mirror of
https://github.com/darlinghq/darling-gdb.git
synced 2024-12-03 09:41:26 +00:00
36456a67f8
objdump -r to do something reasonable. * som.c (som_get_reloc_upper_bound): Implement. (som_canonicalize_reloc): Implement. (som_set_reloc_info, som_slurp_reloc_table): New functions.
3906 lines
125 KiB
C
3906 lines
125 KiB
C
/* bfd back-end for HP PA-RISC SOM objects.
|
||
Copyright (C) 1990, 1991, 1992, 1993 Free Software Foundation, Inc.
|
||
|
||
Contributed by the Center for Software Science at the
|
||
University of Utah (pa-gdb-bugs@cs.utah.edu).
|
||
|
||
This file is part of BFD, the Binary File Descriptor library.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
|
||
|
||
#include "bfd.h"
|
||
#include "sysdep.h"
|
||
|
||
#if defined (HOST_HPPAHPUX) || defined (HOST_HPPABSD)
|
||
|
||
#include "libbfd.h"
|
||
#include "som.h"
|
||
#include "libhppa.h"
|
||
|
||
#include <stdio.h>
|
||
#include <sys/types.h>
|
||
#include <sys/param.h>
|
||
#include <sys/dir.h>
|
||
#include <signal.h>
|
||
#include <machine/reg.h>
|
||
#include <sys/user.h> /* After a.out.h */
|
||
#include <sys/file.h>
|
||
#include <errno.h>
|
||
|
||
/* Magic not defined in standard HP-UX header files until 8.0 */
|
||
|
||
#ifndef CPU_PA_RISC1_0
|
||
#define CPU_PA_RISC1_0 0x20B
|
||
#endif /* CPU_PA_RISC1_0 */
|
||
|
||
#ifndef CPU_PA_RISC1_1
|
||
#define CPU_PA_RISC1_1 0x210
|
||
#endif /* CPU_PA_RISC1_1 */
|
||
|
||
#ifndef _PA_RISC1_0_ID
|
||
#define _PA_RISC1_0_ID CPU_PA_RISC1_0
|
||
#endif /* _PA_RISC1_0_ID */
|
||
|
||
#ifndef _PA_RISC1_1_ID
|
||
#define _PA_RISC1_1_ID CPU_PA_RISC1_1
|
||
#endif /* _PA_RISC1_1_ID */
|
||
|
||
#ifndef _PA_RISC_MAXID
|
||
#define _PA_RISC_MAXID 0x2FF
|
||
#endif /* _PA_RISC_MAXID */
|
||
|
||
#ifndef _PA_RISC_ID
|
||
#define _PA_RISC_ID(__m_num) \
|
||
(((__m_num) == _PA_RISC1_0_ID) || \
|
||
((__m_num) >= _PA_RISC1_1_ID && (__m_num) <= _PA_RISC_MAXID))
|
||
#endif /* _PA_RISC_ID */
|
||
|
||
/* Size (in chars) of the temporary buffers used during fixup and string
|
||
table writes. */
|
||
|
||
#define SOM_TMP_BUFSIZE 8192
|
||
|
||
|
||
/* SOM allows any one of the four previous relocations to be reused
|
||
with a "R_PREV_FIXUP" relocation entry. Since R_PREV_FIXUP
|
||
relocations are always a single byte, using a R_PREV_FIXUP instead
|
||
of some multi-byte relocation makes object files smaller.
|
||
|
||
Note one side effect of using a R_PREV_FIXUP is the relocation that
|
||
is being repeated moves to the front of the queue. */
|
||
struct reloc_queue
|
||
{
|
||
unsigned char *reloc;
|
||
unsigned int size;
|
||
} reloc_queue[4];
|
||
|
||
/* This fully describes the symbol types which may be attached to
|
||
an EXPORT or IMPORT directive. Only SOM uses this formation
|
||
(ELF has no need for it). */
|
||
typedef enum
|
||
{
|
||
SYMBOL_TYPE_UNKNOWN,
|
||
SYMBOL_TYPE_ABSOLUTE,
|
||
SYMBOL_TYPE_CODE,
|
||
SYMBOL_TYPE_DATA,
|
||
SYMBOL_TYPE_ENTRY,
|
||
SYMBOL_TYPE_MILLICODE,
|
||
SYMBOL_TYPE_PLABEL,
|
||
SYMBOL_TYPE_PRI_PROG,
|
||
SYMBOL_TYPE_SEC_PROG,
|
||
} pa_symbol_type;
|
||
|
||
/* Forward declarations */
|
||
|
||
static boolean som_mkobject PARAMS ((bfd *));
|
||
static bfd_target * som_object_setup PARAMS ((bfd *,
|
||
struct header *,
|
||
struct som_exec_auxhdr *));
|
||
static asection * make_unique_section PARAMS ((bfd *, CONST char *, int));
|
||
static boolean setup_sections PARAMS ((bfd *, struct header *));
|
||
static bfd_target * som_object_p PARAMS ((bfd *));
|
||
static boolean som_write_object_contents PARAMS ((bfd *));
|
||
static boolean som_slurp_string_table PARAMS ((bfd *));
|
||
static unsigned int som_slurp_symbol_table PARAMS ((bfd *));
|
||
static unsigned int som_get_symtab_upper_bound PARAMS ((bfd *));
|
||
static unsigned int som_canonicalize_reloc PARAMS ((bfd *, sec_ptr,
|
||
arelent **, asymbol **));
|
||
static unsigned int som_get_reloc_upper_bound PARAMS ((bfd *, sec_ptr));
|
||
static unsigned int som_set_reloc_info PARAMS ((unsigned char *, unsigned int,
|
||
arelent *, asection *,
|
||
asymbol **, boolean));
|
||
static boolean som_slurp_reloc_table PARAMS ((bfd *, asection *,
|
||
asymbol **, boolean));
|
||
static unsigned int som_get_symtab PARAMS ((bfd *, asymbol **));
|
||
static asymbol * som_make_empty_symbol PARAMS ((bfd *));
|
||
static void som_print_symbol PARAMS ((bfd *, PTR,
|
||
asymbol *, bfd_print_symbol_type));
|
||
static boolean som_new_section_hook PARAMS ((bfd *, asection *));
|
||
static boolean som_set_section_contents PARAMS ((bfd *, sec_ptr, PTR,
|
||
file_ptr, bfd_size_type));
|
||
static boolean som_set_arch_mach PARAMS ((bfd *, enum bfd_architecture,
|
||
unsigned long));
|
||
static boolean som_find_nearest_line PARAMS ((bfd *, asection *,
|
||
asymbol **, bfd_vma,
|
||
CONST char **,
|
||
CONST char **,
|
||
unsigned int *));
|
||
static void som_get_symbol_info PARAMS ((bfd *, asymbol *, symbol_info *));
|
||
static asection * som_section_from_subspace_index PARAMS ((bfd *,
|
||
unsigned int));
|
||
static int log2 PARAMS ((unsigned int));
|
||
static bfd_reloc_status_type hppa_som_reloc PARAMS ((bfd *, arelent *,
|
||
asymbol *, PTR,
|
||
asection *, bfd *));
|
||
static void som_initialize_reloc_queue PARAMS ((struct reloc_queue *));
|
||
static void som_reloc_queue_insert PARAMS ((unsigned char *, unsigned int,
|
||
struct reloc_queue *));
|
||
static void som_reloc_queue_fix PARAMS ((struct reloc_queue *, unsigned int));
|
||
static int som_reloc_queue_find PARAMS ((unsigned char *, unsigned int,
|
||
struct reloc_queue *));
|
||
static unsigned char * try_prev_fixup PARAMS ((bfd *, int *, unsigned char *,
|
||
unsigned int,
|
||
struct reloc_queue *));
|
||
|
||
static unsigned char * som_reloc_skip PARAMS ((bfd *, unsigned int,
|
||
unsigned char *, unsigned int *,
|
||
struct reloc_queue *));
|
||
static unsigned char * som_reloc_addend PARAMS ((bfd *, int, unsigned char *,
|
||
unsigned int *,
|
||
struct reloc_queue *));
|
||
static unsigned char * som_reloc_call PARAMS ((bfd *, unsigned char *,
|
||
unsigned int *,
|
||
arelent *, int,
|
||
struct reloc_queue *));
|
||
static unsigned long som_count_spaces PARAMS ((bfd *));
|
||
static unsigned long som_count_subspaces PARAMS ((bfd *));
|
||
static int compare_syms PARAMS ((asymbol **, asymbol **));
|
||
static unsigned long som_compute_checksum PARAMS ((bfd *));
|
||
static boolean som_prep_headers PARAMS ((bfd *));
|
||
static int som_sizeof_headers PARAMS ((bfd *, boolean));
|
||
static boolean som_write_headers PARAMS ((bfd *));
|
||
static boolean som_build_and_write_symbol_table PARAMS ((bfd *));
|
||
static void som_prep_for_fixups PARAMS ((bfd *, asymbol **, unsigned long));
|
||
static boolean som_write_fixups PARAMS ((bfd *, unsigned long, unsigned int *));
|
||
static boolean som_write_space_strings PARAMS ((bfd *, unsigned long,
|
||
unsigned int *));
|
||
static boolean som_write_symbol_strings PARAMS ((bfd *, unsigned long,
|
||
asymbol **, unsigned int,
|
||
unsigned *));
|
||
static boolean som_begin_writing PARAMS ((bfd *));
|
||
static const reloc_howto_type * som_bfd_reloc_type_lookup
|
||
PARAMS ((bfd_arch_info_type *, bfd_reloc_code_real_type));
|
||
|
||
/* About the relocation formatting table...
