mirror of
https://github.com/darlinghq/darling-gdb.git
synced 2024-12-13 15:05:46 +00:00
f1bc22da72
* infptrace.c (call_ptrace): Simply call ptrace with four arguments.
515 lines
14 KiB
C
515 lines
14 KiB
C
/* Low level Unix child interface to ptrace, for GDB when running under Unix.
|
||
Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
|
||
1998, 1999, 2000, 2001, 2002, 2004
|
||
Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 59 Temple Place - Suite 330,
|
||
Boston, MA 02111-1307, USA. */
|
||
|
||
#include "defs.h"
|
||
#include "command.h"
|
||
#include "frame.h"
|
||
#include "gdbcore.h"
|
||
#include "inferior.h"
|
||
#include "regcache.h"
|
||
#include "target.h"
|
||
|
||
#include "gdb_assert.h"
|
||
#include "gdb_wait.h"
|
||
#include "gdb_string.h"
|
||
|
||
#include <sys/param.h>
|
||
#include "gdb_dirent.h"
|
||
#include <signal.h>
|
||
#include <sys/ioctl.h>
|
||
|
||
#include "gdb_ptrace.h"
|
||
|
||
#ifdef HAVE_SYS_FILE_H
|
||
#include <sys/file.h>
|
||
#endif
|
||
|
||
#if !defined (FETCH_INFERIOR_REGISTERS)
|
||
#include <sys/user.h> /* Probably need to poke the user structure */
|
||
#endif /* !FETCH_INFERIOR_REGISTERS */
|
||
|
||
#if !defined (CHILD_XFER_MEMORY)
|
||
static void udot_info (char *, int);
|
||
#endif
|
||
|
||
void _initialize_infptrace (void);
|
||
|
||
|
||
int
|
||
call_ptrace (int request, int pid, PTRACE_ARG3_TYPE addr, int data)
|
||
{
|
||
return ptrace (request, pid, addr, data);
|
||
}
|
||
|
||
/* Wait for a process to finish, possibly running a target-specific
|
||
hook before returning. */
|
||
|
||
/* NOTE: cagney: 2004-09-29: Dependant on the native configuration,
|
||
"hppah-nat.c" may either call this or infttrace.c's implementation
|
||
of ptrace_wait. See "hppahpux.mh". */
|
||
|
||
int
|
||
ptrace_wait (ptid_t ptid, int *status)
|
||
{
|
||
int wstate;
|
||
|
||
wstate = wait (status);
|
||
return wstate;
|
||
}
|
||
|
||
#ifndef DEPRECATED_KILL_INFERIOR
|
||
/* NOTE: cagney/2004-09-12: Instead of definining this macro, code
|
||
should call inf_ptrace_target to get a basic ptrace target and then
|
||
locally update any necessary methods. See ppcnbsd-nat.c. */
|
||
|
||
void
|
||
kill_inferior (void)
|
||
{
|
||
int status;
|
||
int pid = PIDGET (inferior_ptid);
|
||
|
||
if (pid == 0)
|
||
return;
|
||
|
||
/* This once used to call "kill" to kill the inferior just in case
|
||
the inferior was still running. As others have noted in the past
|
||
(kingdon) there shouldn't be any way to get here if the inferior
|
||
is still running -- else there's a major problem elsewere in gdb
|
||
and it needs to be fixed.
|
||
|
||
The kill call causes problems under hpux10, so it's been removed;
|
||
if this causes problems we'll deal with them as they arise. */
|
||
ptrace (PT_KILL, pid, (PTRACE_TYPE_ARG3) 0, 0);
|
||
wait (&status);
|
||
target_mourn_inferior ();
|
||
}
|
||
#endif /* DEPRECATED_KILL_INFERIOR */
|
||
|
||
#ifndef DEPRECATED_CHILD_RESUME
|
||
/* NOTE: cagney/2004-09-12: Instead of definining this macro, code
|
||
should call inf_ptrace_target to get a basic ptrace target and then
|
||
locally update any necessary methods. See ppcnbsd-nat.c. */
|
||
|
||
/* Resume execution of the inferior process.
