mirror of
https://github.com/darlinghq/darling-gdb.git
synced 2024-11-25 05:00:01 +00:00
199b2450f6
Change all references to stdout/stderr to gdb_stdout/gdb_stderr. Replace all calls to stdio output functions with calls to corresponding _unfiltered functions (`fprintf_unfiltered') Replaced calls to fopen for output to gdb_fopen. Added sufficient goo to utils.c and defs.h to make the above work. The net effect is that stdio output functions are only directly used in utils.c. Elsewhere, the _unfiltered and _filtered functions and GDB_FILE type are used. In the near future, GDB_FILE will stop being equivalant to FILE. The semantics of some commands has changed in a very subtle way: called in the right context, they may cause new occurences of prompt_for_continue() behavior. The testsuite doesn't notice anything like this, though. Please respect this change by not reintroducing stdio output dependencies in the main body of gdb code. All output from commands should go to a GDB_FILE. Target-specific code can still use stdio directly to communicate with targets.
496 lines
12 KiB
C
496 lines
12 KiB
C
/* Target-machine dependent code for Hitachi H8/300, for GDB.
|
|
Copyright (C) 1988, 1990, 1991 Free Software Foundation, Inc.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
|
|
|
|
/*
|
|
Contributed by Steve Chamberlain
|
|
sac@cygnus.com
|
|
*/
|
|
|
|
#include "defs.h"
|
|
#include "frame.h"
|
|
#include "obstack.h"
|
|
#include "symtab.h"
|
|
#include <dis-asm.h>
|
|
#include "gdbcmd.h"
|
|
#include "gdbtypes.h"
|
|
|
|
#undef NUM_REGS
|
|
#define NUM_REGS 11
|
|
|
|
#define UNSIGNED_SHORT(X) ((X) & 0xffff)
|
|
|
|
/* an easy to debug H8 stack frame looks like:
|
|
0x6df6 push r6
|
|
0x0d76 mov.w r7,r6
|
|
0x6dfn push reg
|
|
0x7905 nnnn mov.w #n,r5 or 0x1b87 subs #2,sp
|
|
0x1957 sub.w r5,sp
|
|
|
|
*/
|
|
|
|
#define IS_PUSH(x) ((x & 0xff00)==0x6d00)
|
|
#define IS_PUSH_FP(x) (x == 0x6df6)
|
|
#define IS_MOVE_FP(x) (x == 0x0d76)
|
|
#define IS_MOV_SP_FP(x) (x == 0x0d76)
|
|
#define IS_SUB2_SP(x) (x==0x1b87)
|
|
#define IS_MOVK_R5(x) (x==0x7905)
|
|
#define IS_SUB_R5SP(x) (x==0x1957)
|
|
|
|
static CORE_ADDR examine_prologue ();
|
|
|
|
void frame_find_saved_regs ();
|
|
CORE_ADDR
|
|
h8300_skip_prologue (start_pc)
|
|
CORE_ADDR start_pc;
|
|
{
|
|
short int w;
|
|
|
|
w = read_memory_unsigned_integer (start_pc, 2);
|
|
/* Skip past all push insns */
|
|
while (IS_PUSH_FP (w))
|
|
{
|
|
start_pc += 2;
|
|
w = read_memory_unsigned_integer (start_pc, 2);
|
|
}
|
|
|
|
/* Skip past a move to FP */
|
|
if (IS_MOVE_FP (w))
|
|
{
|
|
start_pc += 2;
|
|
w = read_memory_unsigned_integer (start_pc, 2);
|
|
}
|
|
|
|
/* Skip the stack adjust */
|
|
|
|
if (IS_MOVK_R5 (w))
|
|
{
|
|
start_pc += 2;
|
|
w = read_memory_unsigned_integer (start_pc, 2);
|
|
}
|
|
if (IS_SUB_R5SP (w))
|
|
{
|
|
start_pc += 2;
|
|
w = read_memory_unsigned_integer (start_pc, 2);
|
|
}
|
|
while (IS_SUB2_SP (w))
|
|
{
|
|
start_pc += 2;
|
|
w = read_memory_unsigned_integer (start_pc, 2);
|
|
}
|
|
|
|
return start_pc;
|
|
}
|
|
|
|
int
|
|
print_insn (memaddr, stream)
|
|
CORE_ADDR memaddr;
|
|
GDB_FILE *stream;
|
|
{
|
|
disassemble_info info;
|
|
GDB_INIT_DISASSEMBLE_INFO(info, stream);
|
|
if (h8300hmode)
|
|
return print_insn_h8300h (memaddr, &info);
|
|
else
|
|
return print_insn_h8300 (memaddr, &info);
|
|
}
|
|
|
|
/* Given a GDB frame, determine the address of the calling function's frame.
