mirror of
https://github.com/darlinghq/darling-gdb.git
synced 2025-01-09 21:50:35 +00:00
db2302cb93
match_bitstring_literal): Guard tolower calls with isupper, tolower on old BSD systems blindly subtracts a constant. * dbxread.c (read_ofile_symtab): Check for __gnu_compiled_* as well when determining the producer of the object file. * mdebugread.c (has_opaque_xref): New function to check for cross reference to an opaque aggregate. * mdebugread.c (parse_symbol, parse_partial_symbols): Do not enter typedefs to opaque aggregates into the symbol tables. * mdebugread.c (parse_external): Remove skip_procedures argument, it has always been 1. Remove code that handled stProc symbols, it was never executed and was wrong, as the index of a stProc symbol points to the local symbol table and not to the auxiliary symbol info. Update caller. * mdebugread.c (parse_partial_symbols): Do not enter external stProc symbols into the partial symbol table, they are already entered into the minimal symbol table. * config/i386/tm-symmetry.h: Clean up, it is now only used for Dynix. Remove all conditionals and definitions for ptx. I386_REGNO_TO_SYMMETRY moved to here from symm-tdep.c. Fix addresses of floating point registers in REGISTER_U_ADDR. STORE_STRUCT_RETURN now handles cc and gcc conventions. FRAME_CHAIN, FRAMELESS_FUNCTION_INVOCATION, FRAME_SAVED_PC, IN_SIGTRAMP, SIGCONTEXT_PC_OFFSET defined to make backtracing through signal trampoline code work. * config/i386/xm-symmetry.h: Clean up, it is now only used for Dynix. Remove all conditionals and definitions for ptx. Remove KDB definitions. * symm-nat.c (store_inferior_registers): Fetch registers before storing them to obtain valid floating point control registers. Store fpu registers. * symm-nat.c (print_1167_control_word): Dynix 3.1.1 defines FPA_PCR_CC_C0 and FPA_PCR_CC_C1, avoid duplicate case value. * symm-nat.c (fetch_inferior_registers, child_xfer_memory): Fix typos. * symm-nat.c (child_resume): Update type of `signal' parameter. * symm-tdep.c (I386_REGNO_TO_SYMMETRY): Moved to tm-symmetry.h.
849 lines
24 KiB
C
849 lines
24 KiB
C
/* Sequent Symmetry host interface, for GDB when running under Unix.
|
||
Copyright 1986, 1987, 1989, 1991, 1992, 1994 Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
|
||
|
||
/* FIXME, some 387-specific items of use taken from i387-tdep.c -- ought to be
|
||
merged back in. */
|
||
|
||
#include "defs.h"
|
||
#include "frame.h"
|
||
#include "inferior.h"
|
||
#include "symtab.h"
|
||
#include "target.h"
|
||
|
||
/* FIXME: What is the _INKERNEL define for? */
|
||
#define _INKERNEL
|
||
#include <signal.h>
|
||
#undef _INKERNEL
|
||
#include <sys/wait.h>
|
||
#include <sys/param.h>
|
||
#include <sys/user.h>
|
||
#include <sys/proc.h>
|
||
#include <sys/dir.h>
|
||
#include <sys/ioctl.h>
|
||
#include <sys/stat.h>
|
||
#ifdef _SEQUENT_
|
||
#include <sys/ptrace.h>
|
||
#else
|
||
/* Dynix has only machine/ptrace.h, which is already included by sys/user.h */
|
||
/* Dynix has no mptrace call */
|
||
#define mptrace ptrace
|
||
#endif
|
||
#include "gdbcore.h"
|
||
#include <fcntl.h>
|
||
#include <sgtty.h>
|
||
#define TERMINAL struct sgttyb
|
||
|
||
#include "gdbcore.h"
|
||
|
||
void
|
||
store_inferior_registers(regno)
|
||
int regno;
|
||
{
|
||
struct pt_regset regs;
|
||
int i;
|
||
extern char registers[];
|
||
|
||
/* FIXME: Fetching the registers is a kludge to initialize all elements
|
||
in the fpu and fpa status. This works for normal debugging, but
|
||
might cause problems when calling functions in the inferior.