|
||
|
||
There are 256 entries in the table, one for each possible
|
||
relocation opcode available in SOM. We index the table by
|
||
the relocation opcode. The names and operations are those
|
||
defined by a.out_800 (4).
|
||
|
||
Right now this table is only used to count and perform minimal
|
||
processing on relocation streams so that they can be internalized
|
||
into BFD and symbolically printed by utilities. To make actual use
|
||
of them would be much more difficult, BFD's concept of relocations
|
||
is far too simple to handle SOM relocations. The basic assumption
|
||
that a relocation can be completely processed independent of other
|
||
relocations before an object file is written is invalid for SOM.
|
||
|
||
The SOM relocations are meant to be processed as a stream, they
|
||
specify copying of data from the input section to the output section
|
||
while possibly modifying the data in some manner. They also can
|
||
specify that a variable number of zeros or uninitialized data be
|
||
inserted on in the output segment at the current offset. Some
|
||
relocations specify that some previous relocation be re-applied at
|
||
the current location in the input/output sections. And finally a number
|
||
of relocations have effects on other sections (R_ENTRY, R_EXIT,
|
||
R_UNWIND_AUX and a variety of others). There isn't even enough room
|
||
in the BFD relocation data structure to store enough information to
|
||
perform all the relocations.
|
||
|
||
Each entry in the table has three fields.
|
||
|
||
The first entry is an index into this "class" of relocations. This
|
||
index can then be used as a variable within the relocation itself.
|
||
|
||
The second field is a format string which actually controls processing
|
||
of the relocation. It uses a simple postfix machine to do calculations
|
||
based on variables/constants found in the string and the relocation
|
||
stream.
|
||
|
||
The third field specifys whether or not this relocation may use
|
||
a constant (V) from the previous R_DATA_OVERRIDE rather than a constant
|
||
stored in the instruction.
|
||
|
||
Variables:
|
||
|
||
L = input space byte count
|
||
D = index into class of relocations
|
||
M = output space byte count
|
||
N = statement number (unused?)
|
||
O = stack operation
|
||
R = parameter relocation bits
|
||
S = symbol index
|
||
U = 64 bits of stack unwind and frame size info (we only keep 32 bits)
|
||
V = a literal constant (usually used in the next relocation)
|
||
P = a previous relocation
|
||
|
||
Lower case letters (starting with 'b') refer to following
|
||
bytes in the relocation stream. 'b' is the next 1 byte,
|
||
c is the next 2 bytes, d is the next 3 bytes, etc...
|
||
This is the variable part of the relocation entries that
|
||
makes our life a living hell.
|
||
|
||
numerical constants are also used in the format string. Note
|
||
the constants are represented in decimal.
|
||
|
||
'+', "*" and "=" represents the obvious postfix operators.
|
||
'<' represents a left shift.
|
||
|
||
Stack Operations:
|
||
|
||
Parameter Relocation Bits:
|
||
|
||
Unwind Entries:
|
||
|
||
Previous Relocations: The index field represents which in the queue
|
||
of 4 previous fixups should be re-applied.
|
||
|
||
Literal Constants: These are generally used to represent addend
|
||
parts of relocations when these constants are not stored in the
|
||
fields of the instructions themselves. For example the instruction
|
||
addil foo-$global$-0x1234 would use an override for "0x1234" rather
|
||
than storing it into the addil itself. */
|
||
|
||
struct fixup_format
|
||
{
|
||
int D;
|
||
char *format;
|
||
};
|
||
|
||
static const struct fixup_format som_fixup_formats[256] =
|
||
{
|
||
/* R_NO_RELOCATION */
|
||
0, "LD1+4*=", /* 0x00 */
|
||
1, "LD1+4*=", /* 0x01 */
|
||
2, "LD1+4*=", /* 0x02 */
|
||
3, "LD1+4*=", /* 0x03 */
|
||
4, "LD1+4*=", /* 0x04 */
|
||
5, "LD1+4*=", /* 0x05 */
|
||
6, "LD1+4*=", /* 0x06 */
|
||
7, "LD1+4*=", /* 0x07 */
|
||
8, "LD1+4*=", /* 0x08 */
|
||
9, "LD1+4*=", /* 0x09 */
|
||
10, "LD1+4*=", /* 0x0a */
|
||
11, "LD1+4*=", /* 0x0b */
|
||
12, "LD1+4*=", /* 0x0c */
|
||
13, "LD1+4*=", /* 0x0d */
|
||
14, "LD1+4*=", /* 0x0e */
|
||
15, "LD1+4*=", /* 0x0f */
|
||
16, "LD1+4*=", /* 0x10 */
|
||
17, "LD1+4*=", /* 0x11 */
|
||
18, "LD1+4*=", /* 0x12 */
|
||
19, "LD1+4*=", /* 0x13 */
|
||
20, "LD1+4*=", /* 0x14 */
|
||
21, "LD1+4*=", /* 0x15 */
|
||
22, "LD1+4*=", /* 0x16 */
|
||
23, "LD1+4*=", /* 0x17 */
|
||
0, "LD8<b+1+4*=", /* 0x18 */
|
||
1, "LD8<b+1+4*=", /* 0x19 */
|
||
2, "LD8<b+1+4*=", /* 0x1a */
|
||
3, "LD8<b+1+4*=", /* 0x1b */
|
||
0, "LD16<c+1+4*=", /* 0x1c */
|
||
1, "LD16<c+1+4*=", /* 0x1d */
|
||
2, "LD16<c+1+4*=", /* 0x1e */
|
||
0, "Ld1+=", /* 0x1f */
|
||
/* R_ZEROES */
|
||
0, "Lb1+4*=", /* 0x20 */
|
||
1, "Ld1+=", /* 0x21 */
|
||
/* R_UNINIT */
|
||
0, "Lb1+4*=", /* 0x22 */
|
||
1, "Ld1+=", /* 0x23 */
|
||
/* R_RELOCATION */
|
||
0, "L4=", /* 0x24 */
|
||
/* R_DATA_ONE_SYMBOL */
|
||
0, "L4=Sb=", /* 0x25 */
|
||
1, "L4=Sd=", /* 0x26 */
|
||
/* R_DATA_PLEBEL */
|
||
0, "L4=Sb=", /* 0x27 */
|
||
1, "L4=Sd=", /* 0x28 */
|
||
/* R_SPACE_REF */
|
||
0, "L4=", /* 0x29 */
|
||
/* R_REPEATED_INIT */
|
||
0, "L4=Mb1+4*=", /* 0x2a */
|
||
1, "Lb4*=Mb1+L*=", /* 0x2b */
|
||
2, "Lb4*=Md1+4*=", /* 0x2c */
|
||
3, "Ld1+=Me1+=", /* 0x2d */
|
||
/* R_RESERVED */
|
||
0, "", /* 0x2e */
|
||
0, "", /* 0x2f */
|
||
/* R_PCREL_CALL */
|
||
0, "L4=RD=Sb=", /* 0x30 */
|
||
1, "L4=RD=Sb=", /* 0x31 */
|
||
2, "L4=RD=Sb=", /* 0x32 */
|
||
3, "L4=RD=Sb=", /* 0x33 */
|
||
4, "L4=RD=Sb=", /* 0x34 */
|
||
5, "L4=RD=Sb=", /* 0x35 */
|
||
6, "L4=RD=Sb=", /* 0x36 */
|
||
7, "L4=RD=Sb=", /* 0x37 */
|
||
8, "L4=RD=Sb=", /* 0x38 */
|
||
9, "L4=RD=Sb=", /* 0x39 */
|
||
0, "L4=RD8<b+=Sb=",/* 0x3a */
|
||
1, "L4=RD8<b+=Sb=",/* 0x3b */
|
||
0, "L4=RD8<b+=Sd=",/* 0x3c */
|
||
1, "L4=RD8<b+=Sd=",/* 0x3d */
|
||
/* R_RESERVED */
|
||
0, "", /* 0x3e */
|
||
0, "", /* 0x3f */
|
||
/* R_ABS_CALL */
|
||
0, "L4=RD=Sb=", /* 0x40 */
|
||
1, "L4=RD=Sb=", /* 0x41 */
|
||
2, "L4=RD=Sb=", /* 0x42 */
|
||
3, "L4=RD=Sb=", /* 0x43 */
|
||
4, "L4=RD=Sb=", /* 0x44 */
|
||
5, "L4=RD=Sb=", /* 0x45 */
|
||
6, "L4=RD=Sb=", /* 0x46 */
|
||
7, "L4=RD=Sb=", /* 0x47 */
|
||
8, "L4=RD=Sb=", /* 0x48 */
|
||
9, "L4=RD=Sb=", /* 0x49 */
|
||
0, "L4=RD8<b+=Sb=",/* 0x4a */
|
||
1, "L4=RD8<b+=Sb=",/* 0x4b */
|
||
0, "L4=RD8<b+=Sd=",/* 0x4c */
|
||
1, "L4=RD8<b+=Sd=",/* 0x4d */
|
||
/* R_RESERVED */
|
||
0, "", /* 0x4e */
|
||
0, "", /* 0x4f */
|
||
/* R_DP_RELATIVE */
|
||
0, "L4=SD=", /* 0x50 */
|
||
1, "L4=SD=", /* 0x51 */
|
||
2, "L4=SD=", /* 0x52 */
|
||
3, "L4=SD=", /* 0x53 */
|
||
4, "L4=SD=", /* 0x54 */
|
||
5, "L4=SD=", /* 0x55 */
|
||
6, "L4=SD=", /* 0x56 */
|
||
7, "L4=SD=", /* 0x57 */
|
||
8, "L4=SD=", /* 0x58 */
|
||
9, "L4=SD=", /* 0x59 */
|
||
10, "L4=SD=", /* 0x5a */
|
||
11, "L4=SD=", /* 0x5b */
|
||
12, "L4=SD=", /* 0x5c */
|
||
13, "L4=SD=", /* 0x5d */
|
||
14, "L4=SD=", /* 0x5e */
|
||
15, "L4=SD=", /* 0x5f */
|
||
16, "L4=SD=", /* 0x60 */
|
||
17, "L4=SD=", /* 0x61 */
|
||
18, "L4=SD=", /* 0x62 */
|
||
19, "L4=SD=", /* 0x63 */
|
||
20, "L4=SD=", /* 0x64 */
|
||
21, "L4=SD=", /* 0x65 */
|
||
22, "L4=SD=", /* 0x66 */
|
||
23, "L4=SD=", /* 0x67 */
|
||
24, "L4=SD=", /* 0x68 */
|
||
25, "L4=SD=", /* 0x69 */
|
||
26, "L4=SD=", /* 0x6a */
|
||
27, "L4=SD=", /* 0x6b */
|
||
28, "L4=SD=", /* 0x6c */
|
||
29, "L4=SD=", /* 0x6d */
|
||
30, "L4=SD=", /* 0x6e */
|
||
31, "L4=SD=", /* 0x6f */
|
||
32, "L4=Sb=", /* 0x70 */
|
||
33, "L4=Sd=", /* 0x71 */
|
||
/* R_RESERVED */
|
||
0, "", /* 0x72 */
|
||
0, "", /* 0x73 */
|
||
0, "", /* 0x74 */
|
||
0, "", /* 0x75 */
|
||
0, "", /* 0x76 */
|
||
0, "", /* 0x77 */
|
||
/* R_DLT_REL */
|
||
0, "L4=Sb=", /* 0x78 */
|
||
1, "L4=Sd=", /* 0x79 */
|
||
/* R_RESERVED */
|
||
0, "", /* 0x7a */
|
||
0, "", /* 0x7b */
|
||
0, "", /* 0x7c */
|
||
0, "", /* 0x7d */
|
||
0, "", /* 0x7e */
|
||
0, "", /* 0x7f */
|
||
/* R_CODE_ONE_SYMBOL */
|
||
0, "L4=SD=", /* 0x80 */
|
||
1, "L4=SD=", /* 0x81 */
|
||
2, "L4=SD=", /* 0x82 */
|
||
3, "L4=SD=", /* 0x83 */
|
||
4, "L4=SD=", /* 0x84 */
|
||
5, "L4=SD=", /* 0x85 */
|
||
6, "L4=SD=", /* 0x86 */
|
||
7, "L4=SD=", /* 0x87 */
|
||
8, "L4=SD=", /* 0x88 */
|
||
9, "L4=SD=", /* 0x89 */
|
||
10, "L4=SD=", /* 0x8q */
|
||
11, "L4=SD=", /* 0x8b */
|
||
12, "L4=SD=", /* 0x8c */
|
||
13, "L4=SD=", /* 0x8d */
|
||
14, "L4=SD=", /* 0x8e */
|
||
15, "L4=SD=", /* 0x8f */
|
||
16, "L4=SD=", /* 0x90 */
|
||
17, "L4=SD=", /* 0x91 */
|
||
18, "L4=SD=", /* 0x92 */
|
||
19, "L4=SD=", /* 0x93 */
|
||
20, "L4=SD=", /* 0x94 */
|
||
21, "L4=SD=", /* 0x95 */
|
||
22, "L4=SD=", /* 0x96 */
|
||
23, "L4=SD=", /* 0x97 */
|
||
24, "L4=SD=", /* 0x98 */
|
||
25, "L4=SD=", /* 0x99 */
|
||
26, "L4=SD=", /* 0x9a */
|
||
27, "L4=SD=", /* 0x9b */
|
||
28, "L4=SD=", /* 0x9c */
|
||
29, "L4=SD=", /* 0x9d */
|
||
30, "L4=SD=", /* 0x9e */
|
||
31, "L4=SD=", /* 0x9f */
|
||
32, "L4=Sb=", /* 0xa0 */
|
||
33, "L4=Sd=", /* 0xa1 */
|
||
/* R_RESERVED */
|
||
0, "", /* 0xa2 */
|
||
0, "", /* 0xa3 */
|
||
0, "", /* 0xa4 */
|
||
0, "", /* 0xa5 */
|
||
0, "", /* 0xa6 */
|
||
0, "", /* 0xa7 */
|
||