|
||
If STEP is nonzero, single-step it.
|
||
If SIGNAL is nonzero, give it that signal. */
|
||
|
||
void
|
||
child_resume (ptid_t ptid, int step, enum target_signal signal)
|
||
{
|
||
int request = PT_CONTINUE;
|
||
int pid = PIDGET (ptid);
|
||
|
||
if (pid == -1)
|
||
/* Resume all threads. */
|
||
/* I think this only gets used in the non-threaded case, where "resume
|
||
all threads" and "resume inferior_ptid" are the same. */
|
||
pid = PIDGET (inferior_ptid);
|
||
|
||
if (step)
|
||
{
|
||
/* If this system does not support PT_STEP, a higher level
|
||
function will have called single_step() to transmute the step
|
||
request into a continue request (by setting breakpoints on
|
||
all possible successor instructions), so we don't have to
|
||
worry about that here. */
|
||
|
||
gdb_assert (!SOFTWARE_SINGLE_STEP_P ());
|
||
request = PT_STEP;
|
||
}
|
||
|
||
/* An address of (PTRACE_TYPE_ARG3)1 tells ptrace to continue from
|
||
where it was. If GDB wanted it to start some other way, we have
|
||
already written a new PC value to the child. */
|
||
|
||
errno = 0;
|
||
ptrace (request, pid, (PTRACE_TYPE_ARG3)1, target_signal_to_host (signal));
|
||
if (errno != 0)
|
||
perror_with_name ("ptrace");
|
||
}
|
||
#endif /* DEPRECATED_CHILD_RESUME */
|
||
|
||
|
||
/* Start debugging the process whose number is PID. */
|
||
|
||
int
|
||
attach (int pid)
|
||
{
|
||
#ifdef PT_ATTACH
|
||
errno = 0;
|
||
ptrace (PT_ATTACH, pid, (PTRACE_TYPE_ARG3) 0, 0);
|
||
if (errno != 0)
|
||
perror_with_name ("ptrace");
|
||
attach_flag = 1;
|
||
return pid;
|
||
#else
|
||
error ("This system does not support attaching to a process");
|
||
#endif
|
||
}
|
||
|
||
/* Stop debugging the process whose number is PID and continue it with
|
||
signal number SIGNAL. SIGNAL = 0 means just continue it. */
|
||
|
||
void
|
||
detach (int signal)
|
||
{
|
||
#ifdef PT_DETACH
|
||
int pid = PIDGET (inferior_ptid);
|
||
|
||
errno = 0;
|
||
ptrace (PT_DETACH, pid, (PTRACE_TYPE_ARG3) 1, signal);
|
||
if (errno != 0)
|
||
perror_with_name ("ptrace");
|
||
attach_flag = 0;
|
||
#else
|
||
error ("This system does not support detaching from a process");
|
||
#endif
|
||
}
|
||
|
||
|
||
#ifndef FETCH_INFERIOR_REGISTERS
|
||
|
||
/* U_REGS_OFFSET is the offset of the registers within the u area. */
|
||
#ifndef U_REGS_OFFSET
|
||
|
||
#ifndef offsetof
|
||
#define offsetof(TYPE, MEMBER) ((unsigned long) &((TYPE *)0)->MEMBER)
|
||
#endif
|
||
|
||
#define U_REGS_OFFSET \
|
||
ptrace (PT_READ_U, PIDGET (inferior_ptid), \
|
||
(PTRACE_TYPE_ARG3) (offsetof (struct user, u_ar0)), 0) \
|
||
- KERNEL_U_ADDR
|
||
#endif
|
||
|
||
/* Fetch register REGNUM from the inferior. */
|
||
|
||
static void
|
||
fetch_register (int regnum)
|
||
{
|
||
CORE_ADDR addr;
|
||
size_t size;
|
||
PTRACE_TYPE_RET *buf;
|
||
int tid, i;
|
||
|
||
if (CANNOT_FETCH_REGISTER (regnum))
|
||
{
|
||
regcache_raw_supply (current_regcache, regnum, NULL);
|
||
return;
|
||
}
|
||
|
||
/* GNU/Linux LWP ID's are process ID's. */
|
||
tid = TIDGET (inferior_ptid);
|
||
if (tid == 0)
|
||
tid = PIDGET (inferior_ptid); /* Not a threaded program. */
|
||
|
||
/* This isn't really an address. But ptrace thinks of it as one. */
|
||