|
||
At least fpu_control and fpa_pcr (probably more) should be added
|
||
to the registers array to solve this properly. */
|
||
mptrace (XPT_RREGS, inferior_pid, (PTRACE_ARG3_TYPE) ®s, 0);
|
||
|
||
regs.pr_eax = *(int *)®isters[REGISTER_BYTE(0)];
|
||
regs.pr_ebx = *(int *)®isters[REGISTER_BYTE(5)];
|
||
regs.pr_ecx = *(int *)®isters[REGISTER_BYTE(2)];
|
||
regs.pr_edx = *(int *)®isters[REGISTER_BYTE(1)];
|
||
regs.pr_esi = *(int *)®isters[REGISTER_BYTE(6)];
|
||
regs.pr_edi = *(int *)®isters[REGISTER_BYTE(7)];
|
||
regs.pr_esp = *(int *)®isters[REGISTER_BYTE(14)];
|
||
regs.pr_ebp = *(int *)®isters[REGISTER_BYTE(15)];
|
||
regs.pr_eip = *(int *)®isters[REGISTER_BYTE(16)];
|
||
regs.pr_flags = *(int *)®isters[REGISTER_BYTE(17)];
|
||
for (i = 0; i < 31; i++)
|
||
{
|
||
regs.pr_fpa.fpa_regs[i] =
|
||
*(int *)®isters[REGISTER_BYTE(FP1_REGNUM+i)];
|
||
}
|
||
memcpy (regs.pr_fpu.fpu_stack[0], ®isters[REGISTER_BYTE(ST0_REGNUM)], 10);
|
||
memcpy (regs.pr_fpu.fpu_stack[1], ®isters[REGISTER_BYTE(ST1_REGNUM)], 10);
|
||
memcpy (regs.pr_fpu.fpu_stack[2], ®isters[REGISTER_BYTE(ST2_REGNUM)], 10);
|
||
memcpy (regs.pr_fpu.fpu_stack[3], ®isters[REGISTER_BYTE(ST3_REGNUM)], 10);
|
||
memcpy (regs.pr_fpu.fpu_stack[4], ®isters[REGISTER_BYTE(ST4_REGNUM)], 10);
|
||
memcpy (regs.pr_fpu.fpu_stack[5], ®isters[REGISTER_BYTE(ST5_REGNUM)], 10);
|
||
memcpy (regs.pr_fpu.fpu_stack[6], ®isters[REGISTER_BYTE(ST6_REGNUM)], 10);
|
||
memcpy (regs.pr_fpu.fpu_stack[7], ®isters[REGISTER_BYTE(ST7_REGNUM)], 10);
|
||
mptrace (XPT_WREGS, inferior_pid, (PTRACE_ARG3_TYPE) ®s, 0);
|
||
}
|
||
|
||
void
|
||
fetch_inferior_registers (regno)
|
||
int regno;
|
||
{
|
||
int i;
|
||
struct pt_regset regs;
|
||
extern char registers[];
|
||
|
||
registers_fetched ();
|
||
|
||
mptrace (XPT_RREGS, inferior_pid, (PTRACE_ARG3_TYPE) ®s, 0);
|
||
*(int *)®isters[REGISTER_BYTE(EAX_REGNUM)] = regs.pr_eax;
|
||
*(int *)®isters[REGISTER_BYTE(EBX_REGNUM)] = regs.pr_ebx;
|
||
*(int *)®isters[REGISTER_BYTE(ECX_REGNUM)] = regs.pr_ecx;
|
||
*(int *)®isters[REGISTER_BYTE(EDX_REGNUM)] = regs.pr_edx;
|
||
*(int *)®isters[REGISTER_BYTE(ESI_REGNUM)] = regs.pr_esi;
|
||
*(int *)®isters[REGISTER_BYTE(EDI_REGNUM)] = regs.pr_edi;
|
||
*(int *)®isters[REGISTER_BYTE(EBP_REGNUM)] = regs.pr_ebp;
|
||
*(int *)®isters[REGISTER_BYTE(ESP_REGNUM)] = regs.pr_esp;
|
||
*(int *)®isters[REGISTER_BYTE(EIP_REGNUM)] = regs.pr_eip;
|
||
*(int *)®isters[REGISTER_BYTE(EFLAGS_REGNUM)] = regs.pr_flags;
|
||
for (i = 0; i < FPA_NREGS; i++)
|
||
{
|
||
*(int *)®isters[REGISTER_BYTE(FP1_REGNUM+i)] =
|
||
regs.pr_fpa.fpa_regs[i];
|
||
}
|
||
memcpy (®isters[REGISTER_BYTE(ST0_REGNUM)], regs.pr_fpu.fpu_stack[0], 10);
|
||
memcpy (®isters[REGISTER_BYTE(ST1_REGNUM)], regs.pr_fpu.fpu_stack[1], 10);
|
||
memcpy (®isters[REGISTER_BYTE(ST2_REGNUM)], regs.pr_fpu.fpu_stack[2], 10);
|
||
memcpy (®isters[REGISTER_BYTE(ST3_REGNUM)], regs.pr_fpu.fpu_stack[3], 10);
|
||
memcpy (®isters[REGISTER_BYTE(ST4_REGNUM)], regs.pr_fpu.fpu_stack[4], 10);
|
||
memcpy (®isters[REGISTER_BYTE(ST5_REGNUM)], regs.pr_fpu.fpu_stack[5], 10);
|
||
memcpy (®isters[REGISTER_BYTE(ST6_REGNUM)], regs.pr_fpu.fpu_stack[6], 10);
|
||
memcpy (®isters[REGISTER_BYTE(ST7_REGNUM)], regs.pr_fpu.fpu_stack[7], 10);
|
||
}
|
||
|
||