|
|
This will be used to create a new GDB frame struct, and then
|
|
INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
|
|
|
|
For us, the frame address is its stack pointer value, so we look up
|
|
the function prologue to determine the caller's sp value, and return it. */
|
|
|
|
FRAME_ADDR
|
|
FRAME_CHAIN (thisframe)
|
|
FRAME thisframe;
|
|
{
|
|
frame_find_saved_regs (thisframe, (struct frame_saved_regs *) 0);
|
|
return thisframe->fsr->regs[SP_REGNUM];
|
|
}
|
|
|
|
/* Put here the code to store, into a struct frame_saved_regs,
|
|
the addresses of the saved registers of frame described by FRAME_INFO.
|
|
This includes special registers such as pc and fp saved in special
|
|
ways in the stack frame. sp is even more special:
|
|
the address we return for it IS the sp for the next frame.
|
|
|
|
We cache the result of doing this in the frame_cache_obstack, since
|
|
it is fairly expensive. */
|
|
|
|
void
|
|
frame_find_saved_regs (fi, fsr)
|
|
struct frame_info *fi;
|
|
struct frame_saved_regs *fsr;
|
|
{
|
|
register CORE_ADDR next_addr;
|
|
register CORE_ADDR *saved_regs;
|
|
register int regnum;
|
|
register struct frame_saved_regs *cache_fsr;
|
|
extern struct obstack frame_cache_obstack;
|
|
CORE_ADDR ip;
|
|
struct symtab_and_line sal;
|
|
CORE_ADDR limit;
|
|
|
|
if (!fi->fsr)
|
|
{
|
|
cache_fsr = (struct frame_saved_regs *)
|
|
obstack_alloc (&frame_cache_obstack,
|
|
sizeof (struct frame_saved_regs));
|
|
memset (cache_fsr, '\0', sizeof (struct frame_saved_regs));
|
|
|
|
fi->fsr = cache_fsr;
|
|
|
|
/* Find the start and end of the function prologue. If the PC
|
|
is in the function prologue, we only consider the part that
|
|
has executed already. */
|
|
|
|
ip = get_pc_function_start (fi->pc);
|
|
sal = find_pc_line (ip, 0);
|
|
limit = (sal.end && sal.end < fi->pc) ? sal.end : fi->pc;
|
|
|
|
/* This will fill in fields in *fi as well as in cache_fsr. */
|
|
examine_prologue (ip, limit, fi->frame, cache_fsr, fi);
|
|
}
|
|
|
|
if (fsr)
|
|
*fsr = *fi->fsr;
|
|
}
|
|
|
|
/* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or
|
|
is not the address of a valid instruction, the address of the next
|
|
instruction beyond ADDR otherwise. *PWORD1 receives the first word
|
|
of the instruction.*/
|
|
|
|
CORE_ADDR
|
|
NEXT_PROLOGUE_INSN (addr, lim, pword1)
|
|
CORE_ADDR addr;
|
|
CORE_ADDR lim;
|
|
INSN_WORD *pword1;
|
|
{
|
|
char buf[2];
|
|
if (addr < lim + 8)
|
|
{
|
|
read_memory (addr, buf, 2);
|
|
*pword1 = extract_signed_integer (buf, 2);
|
|
|
|
return addr + 2;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Examine the prologue of a function. `ip' points to the first instruction.
|
|
`limit' is the limit of the prologue (e.g. the addr of the first
|
|
linenumber, or perhaps the program counter if we're stepping through).
|
|
`frame_sp' is the stack pointer value in use in this frame.
|
|
`fsr' is a pointer to a frame_saved_regs structure into which we put
|
|
info about the registers saved by this frame.