addr = register_addr (regnum, U_REGS_OFFSET);
|
||
size = register_size (current_gdbarch, regnum);
|
||
|
||
gdb_assert ((size % sizeof (PTRACE_TYPE_RET)) == 0);
|
||
buf = alloca (size);
|
||
|
||
/* Read the register contents from the inferior a chuck at the time. */
|
||
for (i = 0; i < size / sizeof (PTRACE_TYPE_RET); i++)
|
||
{
|
||
errno = 0;
|
||
buf[i] = ptrace (PT_READ_U, tid, (PTRACE_TYPE_ARG3) addr, 0);
|
||
if (errno != 0)
|
||
error ("Couldn't read register %s (#%d): %s.", REGISTER_NAME (regnum),
|
||
regnum, safe_strerror (errno));
|
||
|
||
addr += sizeof (PTRACE_TYPE_RET);
|
||
}
|
||
regcache_raw_supply (current_regcache, regnum, buf);
|
||
}
|
||
|
||
/* Fetch register REGNUM from the inferior. If REGNUM is -1, do this
|
||
for all registers. */
|
||
|
||
void
|
||
fetch_inferior_registers (int regnum)
|
||
{
|
||
if (regnum == -1)
|
||
for (regnum = 0; regnum < NUM_REGS; regnum++)
|
||
fetch_register (regnum);
|
||
else
|
||
fetch_register (regnum);
|
||
}
|
||
|
||
/* Store register REGNUM into the inferior. */
|
||
|
||
static void
|
||
store_register (int regnum)
|
||
{
|
||
CORE_ADDR addr;
|
||
size_t size;
|
||
PTRACE_TYPE_RET *buf;
|
||
int tid, i;
|
||
|
||
if (CANNOT_STORE_REGISTER (regnum))
|
||
return;
|
||
|
||
/* GNU/Linux LWP ID's are process ID's. */
|
||
tid = TIDGET (inferior_ptid);
|
||
if (tid == 0)
|
||
tid = PIDGET (inferior_ptid); /* Not a threaded program. */
|
||
|
||
/* This isn't really an address. But ptrace thinks of it as one. */
|
||
addr = register_addr (regnum, U_REGS_OFFSET);
|
||
size = register_size (current_gdbarch, regnum);
|
||
|
||
gdb_assert ((size % sizeof (PTRACE_TYPE_RET)) == 0);
|
||
buf = alloca (size);
|
||
|
||
/* Write the register contents into the inferior a chunk at the time. */
|
||
regcache_raw_collect (current_regcache, regnum, buf);
|
||
for (i = 0; i < size / sizeof (PTRACE_TYPE_RET); i++)
|
||
{
|
||
errno = 0;
|
||
ptrace (PT_WRITE_U, tid, (PTRACE_TYPE_ARG3) addr, buf[i]);
|
||
if (errno != 0)
|
||
error ("Couldn't write register %s (#%d): %s.", REGISTER_NAME (regnum),
|
||
regnum, safe_strerror (errno));
|
||
|
||
addr += sizeof (PTRACE_TYPE_RET);
|
||
}
|
||
}
|
||
|
||
/* Store register REGNUM back into the inferior. If REGNUM is -1, do
|
||
this for all registers (including the floating point registers). */
|
||
|
||
void
|
||
store_inferior_registers (int regnum)
|
||
{
|
||
if (regnum == -1)
|
||
for (regnum = 0; regnum < NUM_REGS; regnum++)
|
||
store_register (regnum);
|
||
else
|
||
store_register (regnum);
|
||
}
|
||
|
||
#endif /* not FETCH_INFERIOR_REGISTERS. */
|
||
|
||
|
||
/* Set an upper limit on alloca. */
|
||
#ifndef GDB_MAX_ALLOCA
|
||
#define GDB_MAX_ALLOCA 0x1000
|
||
#endif
|
||
|
||
#if !defined (CHILD_XFER_MEMORY)
|
||
/* NOTE! I tried using PTRACE_READDATA, etc., to read and write memory
|
||
in the NEW_SUN_PTRACE case. It ought to be straightforward. But
|
||
it appears that writing did not write the data that I specified. I
|
||
cannot understand where it got the data that it actually did write. */
|
||
|
||
/* Copy LEN bytes to or from inferior's memory starting at MEMADDR to
|
||
debugger memory starting at MYADDR. Copy to inferior if WRITE is
|
||
nonzero. TARGET is ignored.