/* FIXME: This should be merged with i387-tdep.c as well. */
|
||
static
|
||
print_fpu_status(ep)
|
||
struct pt_regset ep;
|
||
{
|
||
int i;
|
||
int bothstatus;
|
||
int top;
|
||
int fpreg;
|
||
unsigned char *p;
|
||
|
||
printf_unfiltered("80387:");
|
||
if (ep.pr_fpu.fpu_ip == 0) {
|
||
printf_unfiltered(" not in use.\n");
|
||
return;
|
||
} else {
|
||
printf_unfiltered("\n");
|
||
}
|
||
if (ep.pr_fpu.fpu_status != 0) {
|
||
print_387_status_word (ep.pr_fpu.fpu_status);
|
||
}
|
||
print_387_control_word (ep.pr_fpu.fpu_control);
|
||
printf_unfiltered ("last exception: ");
|
||
printf_unfiltered ("opcode 0x%x; ", ep.pr_fpu.fpu_rsvd4);
|
||
printf_unfiltered ("pc 0x%x:0x%x; ", ep.pr_fpu.fpu_cs, ep.pr_fpu.fpu_ip);
|
||
printf_unfiltered ("operand 0x%x:0x%x\n", ep.pr_fpu.fpu_data_offset, ep.pr_fpu.fpu_op_sel);
|
||
|
||
top = (ep.pr_fpu.fpu_status >> 11) & 7;
|
||
|
||
printf_unfiltered ("regno tag msb lsb value\n");
|
||
for (fpreg = 7; fpreg >= 0; fpreg--)
|
||
{
|
||
double val;
|
||
|
||
printf_unfiltered ("%s %d: ", fpreg == top ? "=>" : " ", fpreg);
|
||
|
||
switch ((ep.pr_fpu.fpu_tag >> (fpreg * 2)) & 3)
|
||
{
|
||
case 0: printf_unfiltered ("valid "); break;
|
||
case 1: printf_unfiltered ("zero "); break;
|
||
case 2: printf_unfiltered ("trap "); break;
|
||
case 3: printf_unfiltered ("empty "); break;
|
||
}
|
||
for (i = 9; i >= 0; i--)
|
||
printf_unfiltered ("%02x", ep.pr_fpu.fpu_stack[fpreg][i]);
|
||
|
||
i387_to_double ((char *)ep.pr_fpu.fpu_stack[fpreg], (char *)&val);
|
||
printf_unfiltered (" %g\n", val);
|
||
}
|
||
if (ep.pr_fpu.fpu_rsvd1)
|
||
warning ("rsvd1 is 0x%x\n", ep.pr_fpu.fpu_rsvd1);
|
||
if (ep.pr_fpu.fpu_rsvd2)
|
||
warning ("rsvd2 is 0x%x\n", ep.pr_fpu.fpu_rsvd2);
|
||
if (ep.pr_fpu.fpu_rsvd3)
|
||
warning ("rsvd3 is 0x%x\n", ep.pr_fpu.fpu_rsvd3);
|
||
if (ep.pr_fpu.fpu_rsvd5)
|
||
warning ("rsvd5 is 0x%x\n", ep.pr_fpu.fpu_rsvd5);
|
||
}
|
||
|
||
|
||
print_1167_control_word(pcr)
|
||
unsigned int pcr;
|
||
|
||
{
|
||
int pcr_tmp;
|
||
|
||
pcr_tmp = pcr & FPA_PCR_MODE;
|
||
printf_unfiltered("\tMODE= %#x; RND= %#x ", pcr_tmp, pcr_tmp & 12);
|
||
switch (pcr_tmp & 12) {
|
||
case 0:
|
||
printf_unfiltered("RN (Nearest Value)");
|
||
break;
|
||
case 1:
|
||
printf_unfiltered("RZ (Zero)");
|
||
break;
|
||
case 2:
|
||
printf_unfiltered("RP (Positive Infinity)");
|
||
break;
|
||
case 3:
|
||
printf_unfiltered("RM (Negative Infinity)");
|
||
break;
|
||
}
|
||
printf_unfiltered("; IRND= %d ", pcr_tmp & 2);
|
||
if (0 == pcr_tmp & 2) {
|
||
printf_unfiltered("(same as RND)\n");
|
||
} else {
|
||
printf_unfiltered("(toward zero)\n");
|
||
}
|
||
pcr_tmp = pcr & FPA_PCR_EM;
|
||
printf_unfiltered("\tEM= %#x", pcr_tmp);
|
||
if (pcr_tmp & FPA_PCR_EM_DM) printf_unfiltered(" DM");
|
||
if (pcr_tmp & FPA_PCR_EM_UOM) printf_unfiltered(" UOM");
|
||
if (pcr_tmp & FPA_PCR_EM_PM) printf_unfiltered(" PM");
|
||
if (pcr_tmp & FPA_PCR_EM_UM) printf_unfiltered(" UM");
|
||
if (pcr_tmp & FPA_PCR_EM_OM) printf_unfiltered(" OM");
|
||
if (pcr_tmp & FPA_PCR_EM_ZM) printf_unfiltered(" ZM");
|
||
if (pcr_tmp & FPA_PCR_EM_IM) printf_unfiltered(" IM");
|
||
printf_unfiltered("\n");
|
||
pcr_tmp = FPA_PCR_CC;
|
||
printf_unfiltered("\tCC= %#x", pcr_tmp);
|
||
if (pcr_tmp & FPA_PCR_20MHZ) printf_unfiltered(" 20MHZ");
|
||