0, "", /* 0xa8 */
|
||
0, "", /* 0xa9 */
|
||
0, "", /* 0xaa */
|
||
0, "", /* 0xab */
|
||
0, "", /* 0xac */
|
||
0, "", /* 0xad */
|
||
/* R_MILLI_REL */
|
||
0, "L4=Sb=", /* 0xae */
|
||
1, "L4=Sd=", /* 0xaf */
|
||
/* R_CODE_PLABEL */
|
||
0, "L4=Sb=", /* 0xb0 */
|
||
1, "L4=Sd=", /* 0xb1 */
|
||
/* R_BREAKPOINT */
|
||
0, "L4=", /* 0xb2 */
|
||
/* R_ENTRY */
|
||
0, "Ui=", /* 0xb3 */
|
||
1, "Uf=", /* 0xb4 */
|
||
/* R_ALT_ENTRY */
|
||
0, "", /* 0xb5 */
|
||
/* R_EXIT */
|
||
0, "", /* 0xb6 */
|
||
/* R_BEGIN_TRY */
|
||
0, "", /* 0xb7 */
|
||
/* R_END_TRY */
|
||
0, "R0=", /* 0xb8 */
|
||
1, "Rb4*=", /* 0xb9 */
|
||
2, "Rd4*=", /* 0xba */
|
||
/* R_BEGIN_BRTAB */
|
||
0, "", /* 0xbb */
|
||
/* R_END_BRTAB */
|
||
0, "", /* 0xbc */
|
||
/* R_STATEMENT */
|
||
0, "Nb=", /* 0xbd */
|
||
1, "Nc=", /* 0xbe */
|
||
2, "Nd=", /* 0xbf */
|
||
/* R_DATA_EXPR */
|
||
0, "L4=", /* 0xc0 */
|
||
/* R_CODE_EXPR */
|
||
0, "L4=", /* 0xc1 */
|
||
/* R_FSEL */
|
||
0, "", /* 0xc2 */
|
||
/* R_LSEL */
|
||
0, "", /* 0xc3 */
|
||
/* R_RSEL */
|
||
0, "", /* 0xc4 */
|
||
/* R_N_MODE */
|
||
0, "", /* 0xc5 */
|
||
/* R_S_MODE */
|
||
0, "", /* 0xc6 */
|
||
/* R_D_MODE */
|
||
0, "", /* 0xc7 */
|
||
/* R_R_MODE */
|
||
0, "", /* 0xc8 */
|
||
/* R_DATA_OVERRIDE */
|
||
0, "V0=", /* 0xc9 */
|
||
1, "Vb=", /* 0xca */
|
||
2, "Vc=", /* 0xcb */
|
||
3, "Vd=", /* 0xcc */
|
||
4, "Ve=", /* 0xcd */
|
||
/* R_TRANSLATED */
|
||
0, "", /* 0xce */
|
||
/* R_RESERVED */
|
||
0, "", /* 0xcf */
|
||
/* R_COMP1 */
|
||
0, "Ob=", /* 0xd0 */
|
||
/* R_COMP2 */
|
||
0, "Ob=Sd=", /* 0xd1 */
|
||
/* R_COMP3 */
|
||
0, "Ob=Ve=", /* 0xd2 */
|
||
/* R_PREV_FIXUP */
|
||
0, "P", /* 0xd3 */
|
||
1, "P", /* 0xd4 */
|
||
2, "P", /* 0xd5 */
|
||
3, "P", /* 0xd6 */
|
||
/* R_RESERVED */
|
||
0, "", /* 0xd7 */
|
||
0, "", /* 0xd8 */
|
||
0, "", /* 0xd9 */
|
||
0, "", /* 0xda */
|
||
0, "", /* 0xdb */
|
||
0, "", /* 0xdc */
|
||
0, "", /* 0xdd */
|
||
0, "", /* 0xde */
|
||
0, "", /* 0xdf */
|
||
0, "", /* 0xe0 */
|
||
0, "", /* 0xe1 */
|
||
0, "", /* 0xe2 */
|
||
0, "", /* 0xe3 */
|
||
0, "", /* 0xe4 */
|
||
0, "", /* 0xe5 */
|
||
0, "", /* 0xe6 */
|
||
0, "", /* 0xe7 */
|
||
0, "", /* 0xe8 */
|
||
0, "", /* 0xe9 */
|
||
0, "", /* 0xea */
|
||
0, "", /* 0xeb */
|
||
0, "", /* 0xec */
|
||
0, "", /* 0xed */
|
||
0, "", /* 0xee */
|
||
0, "", /* 0xef */
|
||
0, "", /* 0xf0 */
|
||
0, "", /* 0xf1 */
|
||
0, "", /* 0xf2 */
|
||
0, "", /* 0xf3 */
|
||
0, "", /* 0xf4 */
|
||
0, "", /* 0xf5 */
|
||
0, "", /* 0xf6 */
|
||
0, "", /* 0xf7 */
|
||
0, "", /* 0xf8 */
|
||
0, "", /* 0xf9 */
|
||
0, "", /* 0xfa */
|
||
0, "", /* 0xfb */
|
||
0, "", /* 0xfc */
|
||
0, "", /* 0xfd */
|
||
0, "", /* 0xfe */
|
||
0, "", /* 0xff */
|
||
};
|
||
|
||
static const int comp1_opcodes[] =
|
||
{
|
||
0x00,
|
||
0x40,
|
||
0x41,
|
||
0x42,
|
||
0x43,
|
||
0x44,
|
||
0x45,
|
||
0x46,
|
||
0x47,
|
||
0x48,
|
||
0x49,
|
||
0x4a,
|
||
0x4b,
|
||
0x60,
|
||
0x80,
|
||
0xa0,
|
||
0xc0,
|
||
-1
|
||
};
|
||
|
||
static const int comp2_opcodes[] =
|
||
{
|
||
0x00,
|
||
0x80,
|
||
0x82,
|
||
0xc0,
|
||
-1
|
||
};
|
||
|
||
static const int comp3_opcodes[] =
|
||
{
|
||
0x00,
|
||
0x02,
|
||
-1
|
||
};
|
||
|
||
static reloc_howto_type som_hppa_howto_table[] =
|
||
{
|
||
{R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
|
||
{R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
|
||
{R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
|
||
{R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
|
||
{R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
|
||
{R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
|
||
{R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
|
||
{R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
|
||
{R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
|
||
{R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
|
||
{R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
|
||
{R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
|
||
{R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
|
||
{R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
|
||
{R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
|
||
{R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
|
||
{R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
|
||
{R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
|
||
{R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
|
||
{R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
|
||
{R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
|
||
{R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
|
||
{R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
|
||
{R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
|
||
{R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
|
||
{R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
|
||
{R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
|
||
{R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
|
||
{R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
|
||
{R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
|
||
{R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
|
||
{R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
|
||
{R_ZEROES, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ZEROES"},
|
||
{R_ZEROES, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ZEROES"},
|
||
{R_UNINIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_UNINIT"},
|
||
{R_UNINIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_UNINIT"},
|
||
{R_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RELOCATION"},
|
||
{R_DATA_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_ONE_SYMBOL"},
|
||
{R_DATA_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_ONE_SYMBOL"},
|
||
{R_DATA_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_PLABEL"},
|
||
{R_DATA_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_PLABEL"},
|
||
{R_SPACE_REF, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_SPACE_REF"},
|
||
{R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
|
||
{R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
|
||
{R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
|
||
{R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
|
||
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
|
||
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
|
||
{R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
|
||
{R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
|
||
{R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
|
||
{R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
|
||
{R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
|
||
{R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
|
||
{R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
|
||
{R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
|
||
{R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
|
||
{R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
|
||
{R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
|
||
{R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
|
||
{R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
|
||
{R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
|
||
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
|
||
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
|
||
{R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
|
||
{R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
|
||
{R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
|
||
{R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
|
||
{R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
|
||
{R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
|
||
{R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
|
||
{R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
|
||
{R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
|
||
{R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
|
||
{R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
|
||
{R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
|
||
{R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
|
||
{R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
|
||
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
|
||
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
|
||
{R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
|
||
{R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
|
||
{R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
|
||
{R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
|
||
{R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
|
||
{R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
|
||
{R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
|
||
{R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
|
||
{R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
|
||
{R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
|
||
{R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
|
||
{R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
|
||
{R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
|
||
{R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
|
||