|
||
|
||
Returns the length copied, which is either the LEN argument or
|
||
zero. This xfer function does not do partial moves, since
|
||
deprecated_child_ops doesn't allow memory operations to cross below
|
||
us in the target stack anyway. */
|
||
|
||
int
|
||
child_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len, int write,
|
||
struct mem_attrib *attrib, struct target_ops *target)
|
||
{
|
||
int i;
|
||
/* Round starting address down to longword boundary. */
|
||
CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_TYPE_RET);
|
||
/* Round ending address up; get number of longwords that makes. */
|
||
int count = ((((memaddr + len) - addr) + sizeof (PTRACE_TYPE_RET) - 1)
|
||
/ sizeof (PTRACE_TYPE_RET));
|
||
int alloc = count * sizeof (PTRACE_TYPE_RET);
|
||
PTRACE_TYPE_RET *buffer;
|
||
struct cleanup *old_chain = NULL;
|
||
|
||
#ifdef PT_IO
|
||
/* OpenBSD 3.1, NetBSD 1.6 and FreeBSD 5.0 have a new PT_IO request
|
||
that promises to be much more efficient in reading and writing
|
||
data in the traced process's address space. */
|
||
|
||
{
|
||
struct ptrace_io_desc piod;
|
||
|
||
/* NOTE: We assume that there are no distinct address spaces for
|
||
instruction and data. */
|
||
piod.piod_op = write ? PIOD_WRITE_D : PIOD_READ_D;
|
||
piod.piod_offs = (void *) memaddr;
|
||
piod.piod_addr = myaddr;
|
||
piod.piod_len = len;
|
||
|
||
if (ptrace (PT_IO, PIDGET (inferior_ptid), (caddr_t) &piod, 0) == -1)
|
||
{
|
||
/* If the PT_IO request is somehow not supported, fallback on
|
||
using PT_WRITE_D/PT_READ_D. Otherwise we will return zero
|
||
to indicate failure. */
|
||
if (errno != EINVAL)
|
||
return 0;
|
||
}
|
||
else
|
||
{
|
||
/* Return the actual number of bytes read or written. */
|
||
return piod.piod_len;
|
||
}
|
||
}
|
||
#endif
|
||
|
||
/* Allocate buffer of that many longwords. */
|
||
if (len < GDB_MAX_ALLOCA)
|
||
{
|
||
buffer = (PTRACE_TYPE_RET *) alloca (alloc);
|
||
}
|
||
else
|
||
{
|
||
buffer = (PTRACE_TYPE_RET *) xmalloc (alloc);
|
||
old_chain = make_cleanup (xfree, buffer);
|
||
}
|
||
|
||
if (write)
|
||
{
|
||
/* Fill start and end extra bytes of buffer with existing memory
|
||
data. */
|
||
if (addr != memaddr || len < (int) sizeof (PTRACE_TYPE_RET))
|
||
{
|
||
/* Need part of initial word -- fetch it. */
|
||
buffer[0] = ptrace (PT_READ_I, PIDGET (inferior_ptid),
|
||
(PTRACE_TYPE_ARG3) addr, 0);
|
||
}
|
||
|
||
if (count > 1) /* FIXME, avoid if even boundary. */
|
||
{
|
||
buffer[count - 1] =
|
||
ptrace (PT_READ_I, PIDGET (inferior_ptid),
|
||
((PTRACE_TYPE_ARG3)
|
||
(addr + (count - 1) * sizeof (PTRACE_TYPE_RET))), 0);
|
||
}
|
||
|
||
/* Copy data to be written over corresponding part of buffer. */
|
||
memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_TYPE_RET) - 1)),
|
||