|
|
`fi' is a struct frame_info pointer; we fill in various fields in it
|
|
to reflect the offsets of the arg pointer and the locals pointer. */
|
|
|
|
static CORE_ADDR
|
|
examine_prologue (ip, limit, after_prolog_fp, fsr, fi)
|
|
register CORE_ADDR ip;
|
|
register CORE_ADDR limit;
|
|
FRAME_ADDR after_prolog_fp;
|
|
struct frame_saved_regs *fsr;
|
|
struct frame_info *fi;
|
|
{
|
|
register CORE_ADDR next_ip;
|
|
int r;
|
|
int i;
|
|
int have_fp = 0;
|
|
register int src;
|
|
register struct pic_prologue_code *pcode;
|
|
INSN_WORD insn_word;
|
|
int size, offset;
|
|
/* Number of things pushed onto stack, starts at 2/4, 'cause the
|
|
PC is already there */
|
|
unsigned int reg_save_depth = h8300hmode ? 4 : 2;
|
|
|
|
unsigned int auto_depth = 0; /* Number of bytes of autos */
|
|
|
|
char in_frame[11]; /* One for each reg */
|
|
|
|
memset (in_frame, 1, 11);
|
|
for (r = 0; r < 8; r++)
|
|
{
|
|
fsr->regs[r] = 0;
|
|
}
|
|
if (after_prolog_fp == 0)
|
|
{
|
|
after_prolog_fp = read_register (SP_REGNUM);
|
|
}
|
|
if (ip == 0 || ip & (h8300hmode ? ~0xffff : ~0xffff))
|
|
return 0;
|
|
|
|
next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
|
|
|
|
/* Skip over any fp push instructions */
|
|
fsr->regs[6] = after_prolog_fp;
|
|
while (next_ip && IS_PUSH_FP (insn_word))
|
|
{
|
|
ip = next_ip;
|
|
|
|
in_frame[insn_word & 0x7] = reg_save_depth;
|
|
next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
|
|
reg_save_depth += 2;
|
|
}
|
|
|
|
/* Is this a move into the fp */
|
|
if (next_ip && IS_MOV_SP_FP (insn_word))
|
|
{
|
|
ip = next_ip;
|
|
next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
|
|
have_fp = 1;
|
|
}
|
|
|
|
/* Skip over any stack adjustment, happens either with a number of
|
|
sub#2,sp or a mov #x,r5 sub r5,sp */
|
|
|
|
if (next_ip && IS_SUB2_SP (insn_word))
|
|
{
|
|
while (next_ip && IS_SUB2_SP (insn_word))
|
|
{
|
|
auto_depth += 2;
|
|
ip = next_ip;
|
|
next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (next_ip && IS_MOVK_R5 (insn_word))
|
|
{
|
|
ip = next_ip;
|
|
next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
|
|
auto_depth += insn_word;
|
|
|
|
next_ip = NEXT_PROLOGUE_INSN (next_ip, limit, &insn_word);
|
|
auto_depth += insn_word;
|
|
}
|
|
}
|
|
/* Work out which regs are stored where */
|
|
while (next_ip && IS_PUSH (insn_word))
|
|
{
|
|
ip = next_ip;
|
|
next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
|
|
fsr->regs[r] = after_prolog_fp + auto_depth;
|
|
auto_depth += 2;
|
|
}
|
|
|
|
/* The args are always reffed based from the stack pointer */
|
|
fi->args_pointer = after_prolog_fp;
|
|
/* Locals are always reffed based from the fp */
|
|
fi->locals_pointer = after_prolog_fp;
|
|
/* The PC is at a known place */
|
|
fi->from_pc = read_memory_unsigned_integer (after_prolog_fp + 2, BINWORD);
|
|
|
|
/* Rememeber any others too */
|
|
in_frame[PC_REGNUM] = 0;
|
|
|
|
if (have_fp)
|
|
/* We keep the old FP in the SP spot */
|
|
fsr->regs[SP_REGNUM] = read_memory_unsigned_integer (fsr->regs[6], BINWORD);
|
|
else
|
|
fsr->regs[SP_REGNUM] = after_prolog_fp + auto_depth;
|
|
|
|
return (ip);
|
|
}
|
|
|
|
void
|
|
init_extra_frame_info (fromleaf, fi)
|
|
int fromleaf;
|
|
struct frame_info *fi;
|
|
{
|
|
fi->fsr = 0; /* Not yet allocated */
|
|
fi->args_pointer = 0; /* Unknown */
|
|
fi->locals_pointer = 0; /* Unknown */
|
|
fi->from_pc = 0;
|
|
}
|
|
|
|
/* Return the saved PC from this frame.