if (pcr_tmp & FPA_PCR_CC_Z) printf_unfiltered(" Z");
|
||
if (pcr_tmp & FPA_PCR_CC_C2) printf_unfiltered(" C2");
|
||
|
||
/* Dynix defines FPA_PCR_CC_C0 to 0x100 and ptx defines
|
||
FPA_PCR_CC_C1 to 0x100. Use whichever is defined and assume
|
||
the OS knows what it is doing. */
|
||
#ifdef FPA_PCR_CC_C1
|
||
if (pcr_tmp & FPA_PCR_CC_C1) printf_unfiltered(" C1");
|
||
#else
|
||
if (pcr_tmp & FPA_PCR_CC_C0) printf_unfiltered(" C0");
|
||
#endif
|
||
|
||
switch (pcr_tmp)
|
||
{
|
||
case FPA_PCR_CC_Z:
|
||
printf_unfiltered(" (Equal)");
|
||
break;
|
||
#ifdef FPA_PCR_CC_C1
|
||
case FPA_PCR_CC_C1:
|
||
#else
|
||
case FPA_PCR_CC_C0:
|
||
#endif
|
||
printf_unfiltered(" (Less than)");
|
||
break;
|
||
case 0:
|
||
printf_unfiltered(" (Greater than)");
|
||
break;
|
||
case FPA_PCR_CC_Z |
|
||
#ifdef FPA_PCR_CC_C1
|
||
FPA_PCR_CC_C1
|
||
#else
|
||
FPA_PCR_CC_C0
|
||
#endif
|
||
| FPA_PCR_CC_C2:
|
||
printf_unfiltered(" (Unordered)");
|
||
break;
|
||
default:
|
||
printf_unfiltered(" (Undefined)");
|
||
break;
|
||
}
|
||
printf_unfiltered("\n");
|
||
pcr_tmp = pcr & FPA_PCR_AE;
|
||
printf_unfiltered("\tAE= %#x", pcr_tmp);
|
||
if (pcr_tmp & FPA_PCR_AE_DE) printf_unfiltered(" DE");
|
||
if (pcr_tmp & FPA_PCR_AE_UOE) printf_unfiltered(" UOE");
|
||
if (pcr_tmp & FPA_PCR_AE_PE) printf_unfiltered(" PE");
|
||
if (pcr_tmp & FPA_PCR_AE_UE) printf_unfiltered(" UE");
|
||
if (pcr_tmp & FPA_PCR_AE_OE) printf_unfiltered(" OE");
|
||
if (pcr_tmp & FPA_PCR_AE_ZE) printf_unfiltered(" ZE");
|
||
if (pcr_tmp & FPA_PCR_AE_EE) printf_unfiltered(" EE");
|
||
if (pcr_tmp & FPA_PCR_AE_IE) printf_unfiltered(" IE");
|
||
printf_unfiltered("\n");
|
||
}
|
||
|
||
print_1167_regs(regs)
|
||
long regs[FPA_NREGS];
|
||
|
||
{
|
||
int i;
|
||
|
||
union {
|
||
double d;
|
||
long l[2];
|
||
} xd;
|
||
union {
|
||
float f;
|
||
long l;
|
||
} xf;
|
||
|
||
|
||
for (i = 0; i < FPA_NREGS; i++) {
|
||
xf.l = regs[i];
|
||
printf_unfiltered("%%fp%d: raw= %#x, single= %f", i+1, regs[i], xf.f);
|
||
if (!(i & 1)) {
|
||
printf_unfiltered("\n");
|
||
} else {
|
||
xd.l[1] = regs[i];
|
||
xd.l[0] = regs[i+1];
|
||
printf_unfiltered(", double= %f\n", xd.d);
|
||
}
|
||
}
|
||
}
|
||
|
||
print_fpa_status(ep)
|
||
struct pt_regset ep;
|
||
|
||
{
|
||
|
||
printf_unfiltered("WTL 1167:");
|
||
if (ep.pr_fpa.fpa_pcr !=0) {
|
||
printf_unfiltered("\n");
|
||
print_1167_control_word(ep.pr_fpa.fpa_pcr);
|
||
print_1167_regs(ep.pr_fpa.fpa_regs);
|
||
} else {
|
||
printf_unfiltered(" not in use.\n");
|
||
}
|
||
}
|
||
|
||
#if 0 /* disabled because it doesn't go through the target vector. */
|
||
i386_float_info ()
|
||
{
|
||
char ubuf[UPAGES*NBPG];
|
||
struct pt_regset regset;
|
||
|
||
if (have_inferior_p())
|
||
{
|
||
PTRACE_READ_REGS (inferior_pid, (PTRACE_ARG3_TYPE) ®set);
|
||
}
|
||
else
|
||
{
|
||
int corechan = bfd_cache_lookup (core_bfd);
|
||
if (lseek (corechan, 0, 0) < 0)
|
||
{
|
||
perror ("seek on core file");
|
||
}
|
||
if (myread (corechan, ubuf, UPAGES*NBPG) < 0)
|
||
{
|
||
perror ("read on core file");
|
||
}
|
||
/* only interested in the floating point registers */
|
||
regset.pr_fpu = ((struct user *) ubuf)->u_fpusave;
|
||
regset.pr_fpa = ((struct user *) ubuf)->u_fpasave;
|
||
}
|
||
print_fpu_status(regset);
|
||
