's clearer to not put
// them in namespace gold.
using namespace gold;
// This function is called by the bison parser to return the next
// token.
extern "C" int
yylex(YYSTYPE* lvalp, void* closurev)
{
Parser_closure* closure = static_cast<Parser_closure*>(closurev);
if (closure->at_eof())
return 0;
const Token* token = closure->next_token();
switch (token->classification())
{
default:
case Token::TOKEN_INVALID:
case Token::TOKEN_EOF:
gold_unreachable();
case Token::TOKEN_STRING:
{
const char* str = token->string_value().c_str();
int parsecode = Keyword_to_parsecode::keyword_to_parsecode(str);
if (parsecode != 0)
return parsecode;
lvalp->string = str;
return STRING;
}
case Token::TOKEN_OPERATOR:
return token->operator_value();
case Token::TOKEN_INTEGER:
lvalp->integer = token->integer_value();
return INTEGER;
}
}
// This function is called by the bison parser to report an error.
extern "C" void
yyerror(void* closurev, const char* message)
{
Parser_closure* closure = static_cast<Parser_closure*>(closurev);
fprintf(stderr, _("%s: %s: %s\n"),
program_name, closure->filename(), message);
gold_exit(false);
}
// Called by the bison parser to add a file to the link.
extern "C" void
script_add_file(void* closurev, const char* name)
{
Parser_closure* closure = static_cast<Parser_closure*>(closurev);
Input_file_argument file(name, false, closure->position_dependent_options());
closure->inputs()->add_file(file);
}
// Called by the bison parser to start a group. If we are already in
// a group, that means that this script was invoked within a
// --start-group --end-group sequence on the command line, or that
// this script was found in a GROUP of another script. In that case,
// we simply continue the existing group, rather than starting a new
// one. It is possible to construct a case in which this will do
// something other than what would happen if we did a recursive group,
// but it's hard to imagine why the different behaviour would be
// useful for a real program. Avoiding recursive groups is simpler
// and more efficient.
extern "C" void
script_start_group(void* closurev)
{
Parser_closure* closure = static_cast<Parser_closure*>(closurev);
if (!closure->in_group())
closure->inputs()->start_group();
}
// Called by the bison parser at the end of a group.
extern "C" void
script_end_group(void* closurev)
{
Parser_closure* closure = static_cast<Parser_closure*>(closurev);
if (!closure->in_group())
closure->inputs()->end_group();
}
// Called by the bison parser to start an AS_NEEDED list.
extern "C" void
script_start_as_needed(void* closurev)
{
Parser_closure* closure = static_cast<Parser_closure*>(closurev);
closure->position_dependent_options().set_as_needed();
}
// Called by the bison parser at the end of an AS_NEEDED list.
extern "C" void
script_end_as_needed(void* closurev)
{
Parser_closure* closure = static_cast<Parser_closure*>(closurev);
closure->position_dependent_options().clear_as_needed();
}