{R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
|
||
{R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
|
||
{R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
|
||
{R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
|
||
{R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
|
||
{R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
|
||
{R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
|
||
{R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
|
||
{R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
|
||
{R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
|
||
{R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
|
||
{R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
|
||
{R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
|
||
{R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
|
||
{R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
|
||
{R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
|
||
{R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
|
||
{R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
|
||
{R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
|
||
{R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
|
||
{R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
|
||
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
|
||
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
|
||
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
|
||
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
|
||
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
|
||
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
|
||
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
|
||
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
|
||
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
|
||
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
|
||
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
|
||
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
|
||
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
|
||
{R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
|
||
{R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
|
||
{R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
|
||
{R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
|
||
{R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
|
||
{R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
|
||
{R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
|
||
{R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
|
||
{R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
|
||
{R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
|
||
{R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
|
||
{R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
|
||
{R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
|
||
{R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
|
||
{R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
|
||
{R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
|
||
{R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
|
||
{R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
|
||
{R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
|
||
{R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
|
||
{R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
|
||
{R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
|
||
{R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
|
||
{R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
|
||
{R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
|
||
{R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
|
||
{R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
|
||
{R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
|
||
{R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
|
||
{R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
|
||
{R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
|
||
{R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
|
||
{R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
|
||
{R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
|
||
{R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
|
||
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
|
||
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
|
||
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
|
||
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
|
||
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
|
||
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
|
||
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
|
||
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
|
||
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
|
||
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
|
||
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
|
||
{R_MILLI_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_MILLI_REL"},
|
||
{R_MILLI_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_MILLI_REL"},
|
||
{R_CODE_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_PLABEL"},
|
||
{R_CODE_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_PLABEL"},
|
||
{R_BREAKPOINT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BREAKPOINT"},
|
||
{R_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ENTRY"},
|
||
{R_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ENTRY"},
|
||
{R_ALT_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ALT_ENTRY"},
|
||
{R_EXIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_EXIT"},
|
||
{R_BEGIN_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BEGIN_TRY"},
|
||
{R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
|
||
{R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
|
||
{R_BEGIN_BRTAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BEGIN_BRTAB"},
|
||
{R_END_BRTAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_BRTAB"},
|
||
{R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
|
||
{R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
|
||
{R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
|
||
{R_DATA_EXPR, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_EXPR"},
|
||
{R_CODE_EXPR, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_EXPR"},
|
||
{R_FSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_FSEL"},
|
||
{R_LSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_LSEL"},
|
||
{R_RSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RSEL"},
|
||
{R_N_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_N_MODE"},
|
||
{R_S_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_S_MODE"},
|
||
{R_D_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_D_MODE"},
|
||
{R_R_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_R_MODE"},
|
||
{R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
|
||
{R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
|
||
{R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
|
||
{R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
|
||
{R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
|
||
{R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
|
||
{R_TRANSLATED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_TRANSLATED"},
|
||
{R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
|
||
{R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
|
||
{R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
|
||
{R_COMP1, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP1"},
|
||
{R_COMP2, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP2"},
|
||
{R_COMP3, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP3"},
|
||
{R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
|
||
{R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
|
||
{R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
|
||
{R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
|
||
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
|
||
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
|
||
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
|
||
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
|
||
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
|
||
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
|
||
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
|
||
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
|
||
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
|
||
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
|
||
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
|
||
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
|
||
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
|
||
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
|
||
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
|
||
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
|
||
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
|
||
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
|
||
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
|
||
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
|
||
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
|
||
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
|
||
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