print_fpa_status(regset);
|
||
}
|
||
#endif
|
||
|
||
static volatile int got_sigchld;
|
||
|
||
/*ARGSUSED*/
|
||
/* This will eventually be more interesting. */
|
||
void
|
||
sigchld_handler(signo)
|
||
int signo;
|
||
{
|
||
got_sigchld++;
|
||
}
|
||
|
||
/*
|
||
* Signals for which the default action does not cause the process
|
||
* to die. See <sys/signal.h> for where this came from (alas, we
|
||
* can't use those macros directly)
|
||
*/
|
||
#ifndef sigmask
|
||
#define sigmask(s) (1 << ((s) - 1))
|
||
#endif
|
||
#define SIGNALS_DFL_SAFE sigmask(SIGSTOP) | sigmask(SIGTSTP) | \
|
||
sigmask(SIGTTIN) | sigmask(SIGTTOU) | sigmask(SIGCHLD) | \
|
||
sigmask(SIGCONT) | sigmask(SIGWINCH) | sigmask(SIGPWR) | \
|
||
sigmask(SIGURG) | sigmask(SIGPOLL)
|
||
|
||
#ifdef ATTACH_DETACH
|
||
/*
|
||
* Thanks to XPT_MPDEBUGGER, we have to mange child_wait().
|
||
*/
|
||
int
|
||
child_wait(pid, status)
|
||
int pid;
|
||
struct target_waitstatus *status;
|
||
{
|
||
int save_errno, rv, xvaloff, saoff, sa_hand;
|
||
struct pt_stop pt;
|
||
struct user u;
|
||
sigset_t set;
|
||
/* Host signal number for a signal which the inferior terminates with, or
|
||
0 if it hasn't terminated due to a signal. */
|
||
static int death_by_signal = 0;
|
||
#ifdef SVR4_SHARED_LIBS /* use this to distinguish ptx 2 vs ptx 4 */
|
||
prstatus_t pstatus;
|
||
#endif
|
||
|
||
do {
|
||
if (attach_flag)
|
||
set_sigint_trap(); /* Causes SIGINT to be passed on to the
|
||
attached process. */
|
||
save_errno = errno;
|
||
|
||
got_sigchld = 0;
|
||
|
||
sigemptyset(&set);
|
||
|
||
while (got_sigchld == 0) {
|
||
sigsuspend(&set);
|
||
}
|
||
|
||
if (attach_flag)
|
||
clear_sigint_trap();
|
||
|
||
rv = mptrace(XPT_STOPSTAT, 0, (char *)&pt, 0);
|
||
if (-1 == rv) {
|
||
printf("XPT_STOPSTAT: errno %d\n", errno); /* DEBUG */
|
||
continue;
|
||
}
|
||
|
||
pid = pt.ps_pid;
|
||
|
||
if (pid != inferior_pid) {
|
||
/* NOTE: the mystery fork in csh/tcsh needs to be ignored.
|
||
* We should not return new children for the initial run
|
||
* of a process until it has done the exec.
|
||
*/
|
||
/* inferior probably forked; send it on its way */
|
||
rv = mptrace(XPT_UNDEBUG, pid, 0, 0);
|
||
if (-1 == rv) {
|
||
printf("child_wait: XPT_UNDEBUG: pid %d: %s\n", pid,
|
||
safe_strerror(errno));
|
||
}
|
||
continue;
|
||
}
|
||
/* FIXME: Do we deal with fork notification correctly? */
|
||
switch (pt.ps_reason) {
|
||
case PTS_FORK:
|
||
/* multi proc: treat like PTS_EXEC */
|
||
/*
|
||
* Pretend this didn't happen, since gdb isn't set up
|
||
* to deal with stops on fork.
|
||
*/
|
||
rv = ptrace(PT_CONTSIG, pid, 1, 0);
|
||
if (-1 == rv) {
|
||
printf("PTS_FORK: PT_CONTSIG: error %d\n", errno);
|
||
}
|
||
continue;
|
||
case PTS_EXEC:
|
||
/*
|
||
* Pretend this is a SIGTRAP.
|
||
*/
|
||
status->kind = TARGET_WAITKIND_STOPPED;
|
||
status->value.sig = TARGET_SIGNAL_TRAP;
|
||
break;
|
||
case PTS_EXIT:
|
||
/*
|
||
* Note: we stop before the exit actually occurs. Extract
|
||
* the exit code from the uarea. If we're stopped in the
|
||
* exit() system call, the exit code will be in
|
||
* u.u_ap[0]. An exit due to an uncaught signal will have
|
||
* something else in here, see the comment in the default:
|
||
* case, below. Finally,let the process exit.