myaddr, len);
|
||
|
||
/* Write the entire buffer. */
|
||
for (i = 0; i < count; i++, addr += sizeof (PTRACE_TYPE_RET))
|
||
{
|
||
errno = 0;
|
||
ptrace (PT_WRITE_D, PIDGET (inferior_ptid),
|
||
(PTRACE_TYPE_ARG3) addr, buffer[i]);
|
||
if (errno)
|
||
{
|
||
/* Using the appropriate one (I or D) is necessary for
|
||
Gould NP1, at least. */
|
||
errno = 0;
|
||
ptrace (PT_WRITE_I, PIDGET (inferior_ptid),
|
||
(PTRACE_TYPE_ARG3) addr, buffer[i]);
|
||
}
|
||
if (errno)
|
||
return 0;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Read all the longwords. */
|
||
for (i = 0; i < count; i++, addr += sizeof (PTRACE_TYPE_RET))
|
||
{
|
||
errno = 0;
|
||
buffer[i] = ptrace (PT_READ_I, PIDGET (inferior_ptid),
|
||
(PTRACE_TYPE_ARG3) addr, 0);
|
||
if (errno)
|
||
return 0;
|
||
QUIT;
|
||
}
|
||
|
||
/* Copy appropriate bytes out of the buffer. */
|
||
memcpy (myaddr,
|
||
(char *) buffer + (memaddr & (sizeof (PTRACE_TYPE_RET) - 1)),
|
||
len);
|
||
}
|
||
|
||
if (old_chain != NULL)
|
||
do_cleanups (old_chain);
|
||
return len;
|
||
}
|
||
|
||
|
||
static void
|
||
udot_info (char *dummy1, int dummy2)
|
||
{
|
||
#if defined (KERNEL_U_SIZE)
|
||
long udot_off; /* Offset into user struct */
|
||
int udot_val; /* Value from user struct at udot_off */
|
||
char mess[128]; /* For messages */
|
||
#endif
|
||
|
||
if (!target_has_execution)
|
||
{
|
||
error ("The program is not being run.");
|
||
}
|
||
|
||
#if !defined (KERNEL_U_SIZE)
|
||
|
||
/* Adding support for this command is easy. Typically you just add a
|
||
routine, called "kernel_u_size" that returns the size of the user
|
||
struct, to the appropriate *-nat.c file and then add to the native
|
||
config file "#define KERNEL_U_SIZE kernel_u_size()" */
|
||
error ("Don't know how large ``struct user'' is in this version of gdb.");
|
||
|
||
#else
|
||
|
||
for (udot_off = 0; udot_off < KERNEL_U_SIZE; udot_off += sizeof (udot_val))
|
||
{
|
||
if ((udot_off % 24) == 0)
|
||
{
|
||
if (udot_off > 0)
|
||
{
|
||
printf_filtered ("\n");
|
||
}
|
||
printf_filtered ("%s:", paddr (udot_off));
|
||
}
|
||
udot_val = ptrace (PT_READ_U, PIDGET (inferior_ptid), (PTRACE_TYPE_ARG3) udot_off, 0);
|
||
if (errno != 0)
|
||
{
|
||
sprintf (mess, "\nreading user struct at offset 0x%s",
|
||
paddr_nz (udot_off));
|
||
perror_with_name (mess);
|
||
}
|
||
/* Avoid using nonportable (?) "*" in print specs */
|
||
printf_filtered (sizeof (int) == 4 ? " 0x%08x" : " 0x%16x", udot_val);
|
||
}
|
||
printf_filtered ("\n");
|
||
|
||
#endif
|
||
}
|
||
#endif /* !defined (CHILD_XFER_MEMORY). */
|
||
|
||
|
||
void
|
||
_initialize_infptrace (void)
|
||
{
|
||
#if !defined (CHILD_XFER_MEMORY)
|
||
add_info ("udot", udot_info,
|
||
"Print contents of kernel ``struct user'' for current child.");
|
||
#endif
|
||
}
|