|
||
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
|
||
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
|
||
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
|
||
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
|
||
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
|
||
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
|
||
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
|
||
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
|
||
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
|
||
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
|
||
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
|
||
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
|
||
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
|
||
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
|
||
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
|
||
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
|
||
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
|
||
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}};
|
||
|
||
|
||
/* Initialize the SOM relocation queue. By definition the queue holds
|
||
the last four multibyte fixups. */
|
||
|
||
static void
|
||
som_initialize_reloc_queue (queue)
|
||
struct reloc_queue *queue;
|
||
{
|
||
queue[0].reloc = NULL;
|
||
queue[0].size = 0;
|
||
queue[1].reloc = NULL;
|
||
queue[1].size = 0;
|
||
queue[2].reloc = NULL;
|
||
queue[2].size = 0;
|
||
queue[3].reloc = NULL;
|
||
queue[3].size = 0;
|
||
}
|
||
|
||
/* Insert a new relocation into the relocation queue. */
|
||
|
||
static void
|
||
som_reloc_queue_insert (p, size, queue)
|
||
unsigned char *p;
|
||
unsigned int size;
|
||
struct reloc_queue *queue;
|
||
{
|
||
queue[3].reloc = queue[2].reloc;
|
||
queue[3].size = queue[2].size;
|
||
queue[2].reloc = queue[1].reloc;
|
||
queue[2].size = queue[1].size;
|
||
queue[1].reloc = queue[0].reloc;
|
||
queue[1].size = queue[0].size;
|
||
queue[0].reloc = p;
|
||
queue[0].size = size;
|
||
}
|
||
|
||
/* When an entry in the relocation queue is reused, the entry moves
|
||
to the front of the queue. */
|
||
|
||
static void
|
||
som_reloc_queue_fix (queue, index)
|
||
struct reloc_queue *queue;
|
||
unsigned int index;
|
||
{
|
||
if (index == 0)
|
||
return;
|
||
|
||
if (index == 1)
|
||
{
|
||
unsigned char *tmp1 = queue[0].reloc;
|
||
unsigned int tmp2 = queue[0].size;
|
||
queue[0].reloc = queue[1].reloc;
|
||
queue[0].size = queue[1].size;
|
||
queue[1].reloc = tmp1;
|
||
queue[1].size = tmp2;
|
||
return;
|
||
}
|
||
|
||
if (index == 2)
|
||
{
|
||
unsigned char *tmp1 = queue[0].reloc;
|
||
unsigned int tmp2 = queue[0].size;
|
||
queue[0].reloc = queue[2].reloc;
|
||
queue[0].size = queue[2].size;
|
||
queue[2].reloc = queue[1].reloc;
|
||
queue[2].size = queue[1].size;
|
||
queue[1].reloc = tmp1;
|
||
queue[1].size = tmp2;
|
||
return;
|
||
}
|
||
|
||
if (index == 3)
|
||
{
|
||
unsigned char *tmp1 = queue[0].reloc;
|
||
unsigned int tmp2 = queue[0].size;
|
||
queue[0].reloc = queue[3].reloc;
|
||
queue[0].size = queue[3].size;
|
||
queue[3].reloc = queue[2].reloc;
|
||
queue[3].size = queue[2].size;
|
||
queue[2].reloc = queue[1].reloc;
|
||
queue[2].size = queue[1].size;
|
||
queue[1].reloc = tmp1;
|
||
queue[1].size = tmp2;
|
||
return;
|
||
}
|
||
abort();
|
||
}
|
||
|
||
/* Search for a particular relocation in the relocation queue. */
|
||
|
||
static int
|
||
som_reloc_queue_find (p, size, queue)
|
||
unsigned char *p;
|
||
unsigned int size;
|
||
struct reloc_queue *queue;
|
||
{
|
||
if (!bcmp (p, queue[0].reloc, size)
|
||
&& size == queue[0].size)
|
||
return 0;
|
||
if (!bcmp (p, queue[1].reloc, size)
|
||
&& size == queue[1].size)
|
||
return 1;
|
||
if (!bcmp (p, queue[2].reloc, size)
|
||
&& size == queue[2].size)
|
||
return 2;
|
||
if (!bcmp (p, queue[3].reloc, size)
|
||
&& size == queue[3].size)
|
||
return 3;
|
||
return -1;
|
||
}
|
||
|
||
static unsigned char *
|
||
try_prev_fixup (abfd, subspace_reloc_sizep, p, size, queue)
|
||
bfd *abfd;
|
||
int *subspace_reloc_sizep;
|
||
unsigned char *p;
|
||
unsigned int size;
|
||
struct reloc_queue *queue;
|
||
{
|
||
int queue_index = som_reloc_queue_find (p, size, queue);
|
||
|
||
if (queue_index != -1)
|
||
{
|
||
/* Found this in a previous fixup. Undo the fixup we
|
||
just built and use R_PREV_FIXUP instead. We saved
|
||
a total of size - 1 bytes in the fixup stream. */
|
||
bfd_put_8 (abfd, R_PREV_FIXUP + queue_index, p);
|
||
p += 1;
|
||
*subspace_reloc_sizep += 1;
|
||
som_reloc_queue_fix (queue, queue_index);
|
||
}
|
||
else
|
||
{
|
||
som_reloc_queue_insert (p, size, queue);
|
||
*subspace_reloc_sizep += size;
|
||
p += size;
|
||
}
|
||
return p;
|
||
}
|
||
|
||
/* Emit the proper R_NO_RELOCATION fixups to map the next SKIP
|
||
bytes without any relocation. Update the size of the subspace
|
||
relocation stream via SUBSPACE_RELOC_SIZE_P; also return the
|
||
current pointer into the relocation stream. */
|
||
|
||
static unsigned char *
|
||
som_reloc_skip (abfd, skip, p, subspace_reloc_sizep, queue)
|
||
bfd *abfd;
|
||
unsigned int skip;
|
||
unsigned char *p;
|
||
unsigned int *subspace_reloc_sizep;
|
||
struct reloc_queue *queue;
|
||
{
|
||
/* Use a 4 byte R_NO_RELOCATION entry with a maximal value
|
||
then R_PREV_FIXUPs to get the difference down to a
|
||
reasonable size. */
|
||
if (skip >= 0x1000000)
|
||
{
|
||
skip -= 0x1000000;
|
||
bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
|
||
bfd_put_8 (abfd, 0xff, p + 1);
|
||
bfd_put_16 (abfd, 0xffff, p + 2);
|
||
p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
|
||
while (skip >= 0x1000000)
|
||
{
|
||
skip -= 0x1000000;
|
||
bfd_put_8 (abfd, R_PREV_FIXUP, p);
|
||
p++;
|
||
*subspace_reloc_sizep += 1;
|
||
/* No need to adjust queue here since we are repeating the
|
||
most recent fixup. */
|
||
}
|
||
}
|
||
|
||
/* The difference must be less than 0x1000000. Use one
|
||
more R_NO_RELOCATION entry to get to the right difference. */
|
||
if ((skip & 3) == 0 && skip <= 0xc0000 && skip > 0)
|
||
{
|
||
/* Difference can be handled in a simple single-byte
|
||
R_NO_RELOCATION entry. */
|
||
if (skip <= 0x60)
|
||
{
|
||
bfd_put_8 (abfd, R_NO_RELOCATION + (skip >> 2) - 1, p);
|
||
*subspace_reloc_sizep += 1;
|
||
p++;
|
||
}
|
||
/* Handle it with a two byte R_NO_RELOCATION entry. */
|
||
else if (skip <= 0x1000)
|
||
{
|
||
bfd_put_8 (abfd, R_NO_RELOCATION + 24 + (((skip >> 2) - 1) >> 8), p);
|
||
bfd_put_8 (abfd, (skip >> 2) - 1, p + 1);
|
||
p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
|
||
}
|
||
/* Handle it with a three byte R_NO_RELOCATION entry. */
|
||
else
|
||
{
|
||
bfd_put_8 (abfd, R_NO_RELOCATION + 28 + (((skip >> 2) - 1) >> 16), p);
|
||
bfd_put_16 (abfd, (skip >> 2) - 1, p + 1);
|
||
p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
|
||
}
|
||
}
|
||
/* Ugh. Punt and use a 4 byte entry. */
|
||
else if (skip > 0)
|
||
{
|
||
bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
|
||
bfd_put_8 (abfd, skip >> 16, p + 1);
|
||
bfd_put_16 (abfd, skip, p + 2);
|
||
p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
|
||
}
|
||
return p;
|
||
}
|
||
|
||
/* Emit the proper R_DATA_OVERRIDE fixups to handle a nonzero addend
|
||
from a BFD relocation. Update the size of the subspace relocation
|
||
stream via SUBSPACE_RELOC_SIZE_P; also return the current pointer
|
||
into the relocation stream. */
|
||
|
||
static unsigned char *
|
||
som_reloc_addend (abfd, addend, p, subspace_reloc_sizep, queue)
|
||
bfd *abfd;
|
||
int addend;
|
||
unsigned char *p;
|
||
unsigned int *subspace_reloc_sizep;
|
||
struct reloc_queue *queue;
|
||
{
|
||
if ((unsigned)(addend) + 0x80 < 0x100)
|
||
{
|
||
bfd_put_8 (abfd, R_DATA_OVERRIDE + 1, p);
|
||
bfd_put_8 (abfd, addend, p + 1);
|
||
p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
|
||
}
|
||
else if ((unsigned) (addend) + 0x8000 < 0x10000)
|
||
{
|
||
bfd_put_8 (abfd, R_DATA_OVERRIDE + 2, p);
|
||
bfd_put_16 (abfd, addend, p + 1);
|
||
p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
|
||
}
|
||
else if ((unsigned) (addend) + 0x800000 < 0x1000000)
|
||
{
|
||
bfd_put_8 (abfd, R_DATA_OVERRIDE + 3, p);
|
||
bfd_put_8 (abfd, addend >> 16, p + 1);
|
||
bfd_put_16 (abfd, addend, p + 2);
|
||
p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
|
||
}
|
||
else
|
||
{
|
||
bfd_put_8 (abfd, R_DATA_OVERRIDE + 4, p);
|
||
bfd_put_32 (abfd, addend, p + 1);
|
||
p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
|
||
}
|
||
return p;
|
||
}
|
||
|
||
/* Handle a single function call relocation. */
|
||
|
||
static unsigned char *
|
||
som_reloc_call (abfd, p, subspace_reloc_sizep, bfd_reloc, sym_num, queue)
|
||
bfd *abfd;
|
||
unsigned char *p;
|
||
unsigned int *subspace_reloc_sizep;
|
||
arelent *bfd_reloc;
|
||
int sym_num;
|
||
struct reloc_queue *queue;
|
||
{
|
||
int arg_bits = HPPA_R_ARG_RELOC (bfd_reloc->addend);
|
||
int rtn_bits = arg_bits & 0x3;
|
||
int type, done = 0;
|
||
|
||
/* You'll never believe all this is necessary to handle relocations
|
||
for function calls. Having to compute and pack the argument
|
||
relocation bits is the real nightmare.