|
||
*/
|
||
if (death_by_signal)
|
||
{
|
||
status->kind = TARGET_WAITKIND_SIGNALED;
|
||
status->value.sig = target_signal_from_host (death_by_signal);
|
||
death_by_signal = 0;
|
||
break;
|
||
}
|
||
xvaloff = (unsigned long)&u.u_ap[0] - (unsigned long)&u;
|
||
errno = 0;
|
||
rv = ptrace(PT_RUSER, pid, (char *)xvaloff, 0);
|
||
status->kind = TARGET_WAITKIND_EXITED;
|
||
status->value.integer = rv;
|
||
/*
|
||
* addr & data to mptrace() don't matter here, since
|
||
* the process is already dead.
|
||
*/
|
||
rv = mptrace(XPT_UNDEBUG, pid, 0, 0);
|
||
if (-1 == rv) {
|
||
printf("child_wait: PTS_EXIT: XPT_UNDEBUG: pid %d error %d\n", pid,
|
||
errno);
|
||
}
|
||
break;
|
||
case PTS_WATCHPT_HIT:
|
||
fatal("PTS_WATCHPT_HIT\n");
|
||
break;
|
||
default:
|
||
/* stopped by signal */
|
||
status->kind = TARGET_WAITKIND_STOPPED;
|
||
status->value.sig = target_signal_from_host (pt.ps_reason);
|
||
death_by_signal = 0;
|
||
|
||
if (0 == (SIGNALS_DFL_SAFE & sigmask(pt.ps_reason))) {
|
||
break;
|
||
}
|
||
/* else default action of signal is to die */
|
||
#ifdef SVR4_SHARED_LIBS
|
||
rv = ptrace(PT_GET_PRSTATUS, pid, (char *)&pstatus, 0);
|
||
if (-1 == rv)
|
||
error("child_wait: signal %d PT_GET_PRSTATUS: %s\n",
|
||
pt.ps_reason, safe_strerror(errno));
|
||
if (pstatus.pr_cursig != pt.ps_reason) {
|
||
printf("pstatus signal %d, pt signal %d\n",
|
||
pstatus.pr_cursig, pt.ps_reason);
|
||
}
|
||
sa_hand = (int)pstatus.pr_action.sa_handler;
|
||
#else
|
||
saoff = (unsigned long)&u.u_sa[0] - (unsigned long)&u;
|
||
saoff += sizeof(struct sigaction) * (pt.ps_reason - 1);
|
||
errno = 0;
|
||
sa_hand = ptrace(PT_RUSER, pid, (char *)saoff, 0);
|
||
if (errno)
|
||
error("child_wait: signal %d: RUSER: %s\n",
|
||
pt.ps_reason, safe_strerror(errno));
|
||
#endif
|
||
if ((int)SIG_DFL == sa_hand) {
|
||
/* we will be dying */
|
||
death_by_signal = pt.ps_reason;
|
||
}
|
||
break;
|
||
}
|
||
|
||
} while (pid != inferior_pid); /* Some other child died or stopped */
|
||
|
||
return pid;
|
||
}
|
||
#else /* !ATTACH_DETACH */
|
||
/*
|
||
* Simple child_wait() based on inftarg.c child_wait() for use until
|
||
* the MPDEBUGGER child_wait() works properly. This will go away when
|
||
* that is fixed.
|
||
*/
|
||
child_wait (pid, ourstatus)
|
||
int pid;
|
||
struct target_waitstatus *ourstatus;
|
||
{
|
||
int save_errno;
|
||
int status;
|
||
|
||
do {
|
||
pid = wait (&status);
|
||
save_errno = errno;
|
||
|
||
if (pid == -1)
|
||
{
|
||
if (save_errno == EINTR)
|
||
continue;
|
||
fprintf (stderr, "Child process unexpectedly missing: %s.\n",
|
||
safe_strerror (save_errno));
|
||
ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
|
||
ourstatus->value.sig = TARGET_SIGNAL_UNKNOWN;
|
||
return -1;
|
||
}
|
||
} while (pid != inferior_pid); /* Some other child died or stopped */
|
||
store_waitstatus (ourstatus, status);
|
||
return pid;
|
||
}
|
||
#endif /* ATTACH_DETACH */
|
||
|
||
|
||
|
||
/* This function simply calls ptrace with the given arguments.
