darling-gdb/gdb/WHATS.NEW
1991-12-07 22:41:16 +00:00

348 lines
13 KiB
Plaintext
Executable File

What has changed since GDB-3.5?
(Organized release by release)
*** Changes in GDB-4.3:
* New machines supported (host and target)
Amiga 3000 running Amix m68k-cbm-svr4 or amix
NCR 3000 386 running SVR4 i386-ncr-svr4 or ncr3000
Motorola Delta 88000 running Sys V m88k-motorola-sysv or delta88
* Almost SCO Unix support
We had hoped to support:
SCO Unix on i386 IBM PC clones i386-sco-sysv or i386sco
(except for core file support), but we discovered very late in the release
that it has problems with process groups that render gdb unusable. Sorry
about that. I encourage people to fix it and post the fixes.
* Preliminary ELF and DWARF support
GDB can read ELF object files on System V Release 4, and can handle
debugging records for C, in DWARF format, in ELF files. This support
is preliminary. If you bring up GDB on another SVR4 system, please
send mail to bug-gdb@prep.ai.mit.edu to let us know what changes were
reqired (if any).
* New Readline
GDB now uses the latest `readline' library. One user-visible change
is that two tabs will list possible command completions, which previously
required typing M-? (meta-question mark, or ESC ?).
* Bugs fixed
The `stepi' bug that many of you noticed has been squashed.
Many bugs in C++ have been handled. Many more remain to be handled.
See the various ChangeLog files (primarily in gdb and bfd) for details.
* State of the MIPS world (in case you wondered):
GDB can understand the symbol tables emitted by the compilers
supplied by most vendors of MIPS-based machines, including DEC. These
symbol tables are in a format that essentially nobody else uses.
Some versions of gcc come with an assembler post-processor called
mips-tfile. This program is required if you want to do source-level
debugging of gcc-compiled programs. I believe FSF does not ship
mips-tfile with gcc version 1, but it will eventually come with gcc
version 2.
Debugging of g++ output remains a problem. g++ version 1.xx does not
really support it at all. (If you're lucky, you should be able to get
line numbers and stack traces to work, but no parameters or local
variables.) With some work it should be possible to improve the
situation somewhat.
When gcc version 2 is released, you will have somewhat better luck.
However, even then you will get confusing results for inheritance and
methods.
We will eventually provide full debugging of g++ output on
DECstations. This will probably involve some kind of stabs-in-ecoff
encapulation, but the details have not been worked out yet.
*** Changes in GDB-4.2:
* Improved configuration
Only one copy of `configure' exists now, and it is not self-modifying.
Porting BFD is simpler.
* Stepping improved
The `step' and `next' commands now only stop at the first instruction
of a source line. This prevents the multiple stops that used to occur
in switch statements, for-loops, etc. `Step' continues to stop if a
function that has debugging information is called within the line.
* Bug fixing
Lots of small bugs fixed. More remain.
* New host supported (not target)
Intel 386 PC clone running Mach i386-none-mach
*** Changes in GDB-4.1:
* Multiple source language support
GDB now has internal scaffolding to handle several source languages.
It determines the type of each source file from its filename extension,
and will switch expression parsing and number formatting to match the
language of the function in the currently selected stack frame.
You can also specifically set the language to be used, with
`set language c' or `set language modula-2'.
* GDB and Modula-2
GDB now has preliminary support for the GNU Modula-2 compiler,
currently under development at the State University of New York at
Buffalo. Development of both GDB and the GNU Modula-2 compiler will
continue through the fall of 1991 and into 1992.
Other Modula-2 compilers are currently not supported, and attempting to
debug programs compiled with them will likely result in an error as the
symbol table is read. Feel free to work on it, though!
There are hooks in GDB for strict type checking and range checking,
in the `Modula-2 philosophy', but they do not currently work.
* set write on/off
GDB can now write to executable and core files (e.g. patch
a variable's value). You must turn this switch on, specify
the file ("exec foo" or "core foo"), *then* modify it, e.g.
by assigning a new value to a variable. Modifications take
effect immediately.
* Automatic SunOS shared library reading
When you run your program, GDB automatically determines where its
shared libraries (if any) have been loaded, and reads their symbols.
The `share' command is no longer needed. This also works when
examining core files.
* set listsize
You can specify the number of lines that the `list' command shows.
The default is 10.
* New machines supported (host and target)
SGI Iris (MIPS) running Irix V3: mips-sgi-irix or iris
Sony NEWS (68K) running NEWSOS 3.x: m68k-sony-sysv or news
Ultracomputer (29K) running Sym1: a29k-nyu-sym1 or ultra3
* New hosts supported (not targets)
IBM RT/PC: romp-ibm-aix or rtpc
* New targets supported (not hosts)
AMD 29000 embedded with COFF a29k-none-coff
AMD 29000 embedded with a.out a29k-none-aout
Ultracomputer remote kernel debug a29k-nyu-kern
* New remote interfaces
AMD 29000 Adapt
AMD 29000 Minimon
*** Changes in GDB-4.0:
* New Facilities
Wide output is wrapped at good places to make the output more readable.
Gdb now supports cross-debugging from a host machine of one type to a
target machine of another type. Communication with the target system
is over serial lines. The ``target'' command handles connecting to the
remote system; the ``load'' command will download a program into the
remote system. Serial stubs for the m68k and i386 are provided. Gdb
also supports debugging of realtime processes running under VxWorks,
using SunRPC Remote Procedure Calls over TCP/IP to talk to a debugger
stub on the target system.
New CPUs supported include the AMD 29000 and Intel 960.