|
||
|
||
If you're interested in how this works, just forget it. You really
|
||
do not want to know about this braindamage. */
|
||
|
||
/* First see if this can be done with a "simple" relocation. Simple
|
||
relocations have a symbol number < 0x100 and have simple encodings
|
||
of argument relocations. */
|
||
|
||
if (sym_num < 0x100)
|
||
{
|
||
switch (arg_bits)
|
||
{
|
||
case 0:
|
||
case 1:
|
||
type = 0;
|
||
break;
|
||
case 1 << 8:
|
||
case 1 << 8 | 1:
|
||
type = 1;
|
||
break;
|
||
case 1 << 8 | 1 << 6:
|
||
case 1 << 8 | 1 << 6 | 1:
|
||
type = 2;
|
||
break;
|
||
case 1 << 8 | 1 << 6 | 1 << 4:
|
||
case 1 << 8 | 1 << 6 | 1 << 4 | 1:
|
||
type = 3;
|
||
break;
|
||
case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2:
|
||
case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2 | 1:
|
||
type = 4;
|
||
break;
|
||
default:
|
||
/* Not one of the easy encodings. This will have to be
|
||
handled by the more complex code below. */
|
||
type = -1;
|
||
break;
|
||
}
|
||
if (type != -1)
|
||
{
|
||
/* Account for the return value too. */
|
||
if (rtn_bits)
|
||
type += 5;
|
||
|
||
/* Emit a 2 byte relocation. Then see if it can be handled
|
||
with a relocation which is already in the relocation queue. */
|
||
bfd_put_8 (abfd, bfd_reloc->howto->type + type, p);
|
||
bfd_put_8 (abfd, sym_num, p + 1);
|
||
p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
|
||
done = 1;
|
||
}
|
||
}
|
||
|
||
/* If this could not be handled with a simple relocation, then do a hard
|
||
one. Hard relocations occur if the symbol number was too high or if
|
||
the encoding of argument relocation bits is too complex. */
|
||
if (! done)
|
||
{
|
||
/* Don't ask about these magic sequences. I took them straight
|
||
from gas-1.36 which took them from the a.out man page. */
|
||
type = rtn_bits;
|
||
if ((arg_bits >> 6 & 0xf) == 0xe)
|
||
type += 9 * 40;
|
||
else
|
||
type += (3 * (arg_bits >> 8 & 3) + (arg_bits >> 6 & 3)) * 40;
|
||
if ((arg_bits >> 2 & 0xf) == 0xe)
|
||
type += 9 * 4;
|
||
else
|
||
type += (3 * (arg_bits >> 4 & 3) + (arg_bits >> 2 & 3)) * 4;
|
||
|
||
/* Output the first two bytes of the relocation. These describe
|
||
the length of the relocation and encoding style. */
|
||
bfd_put_8 (abfd, bfd_reloc->howto->type + 10
|
||
+ 2 * (sym_num >= 0x100) + (type >= 0x100),
|
||
p);
|
||
bfd_put_8 (abfd, type, p + 1);
|
||
|
||
/* Now output the symbol index and see if this bizarre relocation
|
||
just happened to be in the relocation queue. */
|
||
if (sym_num < 0x100)
|
||
{
|
||
bfd_put_8 (abfd, sym_num, p + 2);
|
||
p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
|
||
}
|
||
else
|
||
{
|
||
bfd_put_8 (abfd, sym_num >> 16, p + 2);
|
||
bfd_put_16 (abfd, sym_num, p + 3);
|
||
p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
|
||
}
|
||
}
|
||
return p;
|
||
}
|
||
|
||
|
||
/* Return the logarithm of X, base 2, considering X unsigned.
|
||
Abort if X is not a power of two -- this should never happen (FIXME:
|
||
It will happen on corrupt executables. GDB should give an error, not
|
||
a coredump, in that case). */
|
||
|
||
static int
|
||
log2 (x)
|
||
unsigned int x;
|
||
{
|
||
int log = 0;
|
||
|
||
/* Test for 0 or a power of 2. */
|
||
if (x == 0 || x != (x & -x))
|
||
abort();
|
||
|
||
while ((x >>= 1) != 0)
|
||
log++;
|
||
return log;
|
||
}
|
||
|
||
static bfd_reloc_status_type
|
||
hppa_som_reloc (abfd, reloc_entry, symbol_in, data, input_section, output_bfd)
|
||
bfd *abfd;
|
||
arelent *reloc_entry;
|
||
asymbol *symbol_in;
|
||
PTR data;
|
||
asection *input_section;
|
||
bfd *output_bfd;
|
||
{
|
||
if (output_bfd)
|
||
{
|
||
reloc_entry->address += input_section->output_offset;
|
||
return bfd_reloc_ok;
|
||
}
|
||
return bfd_reloc_ok;
|
||
}
|
||
|
||
/* Given a generic HPPA relocation type, the instruction format,
|
||
and a field selector, return an appropriate SOM reloation.
|
||
|
||
FIXME. Need to handle %RR, %LR and the like as field selectors.
|
||
These will need to generate multiple SOM relocations. */
|
||
|
||
int **
|
||
hppa_som_gen_reloc_type (abfd, base_type, format, field)
|
||
bfd *abfd;
|
||
int base_type;
|
||
int format;
|
||
int field;
|
||
{
|
||
int *final_type, **final_types;
|
||
|
||
final_types = (int **) bfd_alloc_by_size_t (abfd, sizeof (int *) * 2);
|
||
final_type = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
|
||
|
||
|
||
final_types[0] = final_type;
|
||
final_types[1] = NULL;
|
||
|
||
/* Default to the basic relocation passed in. */
|
||
*final_type = base_type;
|
||
|
||
switch (base_type)
|
||
{
|
||
case R_HPPA:
|
||
/* PLABELs get their own relocation type. */
|
||
if (field == e_psel
|
||
|| field == e_lpsel
|
||
|| field == e_rpsel)
|
||
{
|
||
/* A PLABEL relocation that has a size of 32 bits must
|
||
be a R_DATA_PLABEL. All others are R_CODE_PLABELs. */
|
||
if (format == 32)
|
||
*final_type = R_DATA_PLABEL;
|
||
else
|
||
*final_type = R_CODE_PLABEL;
|
||
}
|
||
/* A relocatoin in the data space is always a full 32bits. */
|
||
else if (format == 32)
|
||
*final_type = R_DATA_ONE_SYMBOL;
|
||
|
||
break;
|
||
|
||
case R_HPPA_GOTOFF:
|
||
/* More PLABEL special cases. */
|
||
if (field == e_psel
|
||
|| field == e_lpsel
|
||
|| field == e_rpsel)
|
||
*final_type = R_DATA_PLABEL;
|
||
break;
|
||
|
||
case R_HPPA_NONE:
|
||
case R_HPPA_ABS_CALL:
|
||
case R_HPPA_PCREL_CALL:
|
||
case R_HPPA_COMPLEX:
|
||
case R_HPPA_COMPLEX_PCREL_CALL:
|
||
case R_HPPA_COMPLEX_ABS_CALL:
|
||
/* Right now we can default all these. */
|
||
break;
|
||
}
|
||
return final_types;
|
||
}
|
||
|
||
/* Return the address of the correct entry in the PA SOM relocation
|
||
howto table. */
|
||
|
||
static const reloc_howto_type *
|
||
som_bfd_reloc_type_lookup (arch, code)
|
||
bfd_arch_info_type *arch;
|
||
bfd_reloc_code_real_type code;
|
||
{
|
||
if ((int) code < (int) R_NO_RELOCATION + 255)
|
||
{
|
||
BFD_ASSERT ((int) som_hppa_howto_table[(int) code].type == (int) code);
|
||
return &som_hppa_howto_table[(int) code];
|
||
}
|
||
|
||
return (reloc_howto_type *) 0;
|
||
}
|
||
|
||
/* Perform some initialization for an object. Save results of this
|
||
initialization in the BFD. */
|
||
|
||
static bfd_target *
|
||
som_object_setup (abfd, file_hdrp, aux_hdrp)
|
||
bfd *abfd;
|
||
struct header *file_hdrp;
|
||
struct som_exec_auxhdr *aux_hdrp;
|
||
{
|
||
/* som_mkobject will set bfd_error if som_mkobject fails. */
|
||
if (som_mkobject (abfd) != true)
|
||
return 0;
|
||
|
||
/* Set BFD flags based on what information is available in the SOM. */
|
||
abfd->flags = NO_FLAGS;
|
||
if (! file_hdrp->entry_offset)
|
||
abfd->flags |= HAS_RELOC;
|
||
else
|
||
abfd->flags |= EXEC_P;
|
||
if (file_hdrp->symbol_total)
|
||
abfd->flags |= HAS_LINENO | HAS_DEBUG | HAS_SYMS | HAS_LOCALS;
|
||
|
||
bfd_get_start_address (abfd) = aux_hdrp->exec_entry;
|
||
bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 0);
|
||
bfd_get_symcount (abfd) = file_hdrp->symbol_total;
|
||
|
||
/* Initialize the saved symbol table and string table to NULL.
|
||
Save important offsets and sizes from the SOM header into
|
||
the BFD. */
|
||
obj_som_stringtab (abfd) = (char *) NULL;
|
||
obj_som_symtab (abfd) = (som_symbol_type *) NULL;
|
||
obj_som_stringtab_size (abfd) = file_hdrp->symbol_strings_size;
|
||
obj_som_sym_filepos (abfd) = file_hdrp->symbol_location;
|
||
obj_som_str_filepos (abfd) = file_hdrp->symbol_strings_location;
|
||
obj_som_reloc_filepos (abfd) = file_hdrp->fixup_request_location;
|
||
|
||
return abfd->xvec;
|
||
}
|
||
|
||
/* Create a new BFD section for NAME. If NAME already exists, then create a
|
||
new unique name, with NAME as the prefix. This exists because SOM .o files
|
||
may have more than one $CODE$ subspace. */
|
||
|
||
static asection *
|
||
make_unique_section (abfd, name, num)
|
||
bfd *abfd;
|
||
CONST char *name;
|
||
int num;
|
||
{
|
||
asection *sect;
|
||
char *newname;
|
||
char altname[100];
|
||
|
||
sect = bfd_make_section (abfd, name);
|
||
while (!sect)
|
||
{
|
||
sprintf (altname, "%s-%d", name, num++);
|
||
sect = bfd_make_section (abfd, altname);
|
||
}
|
||
|
||
newname = bfd_alloc (abfd, strlen (sect->name) + 1);
|
||
strcpy (newname, sect->name);
|
||
|
||
sect->name = newname;
|
||
return sect;
|
||
}
|
||
|
||
/* Convert all of the space and subspace info into BFD sections. Each space
|
||
contains a number of subspaces, which in turn describe the mapping between
|
||
regions of the exec file, and the address space that the program runs in.