|
||
It exists so that all calls to ptrace are isolated in this
|
||
machine-dependent file. */
|
||
int
|
||
call_ptrace (request, pid, addr, data)
|
||
int request, pid;
|
||
PTRACE_ARG3_TYPE addr;
|
||
int data;
|
||
{
|
||
return ptrace (request, pid, addr, data);
|
||
}
|
||
|
||
int
|
||
call_mptrace(request, pid, addr, data)
|
||
int request, pid;
|
||
PTRACE_ARG3_TYPE addr;
|
||
int data;
|
||
{
|
||
return mptrace(request, pid, addr, data);
|
||
}
|
||
|
||
#if defined (DEBUG_PTRACE)
|
||
/* For the rest of the file, use an extra level of indirection */
|
||
/* This lets us breakpoint usefully on call_ptrace. */
|
||
#define ptrace call_ptrace
|
||
#define mptrace call_mptrace
|
||
#endif
|
||
|
||
void
|
||
kill_inferior ()
|
||
{
|
||
if (inferior_pid == 0)
|
||
return;
|
||
|
||
/* For MPDEBUGGER, don't use PT_KILL, since the child will stop
|
||
again with a PTS_EXIT. Just hit him with SIGKILL (so he stops)
|
||
and detach. */
|
||
|
||
kill (inferior_pid, SIGKILL);
|
||
#ifdef ATTACH_DETACH
|
||
detach(SIGKILL);
|
||
#else /* ATTACH_DETACH */
|
||
ptrace(PT_KILL, inferior_pid, 0, 0);
|
||
wait((int *)NULL);
|
||
#endif /* ATTACH_DETACH */
|
||
target_mourn_inferior ();
|
||
}
|
||
|
||
/* Resume execution of the inferior process.
|
||
If STEP is nonzero, single-step it.
|
||
If SIGNAL is nonzero, give it that signal. */
|
||
|
||
void
|
||
child_resume (pid, step, signal)
|
||
int pid;
|
||
int step;
|
||
enum target_signal signal;
|
||
{
|
||
errno = 0;
|
||
|
||
if (pid == -1)
|
||
pid = inferior_pid;
|
||
|
||
/* An address of (PTRACE_ARG3_TYPE)1 tells ptrace to continue from where
|
||
it was. (If GDB wanted it to start some other way, we have already
|
||
written a new PC value to the child.)
|
||
|
||
If this system does not support PT_SSTEP, a higher level function will
|
||
have called single_step() to transmute the step request into a
|
||
continue request (by setting breakpoints on all possible successor
|
||
instructions), so we don't have to worry about that here. */
|
||
|
||
if (step)
|
||
ptrace (PT_SSTEP, pid, (PTRACE_ARG3_TYPE) 1, signal);
|
||
else
|
||
ptrace (PT_CONTSIG, pid, (PTRACE_ARG3_TYPE) 1, signal);
|
||
|
||
if (errno)
|
||
perror_with_name ("ptrace");
|
||
}
|
||
|
||
#ifdef ATTACH_DETACH
|
||
/* Start debugging the process whose number is PID. */
|
||
int
|
||
attach (pid)
|
||
int pid;
|
||
{
|
||
sigset_t set;
|
||
int rv;
|
||
|
||
rv = mptrace(XPT_DEBUG, pid, 0, 0);
|
||
if (-1 == rv) {
|
||
error("mptrace(XPT_DEBUG): %s", safe_strerror(errno));
|
||
}
|
||
rv = mptrace(XPT_SIGNAL, pid, 0, SIGSTOP);
|
||
if (-1 == rv) {
|
||
error("mptrace(XPT_SIGNAL): %s", safe_strerror(errno));
|
||
}
|
||
attach_flag = 1;
|
||
return pid;
|
||
}
|
||
|
||
void
|
||
detach (signo)
|
||
int signo;
|
||
{
|
||
int rv;
|
||
|
||
rv = mptrace(XPT_UNDEBUG, inferior_pid, 1, signo);
|
||
if (-1 == rv) {
|
||
error("mptrace(XPT_UNDEBUG): %s", safe_strerror(errno));
|
||
}
|
||
attach_flag = 0;
|
||
}
|
||
|
||
#endif /* ATTACH_DETACH */
|
||
|
||
/* Default the type of the ptrace transfer to int. */
|
||
#ifndef PTRACE_XFER_TYPE
|
||
#define PTRACE_XFER_TYPE int
|
||
#endif
|
||
|
||
|
||
/* NOTE! I tried using PTRACE_READDATA, etc., to read and write memory
|
||
in the NEW_SUN_PTRACE case.
|
||
It ought to be straightforward. But it appears that writing did
|
||
not write the data that I specified. I cannot understand where
|
||
it got the data that it actually did write. */
|
||
|
||
/* Copy LEN bytes to or from inferior's memory starting at MEMADDR
|
||
to debugger memory starting at MYADDR. Copy to inferior if
|
||
WRITE is nonzero.
|
||
|
||
Returns the length copied, which is either the LEN argument or zero.