|
|
|
|
If the frame has a memory copy of SRP_REGNUM, use that. If not,
|
|
just use the register SRP_REGNUM itself. */
|
|
|
|
CORE_ADDR
|
|
frame_saved_pc (frame)
|
|
FRAME frame;
|
|
{
|
|
return frame->from_pc;
|
|
}
|
|
|
|
CORE_ADDR
|
|
frame_locals_address (fi)
|
|
struct frame_info *fi;
|
|
{
|
|
if (!fi->locals_pointer)
|
|
{
|
|
struct frame_saved_regs ignore;
|
|
|
|
get_frame_saved_regs (fi, &ignore);
|
|
|
|
}
|
|
return fi->locals_pointer;
|
|
}
|
|
|
|
/* Return the address of the argument block for the frame
|
|
described by FI. Returns 0 if the address is unknown. */
|
|
|
|
CORE_ADDR
|
|
frame_args_address (fi)
|
|
struct frame_info *fi;
|
|
{
|
|
if (!fi->args_pointer)
|
|
{
|
|
struct frame_saved_regs ignore;
|
|
|
|
get_frame_saved_regs (fi, &ignore);
|
|
|
|
}
|
|
|
|
return fi->args_pointer;
|
|
}
|
|
|
|
void
|
|
h8300_pop_frame ()
|
|
{
|
|
unsigned regnum;
|
|
struct frame_saved_regs fsr;
|
|
struct frame_info *fi;
|
|
|
|
FRAME frame = get_current_frame ();
|
|
|
|
fi = get_frame_info (frame);
|
|
get_frame_saved_regs (fi, &fsr);
|
|
|
|
for (regnum = 0; regnum < 8; regnum++)
|
|
{
|
|
if (fsr.regs[regnum])
|
|
{
|
|
write_register (regnum, read_memory_integer(fsr.regs[regnum]), BINWORD);
|
|
}
|
|
|
|
flush_cached_frames ();
|
|
set_current_frame (create_new_frame (read_register (FP_REGNUM),
|
|
read_pc ()));
|
|
}
|
|
}
|
|
|
|
|
|
struct cmd_list_element *setmemorylist;
|
|
|
|
static void
|
|
h8300_command(args, from_tty)
|
|
{
|
|
extern int h8300hmode;
|
|
h8300hmode = 0;
|
|
}
|
|
|
|
static void
|
|
h8300h_command(args, from_tty)
|
|
{
|
|
extern int h8300hmode;
|
|
h8300hmode = 1;
|
|
}
|
|
|
|
static void
|
|
set_machine (args, from_tty)
|
|
char *args;
|
|
int from_tty;
|
|
{
|
|
printf_unfiltered ("\"set machine\" must be followed by h8300 or h8300h.\n");
|
|
help_list (setmemorylist, "set memory ", -1, gdb_stdout);
|
|
}
|
|
|
|
void
|
|
_initialize_h8300m ()
|
|
{
|
|
add_prefix_cmd ("machine", no_class, set_machine,
|
|
"set the machine type", &setmemorylist, "set machine ", 0,
|
|
&setlist);
|
|
|
|
add_cmd ("h8300", class_support, h8300_command,
|
|
"Set machine to be H8/300.", &setmemorylist);
|
|
|
|
add_cmd ("h8300h", class_support, h8300h_command,
|
|
"Set machine to be H8/300H.", &setmemorylist);
|
|
}
|
|
|
|
|
|
|
|
void
|
|
print_register_hook (regno)
|
|
{
|
|
if (regno == 8)
|
|
{
|
|
/* CCR register */
|
|
|
|
int C, Z, N, V;
|
|
unsigned char b[2];
|
|
unsigned char l;
|
|
|
|
read_relative_register_raw_bytes (regno, b);
|
|
l = b[1];
|
|
printf_unfiltered ("\t");
|
|
printf_unfiltered ("I-%d - ", (l & 0x80) != 0);
|
|
printf_unfiltered ("H-%d - ", (l & 0x20) != 0);
|
|
N = (l & 0x8) != 0;
|
|
Z = (l & 0x4) != 0;
|
|
V = (l & 0x2) != 0;
|
|
C = (l & 0x1) != 0;
|
|
printf_unfiltered ("N-%d ", N);
|
|
printf_unfiltered ("Z-%d ", Z);
|
|
printf_unfiltered ("V-%d ", V);
|
|
printf_unfiltered ("C-%d ", C);
|
|
if ((C | Z) == 0)
|
|
printf_unfiltered ("u> ");
|
|
if ((C | Z) == 1)
|
|
printf_unfiltered ("u<= ");
|
|
if ((C == 0))
|
|
printf_unfiltered ("u>= ");
|
|
if (C == 1)
|
|
printf_unfiltered ("u< ");
|
|
if (Z == 0)
|
|
printf_unfiltered ("!= ");
|
|
if (Z == 1)
|
|
printf_unfiltered ("== ");
|
|
if ((N ^ V) == 0)
|
|
printf_unfiltered (">= ");
|
|
if ((N ^ V) == 1)
|
|
printf_unfiltered ("< ");
|
|
if ((Z | (N ^ V)) == 0)
|
|
printf_unfiltered ("> ");
|
|
if ((Z | (N ^ V)) == 1)
|
|
printf_unfiltered ("<= ");
|
|
}
|
|
}
|
|
|
|
/* This doesn't quite fit either in the simulator or in gdb proper.
|
|
Perhaps the simulator could return 1 to mean it loaded it and 0 to
|
|
mean "you deal with it, caller". */
|
|
|
|
int
|
|
sim_load (abfd, prog)
|
|
bfd *abfd;
|
|
char *prog;
|
|
{
|
|
return sim_load_standard (abfd);
|
|
}
|