|
||
BFD sections which correspond to spaces will overlap the sections for the
|
||
associated subspaces. */
|
||
|
||
static boolean
|
||
setup_sections (abfd, file_hdr)
|
||
bfd *abfd;
|
||
struct header *file_hdr;
|
||
{
|
||
char *space_strings;
|
||
int space_index;
|
||
unsigned int total_subspaces = 0;
|
||
|
||
/* First, read in space names */
|
||
|
||
space_strings = alloca (file_hdr->space_strings_size);
|
||
if (!space_strings)
|
||
return false;
|
||
|
||
if (bfd_seek (abfd, file_hdr->space_strings_location, SEEK_SET) < 0)
|
||
return false;
|
||
if (bfd_read (space_strings, 1, file_hdr->space_strings_size, abfd)
|
||
!= file_hdr->space_strings_size)
|
||
return false;
|
||
|
||
/* Loop over all of the space dictionaries, building up sections */
|
||
for (space_index = 0; space_index < file_hdr->space_total; space_index++)
|
||
{
|
||
struct space_dictionary_record space;
|
||
struct subspace_dictionary_record subspace, save_subspace;
|
||
int subspace_index;
|
||
asection *space_asect;
|
||
|
||
/* Read the space dictionary element */
|
||
if (bfd_seek (abfd, file_hdr->space_location
|
||
+ space_index * sizeof space, SEEK_SET) < 0)
|
||
return false;
|
||
if (bfd_read (&space, 1, sizeof space, abfd) != sizeof space)
|
||
return false;
|
||
|
||
/* Setup the space name string */
|
||
space.name.n_name = space.name.n_strx + space_strings;
|
||
|
||
/* Make a section out of it */
|
||
space_asect = make_unique_section (abfd, space.name.n_name, space_index);
|
||
if (!space_asect)
|
||
return false;
|
||
|
||
/* Now, read in the first subspace for this space */
|
||
if (bfd_seek (abfd, file_hdr->subspace_location
|
||
+ space.subspace_index * sizeof subspace,
|
||
SEEK_SET) < 0)
|
||
return false;
|
||
if (bfd_read (&subspace, 1, sizeof subspace, abfd) != sizeof subspace)
|
||
return false;
|
||
/* Seek back to the start of the subspaces for loop below */
|
||
if (bfd_seek (abfd, file_hdr->subspace_location
|
||
+ space.subspace_index * sizeof subspace,
|
||
SEEK_SET) < 0)
|
||
return false;
|
||
|
||
/* Setup the start address and file loc from the first subspace record */
|
||
space_asect->vma = subspace.subspace_start;
|
||
space_asect->filepos = subspace.file_loc_init_value;
|
||
space_asect->alignment_power = log2 (subspace.alignment);
|
||
|
||
/* Initialize save_subspace so we can reliably determine if this
|
||
loop placed any useful values into it. */
|
||
bzero (&save_subspace, sizeof (struct subspace_dictionary_record));
|
||
|
||
/* Loop over the rest of the subspaces, building up more sections */
|
||
for (subspace_index = 0; subspace_index < space.subspace_quantity;
|
||
subspace_index++)
|
||
{
|
||
asection *subspace_asect;
|
||
|
||
/* Read in the next subspace */
|
||
if (bfd_read (&subspace, 1, sizeof subspace, abfd)
|
||
!= sizeof subspace)
|
||
return false;
|
||
|
||
/* Setup the subspace name string */
|
||
subspace.name.n_name = subspace.name.n_strx + space_strings;
|
||
|
||
/* Make a section out of this subspace */
|
||
subspace_asect = make_unique_section (abfd, subspace.name.n_name,
|
||
space.subspace_index + subspace_index);
|
||
|
||
if (!subspace_asect)
|
||
return false;
|
||
|
||
/* Keep an easy mapping between subspaces and sections. */
|
||
som_section_data (subspace_asect)->subspace_index
|
||
= total_subspaces++;
|
||
|
||
/* Set SEC_READONLY and SEC_CODE/SEC_DATA as specified
|
||
by the access_control_bits in the subspace header. */
|
||
switch (subspace.access_control_bits >> 4)
|
||
{
|
||
/* Readonly data. */
|
||
case 0x0:
|
||
subspace_asect->flags |= SEC_DATA | SEC_READONLY;
|
||
break;
|
||
|
||
/* Normal data. */
|
||
case 0x1:
|
||
subspace_asect->flags |= SEC_DATA;
|
||
break;
|
||
|
||
/* Readonly code and the gateways.
|
||
Gateways have other attributes which do not map
|
||
into anything BFD knows about. */
|
||
case 0x2:
|
||
case 0x4:
|
||
case 0x5:
|
||
case 0x6:
|
||
case 0x7:
|
||
subspace_asect->flags |= SEC_CODE | SEC_READONLY;
|
||
break;
|
||
|
||
/* dynamic (writable) code. */
|
||
case 0x3:
|
||
subspace_asect->flags |= SEC_CODE;
|
||
break;
|
||
}
|
||
|
||
if (subspace.dup_common || subspace.is_common)
|
||
subspace_asect->flags |= SEC_IS_COMMON;
|
||
else if (subspace.subspace_length > 0)
|
||
subspace_asect->flags |= SEC_HAS_CONTENTS;
|
||
if (subspace.is_loadable)
|
||
subspace_asect->flags |= SEC_ALLOC | SEC_LOAD;
|
||
if (subspace.code_only)
|
||
subspace_asect->flags |= SEC_CODE;
|
||
|
||
/* Both file_loc_init_value and initialization_length will
|
||
be zero for a BSS like subspace. */
|
||
if (subspace.file_loc_init_value == 0
|
||
&& subspace.initialization_length == 0)
|
||
subspace_asect->flags &= ~(SEC_DATA | SEC_LOAD);
|
||
|
||
/* This subspace has relocations.
|
||
The fixup_request_quantity is a byte count for the number of
|
||
entries in the relocation stream; it is not the actual number
|
||
of relocations in the subspace. */
|
||
if (subspace.fixup_request_quantity != 0)
|
||
{
|
||
subspace_asect->flags |= SEC_RELOC;
|
||
subspace_asect->rel_filepos = subspace.fixup_request_index;
|
||
som_section_data (subspace_asect)->reloc_size
|
||
= subspace.fixup_request_quantity;
|
||
/* We can not determine this yet. When we read in the
|
||
relocation table the correct value will be filled in. */
|
||
subspace_asect->reloc_count = -1;
|
||
}
|
||
|
||
/* Update save_subspace if appropriate. */
|
||
if (subspace.file_loc_init_value > save_subspace.file_loc_init_value)
|
||
save_subspace = subspace;
|
||
|
||
subspace_asect->vma = subspace.subspace_start;
|
||
subspace_asect->_cooked_size = subspace.subspace_length;
|
||
subspace_asect->_raw_size = subspace.subspace_length;
|
||
subspace_asect->alignment_power = log2 (subspace.alignment);
|
||
subspace_asect->filepos = subspace.file_loc_init_value;
|
||
}
|
||
|
||
/* Yow! there is no subspace within the space which actually
|
||
has initialized information in it; this should never happen
|
||
as far as I know. */
|
||
if (!save_subspace.file_loc_init_value)
|
||
abort ();
|
||
|
||
/* Setup the sizes for the space section based upon the info in the
|
||
last subspace of the space. */
|
||
space_asect->_cooked_size = save_subspace.subspace_start
|
||
- space_asect->vma + save_subspace.subspace_length;
|
||
space_asect->_raw_size = save_subspace.file_loc_init_value
|
||
- space_asect->filepos + save_subspace.initialization_length;
|
||
}
|
||
return true;
|
||
}
|
||
|
||
/* Read in a SOM object and make it into a BFD. */
|
||
|
||
static bfd_target *
|
||
som_object_p (abfd)
|
||
bfd *abfd;
|
||
{
|
||
struct header file_hdr;
|
||
struct som_exec_auxhdr aux_hdr;
|
||
|
||
if (bfd_read ((PTR) & file_hdr, 1, FILE_HDR_SIZE, abfd) != FILE_HDR_SIZE)
|
||
{
|
||
bfd_error = system_call_error;
|
||
return 0;
|
||
}
|
||
|
||
if (!_PA_RISC_ID (file_hdr.system_id))
|
||
{
|
||
bfd_error = wrong_format;
|
||
return 0;
|
||
}
|
||
|
||
switch (file_hdr.a_magic)
|
||
{
|
||
case RELOC_MAGIC:
|
||
case EXEC_MAGIC:
|
||
case SHARE_MAGIC:
|
||
case DEMAND_MAGIC:
|
||
#ifdef DL_MAGIC
|
||
case DL_MAGIC:
|
||
#endif
|
||
#ifdef SHL_MAGIC
|
||
case SHL_MAGIC:
|
||
#endif
|
||
#ifdef EXECLIBMAGIC
|
||
case EXECLIBMAGIC:
|
||
#endif
|
||
break;
|
||
default:
|
||
bfd_error = wrong_format;
|
||
return 0;
|
||
}
|
||
|
||
if (file_hdr.version_id != VERSION_ID
|
||
&& file_hdr.version_id != NEW_VERSION_ID)
|
||
{
|
||
bfd_error = wrong_format;
|
||
return 0;
|
||
}
|
||
|
||
/* If the aux_header_size field in the file header is zero, then this
|
||
object is an incomplete executable (a .o file). Do not try to read
|
||
a non-existant auxiliary header. */
|
||
bzero (&aux_hdr, sizeof (struct som_exec_auxhdr));
|
||
if (file_hdr.aux_header_size != 0)
|
||
{
|
||
if (bfd_read ((PTR) & aux_hdr, 1, AUX_HDR_SIZE, abfd) != AUX_HDR_SIZE)
|
||
{
|
||
bfd_error = wrong_format;
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
if (!setup_sections (abfd, &file_hdr))
|
||
{
|
||
/* setup_sections does not bubble up a bfd error code. */
|
||
bfd_error = bad_value;
|
||
return 0;
|
||
}