|
||
This xfer function does not do partial moves, since child_ops
|
||
doesn't allow memory operations to cross below us in the target stack
|
||
anyway. */
|
||
|
||
int
|
||
child_xfer_memory (memaddr, myaddr, len, write, target)
|
||
CORE_ADDR memaddr;
|
||
char *myaddr;
|
||
int len;
|
||
int write;
|
||
struct target_ops *target; /* ignored */
|
||
{
|
||
register int i;
|
||
/* Round starting address down to longword boundary. */
|
||
register CORE_ADDR addr = memaddr & - sizeof (PTRACE_XFER_TYPE);
|
||
/* Round ending address up; get number of longwords that makes. */
|
||
register int count
|
||
= (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
|
||
/ sizeof (PTRACE_XFER_TYPE);
|
||
/* Allocate buffer of that many longwords. */
|
||
register PTRACE_XFER_TYPE *buffer
|
||
= (PTRACE_XFER_TYPE *) alloca (count * sizeof (PTRACE_XFER_TYPE));
|
||
|
||
if (write)
|
||
{
|
||
/* Fill start and end extra bytes of buffer with existing memory data. */
|
||
|
||
if (addr != memaddr || len < (int) sizeof (PTRACE_XFER_TYPE)) {
|
||
/* Need part of initial word -- fetch it. */
|
||
buffer[0] = ptrace (PT_RTEXT, inferior_pid, (PTRACE_ARG3_TYPE) addr,
|
||
0);
|
||
}
|
||
|
||
if (count > 1) /* FIXME, avoid if even boundary */
|
||
{
|
||
buffer[count - 1]
|
||
= ptrace (PT_RTEXT, inferior_pid,
|
||
((PTRACE_ARG3_TYPE)
|
||
(addr + (count - 1) * sizeof (PTRACE_XFER_TYPE))),
|
||
0);
|
||
}
|
||
|
||
/* Copy data to be written over corresponding part of buffer */
|
||
|
||
memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
|
||
myaddr,
|
||
len);
|
||
|
||
/* Write the entire buffer. */
|
||
|
||
for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
|
||
{
|
||
errno = 0;
|
||
ptrace (PT_WDATA, inferior_pid, (PTRACE_ARG3_TYPE) addr,
|
||
buffer[i]);
|
||
if (errno)
|
||
{
|
||
/* Using the appropriate one (I or D) is necessary for
|
||
Gould NP1, at least. */
|
||
errno = 0;
|
||
ptrace (PT_WTEXT, inferior_pid, (PTRACE_ARG3_TYPE) addr,
|
||
buffer[i]);
|
||
}
|
||
if (errno)
|
||
return 0;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Read all the longwords */
|
||
for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
|
||
{
|
||
errno = 0;
|
||
buffer[i] = ptrace (PT_RTEXT, inferior_pid,
|
||
(PTRACE_ARG3_TYPE) addr, 0);
|
||
if (errno)
|
||
return 0;
|
||
QUIT;
|
||
}
|
||
|
||
/* Copy appropriate bytes out of the buffer. */
|
||
memcpy (myaddr,
|
||
(char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
|
||
len);
|
||
}
|
||
return len;
|
||
}
|
||
|
||
|
||
void
|
||
_initialize_symm_nat ()
|
||
{
|
||
#ifdef ATTACH_DETACH
|
||
/*
|
||
* the MPDEBUGGER is necessary for process tree debugging and attach
|
||
* to work, but it alters the behavior of debugged processes, so other
|
||
* things (at least child_wait()) will have to change to accomodate
|
||
* that.
|
||
*
|
||
* Note that attach is not implemented in dynix 3, and not in ptx
|
||
* until version 2.1 of the OS.
|
||
*/
|
||
int rv;
|
||
sigset_t set;
|
||
struct sigaction sact;
|
||
|
||
rv = mptrace(XPT_MPDEBUGGER, 0, 0, 0);
|
||
if (-1 == rv) {
|
||
fatal("_initialize_symm_nat(): mptrace(XPT_MPDEBUGGER): %s",
|
||
safe_strerror(errno));
|
||
}
|
||
|
||
/*
|
||
* Under MPDEBUGGER, we get SIGCLHD when a traced process does
|
||
* anything of interest.
|
||
*/
|
||
|
||
/*
|
||
* Block SIGCHLD. We leave it blocked all the time, and then
|
||
* call sigsuspend() in child_wait() to wait for the child
|
||
* to do something. None of these ought to fail, but check anyway.
|
||
*/
|
||
sigemptyset(&set);
|
||
rv = sigaddset(&set, SIGCHLD);
|
||
if (-1 == rv) {
|
||
fatal("_initialize_symm_nat(): sigaddset(SIGCHLD): %s",
|
||
safe_strerror(errno));
|
||
}
|
||
rv = sigprocmask(SIG_BLOCK, &set, (sigset_t *)NULL);
|
||
if (-1 == rv) {
|
||
fatal("_initialize_symm_nat(): sigprocmask(SIG_BLOCK): %s",
|
||
safe_strerror(errno));
|
||
}
|
||
|
||
sact.sa_handler = sigchld_handler;
|
||
sigemptyset(&sact.sa_mask);
|
||
sact.sa_flags = SA_NOCLDWAIT; /* keep the zombies away */
|
||
rv = sigaction(SIGCHLD, &sact, (struct sigaction *)NULL);
|
||
if (-1 == rv) {
|
||
fatal("_initialize_symm_nat(): sigaction(SIGCHLD): %s",
|
||
safe_strerror(errno));
|
||
}
|
||
#endif
|
||
}
|