GDB now reads object files and symbol tables via a ``binary file''
library, which allows a single copy of GDB to debug programs of multiple
object file types such as a.out and coff.
There is now a GDB reference card in "doc/refcard.tex". (Make targets
refcard.dvi and refcard.ps are available to format it).
* Control-Variable user interface simplified
All variables that control the operation of the debugger can be set
by the ``set'' command, and displayed by the ``show'' command.
For example, ``set prompt new-gdb=>'' will change your prompt to new-gdb=>.
``Show prompt'' produces the response:
Gdb's prompt is new-gdb=>.
What follows are the NEW set commands. The command ``help set'' will
print a complete list of old and new set commands. ``help set FOO''
will give a longer description of the variable FOO. ``show'' will show
all of the variable descriptions and their current settings.
confirm on/off: Enables warning questions for operations that are
hard to recover from, e.g. rerunning the program while
it is already running. Default is ON.
editing on/off: Enables EMACS style command line editing
of input. Previous lines can be recalled with
control-P, the current line can be edited with control-B,
you can search for commands with control-R, etc.
Default is ON.
history filename NAME: NAME is where the gdb command history
will be stored. The default is .gdb_history,
or the value of the environment variable
GDBHISTFILE.
history size N: The size, in commands, of the command history. The
default is 256, or the value of the environment variable
HISTSIZE.
history save on/off: If this value is set to ON, the history file will
be saved after exiting gdb. If set to OFF, the
file will not be saved. The default is OFF.
history expansion on/off: If this value is set to ON, then csh-like
history expansion will be performed on
command line input. The default is OFF.
radix N: Sets the default radix for input and output. It can be set
to 8, 10, or 16. Note that the argument to "radix" is interpreted
in the current radix, so "set radix 10" is always a no-op.
height N: This integer value is the number of lines on a page. Default
is 24, the current `stty rows'' setting, or the ``li#''
setting from the termcap entry matching the environment
variable TERM.
width N: This integer value is the number of characters on a line.
Default is 80, the current `stty cols'' setting, or the ``co#''
setting from the termcap entry matching the environment
variable TERM.
Note: ``set screensize'' is obsolete. Use ``set height'' and
``set width'' instead.
print address on/off: Print memory addresses in various command displays,
such as stack traces and structure values. Gdb looks
more ``symbolic'' if you turn this off; it looks more
``machine level'' with it on. Default is ON.
print array on/off: Prettyprint arrays. New convenient format! Default
is OFF.
print demangle on/off: Print C++ symbols in "source" form if on,
"raw" form if off.
print asm-demangle on/off: Same, for assembler level printouts
like instructions.
print vtbl on/off: Prettyprint C++ virtual function tables. Default is OFF.
* Support for Epoch Environment.
The epoch environment is a version of Emacs v18 with windowing. One
new command, ``inspect'', is identical to ``print'', except that if you
are running in the epoch environment, the value is printed in its own
window.
* Support for Shared Libraries
GDB can now debug programs and core files that use SunOS shared libraries.
Symbols from a shared library cannot be referenced
before the shared library has been linked with the program (this
happens after you type ``run'' and before the function main() is entered).
At any time after this linking (including when examining core files
from dynamically linked programs), gdb reads the symbols from each
shared library when you type the ``sharedlibrary'' command.
It can be abbreviated ``share''.
sharedlibrary REGEXP: Load shared object library symbols for files
matching a unix regular expression. No argument
indicates to load symbols for all shared libraries.
info sharedlibrary: Status of loaded shared libraries.
* Watchpoints
A watchpoint stops execution of a program whenever the value of an
expression changes. Checking for this slows down execution
tremendously whenever you are in the scope of the expression, but is
quite useful for catching tough ``bit-spreader'' or pointer misuse
problems. Some machines such as the 386 have hardware for doing this
more quickly, and future versions of gdb will use this hardware.
watch EXP: Set a watchpoint (breakpoint) for an expression.
info watchpoints: Information about your watchpoints.
delete N: Deletes watchpoint number N (same as breakpoints).
disable N: Temporarily turns off watchpoint number N (same as breakpoints).
enable N: Re-enables watchpoint number N (same as breakpoints).
* C++ multiple inheritance
When used with a GCC version 2 compiler, GDB supports multiple inheritance
for C++ programs.
* C++ exception handling
Gdb now supports limited C++ exception handling. Besides the existing
ability to breakpoint on an exception handler, gdb can breakpoint on
the raising of an exception (before the stack is peeled back to the
handler's context).
catch FOO: If there is a FOO exception handler in the dynamic scope,
set a breakpoint to catch exceptions which may be raised there.
Multiple exceptions (``catch foo bar baz'') may be caught.
info catch: Lists all exceptions which may be caught in the
current stack frame.
* Minor command changes
The command ``call func (arg, arg, ...)'' now acts like the print
command, except it does not print or save a value if the function's result
is void. This is similar to dbx usage.
The ``up'' and ``down'' commands now always print the frame they end up
at; ``up-silently'' and `down-silently'' can be used in scripts to change
frames without printing.
* New directory command
'dir' now adds directories to the FRONT of the source search path.
The path starts off empty. Source files that contain debug information
about the directory in which they were compiled can be found even
with an empty path; Sun CC and GCC include this information. If GDB can't
find your source file in the current directory, type "dir .".
* Configuring GDB for compilation
For normal use, type ``./configure host''. See README or gdb.texinfo
for more details.
GDB now handles cross debugging. If you are remotely debugging between
two different machines, type ``./configure host -target=targ''.
Host is the machine where gdb will run; targ is the machine
where the program that you are debugging will run.