|
||
|
||
/* This appears to be a valid SOM object. Do some initialization. */
|
||
return som_object_setup (abfd, &file_hdr, &aux_hdr);
|
||
}
|
||
|
||
/* Create a SOM object. */
|
||
|
||
static boolean
|
||
som_mkobject (abfd)
|
||
bfd *abfd;
|
||
{
|
||
/* Allocate memory to hold backend information. */
|
||
abfd->tdata.som_data = (struct som_data_struct *)
|
||
bfd_zalloc (abfd, sizeof (struct som_data_struct));
|
||
if (abfd->tdata.som_data == NULL)
|
||
{
|
||
bfd_error = no_memory;
|
||
return false;
|
||
}
|
||
obj_som_file_hdr (abfd) = bfd_zalloc (abfd, sizeof (struct header));
|
||
if (obj_som_file_hdr (abfd) == NULL)
|
||
|
||
{
|
||
bfd_error = no_memory;
|
||
return false;
|
||
}
|
||
return true;
|
||
}
|
||
|
||
/* Initialize some information in the file header. This routine makes
|
||
not attempt at doing the right thing for a full executable; it
|
||
is only meant to handle relocatable objects. */
|
||
|
||
static boolean
|
||
som_prep_headers (abfd)
|
||
bfd *abfd;
|
||
{
|
||
struct header *file_hdr = obj_som_file_hdr (abfd);
|
||
asection *section;
|
||
|
||
/* FIXME. This should really be conditional based on whether or not
|
||
PA1.1 instructions/registers have been used. */
|
||
file_hdr->system_id = HP9000S800_ID;
|
||
|
||
/* FIXME. Only correct for building relocatable objects. */
|
||
if (abfd->flags & EXEC_P)
|
||
abort ();
|
||
else
|
||
file_hdr->a_magic = RELOC_MAGIC;
|
||
|
||
/* Only new format SOM is supported. */
|
||
file_hdr->version_id = NEW_VERSION_ID;
|
||
|
||
/* These fields are optional, and embedding timestamps is not always
|
||
a wise thing to do, it makes comparing objects during a multi-stage
|
||
bootstrap difficult. */
|
||
file_hdr->file_time.secs = 0;
|
||
file_hdr->file_time.nanosecs = 0;
|
||
|
||
if (abfd->flags & EXEC_P)
|
||
abort ();
|
||
else
|
||
{
|
||
file_hdr->entry_space = 0;
|
||
file_hdr->entry_subspace = 0;
|
||
file_hdr->entry_offset = 0;
|
||
}
|
||
|
||
/* FIXME. I do not know if we ever need to put anything other
|
||
than zero in this field. */
|
||
file_hdr->presumed_dp = 0;
|
||
|
||
/* Now iterate over the sections translating information from
|
||
BFD sections to SOM spaces/subspaces. */
|
||
|
||
for (section = abfd->sections; section != NULL; section = section->next)
|
||
{
|
||
/* Ignore anything which has not been marked as a space or
|
||
subspace. */
|
||
if (som_section_data (section)->is_space == 0
|
||
|
||
&& som_section_data (section)->is_subspace == 0)
|
||
continue;
|
||
|
||
if (som_section_data (section)->is_space)
|
||
{
|
||
/* Set space attributes. Note most attributes of SOM spaces
|
||
are set based on the subspaces it contains. */
|
||
som_section_data (section)->space_dict.loader_fix_index = -1;
|
||
som_section_data (section)->space_dict.init_pointer_index = -1;
|
||
}
|
||
else
|
||
{
|
||
/* Set subspace attributes. Basic stuff is done here, additional
|
||
attributes are filled in later as more information becomes
|
||
available. */
|
||
if (section->flags & SEC_IS_COMMON)
|
||
{
|
||
som_section_data (section)->subspace_dict.dup_common = 1;
|
||
som_section_data (section)->subspace_dict.is_common = 1;
|
||
}
|
||
|
||
if (section->flags & SEC_ALLOC)
|
||
som_section_data (section)->subspace_dict.is_loadable = 1;
|
||
|
||
if (section->flags & SEC_CODE)
|
||
som_section_data (section)->subspace_dict.code_only = 1;
|
||
|
||
som_section_data (section)->subspace_dict.subspace_start =
|
||
section->vma;
|
||
som_section_data (section)->subspace_dict.subspace_length =
|
||
bfd_section_size (abfd, section);
|
||
som_section_data (section)->subspace_dict.initialization_length =
|
||
bfd_section_size (abfd, section);
|
||
som_section_data (section)->subspace_dict.alignment =
|
||
1 << section->alignment_power;
|
||
}
|
||
}
|
||
return true;
|
||
}
|
||
|
||
/* Count and return the number of spaces attached to the given BFD. */
|
||
|
||
static unsigned long
|
||
som_count_spaces (abfd)
|
||
bfd *abfd;
|
||
{
|
||
int count = 0;
|
||
asection *section;
|
||
|
||
for (section = abfd->sections; section != NULL; section = section->next)
|
||
count += som_section_data (section)->is_space;
|
||
|
||
return count;
|
||
}
|
||
|
||
/* Count the number of subspaces attached to the given BFD. */
|
||
|
||
static unsigned long
|
||
som_count_subspaces (abfd)
|
||
bfd *abfd;
|
||
{
|
||
int count = 0;
|
||
asection *section;
|
||
|
||
for (section = abfd->sections; section != NULL; section = section->next)
|
||
count += som_section_data (section)->is_subspace;
|
||
|
||
return count;
|
||
}
|
||
|
||
/* Return -1, 0, 1 indicating the relative ordering of sym1 and sym2.
|
||
|
||
We desire symbols to be ordered starting with the symbol with the
|
||
highest relocation count down to the symbol with the lowest relocation
|
||
count. Doing so compacts the relocation stream. */
|
||
|
||
static int
|
||
compare_syms (sym1, sym2)
|
||
asymbol **sym1;
|
||
asymbol **sym2;
|
||
|
||
{
|
||
unsigned int count1, count2;
|
||
|
||
/* Get relocation count for each symbol. Note that the count
|
||
is stored in the udata pointer for section symbols! */
|
||
if ((*sym1)->flags & BSF_SECTION_SYM)
|
||
count1 = (int)(*sym1)->udata;
|
||
else
|
||
count1 = (*som_symbol_data ((*sym1)))->reloc_count;
|
||
|
||
if ((*sym2)->flags & BSF_SECTION_SYM)
|
||
count2 = (int)(*sym2)->udata;
|
||
else
|
||
count2 = (*som_symbol_data ((*sym2)))->reloc_count;
|
||
|
||
/* Return the appropriate value. */
|
||
if (count1 < count2)
|
||
return 1;
|
||
else if (count1 > count2)
|
||
return -1;
|
||
return 0;
|
||
}
|
||
|
||
/* Perform various work in preparation for emitting the fixup stream. */
|
||
|
||
static void
|
||
som_prep_for_fixups (abfd, syms, num_syms)
|
||
bfd *abfd;
|
||
asymbol **syms;
|
||
unsigned long num_syms;
|
||
{
|
||
int i;
|
||
asection *section;
|
||
|
||
/* Most SOM relocations involving a symbol have a length which is
|
||
dependent on the index of the symbol. So symbols which are
|
||
used often in relocations should have a small index. */
|
||
|
||
/* First initialize the counters for each symbol. */
|
||
for (i = 0; i < num_syms; i++)
|
||
{
|
||
/* Handle a section symbol; these have no pointers back to the
|
||
SOM symbol info. So we just use the pointer field (udata)
|
||
to hold the relocation count.
|
||
|
||
FIXME. While we're here set the name of any section symbol
|
||
to something which will not screw GDB. How do other formats
|
||
deal with this?!? */
|
||
if (som_symbol_data (syms[i]) == NULL)
|
||
{
|
||
syms[i]->flags |= BSF_SECTION_SYM;
|
||
syms[i]->name = "L$0\002";
|
||
syms[i]->udata = (PTR) 0;
|
||
}
|
||
else
|
||
(*som_symbol_data (syms[i]))->reloc_count = 0;
|
||
}
|
||
|
||
/* Now that the counters are initialized, make a weighted count
|
||
of how often a given symbol is used in a relocation. */
|
||
for (section = abfd->sections; section != NULL; section = section->next)
|
||
{
|
||
int i;
|
||
|
||
/* Does this section have any relocations? */
|
||
if (section->reloc_count <= 0)
|
||
continue;
|
||
|
||
/* Walk through each relocation for this section. */
|
||
for (i = 1; i < section->reloc_count; i++)
|
||
{
|
||
arelent *reloc = section->orelocation[i];
|
||
int scale;
|
||
|
||
/* If no symbol, then there is no counter to increase. */
|
||
if (reloc->sym_ptr_ptr == NULL)
|
||
continue;
|
||
|
||
/* Scaling to encourage symbols involved in R_DP_RELATIVE
|
||
and R_CODE_ONE_SYMBOL relocations to come first. These
|
||
two relocations have single byte versions if the symbol
|
||
index is very small. */
|
||
if (reloc->howto->type == R_DP_RELATIVE
|
||
|| reloc->howto->type == R_CODE_ONE_SYMBOL)
|
||
scale = 2;
|
||
else
|
||
scale = 1;
|
||
|
||
/* Handle section symbols by ramming the count in the udata
|
||
field. It will not be used and the count is very important
|
||
for these symbols. */
|
||
if ((*reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
|
||
{
|
||
(*reloc->sym_ptr_ptr)->udata =
|
||
(PTR) ((int) (*reloc->sym_ptr_ptr)->udata + scale);
|
||
continue;
|
||
}
|
||
|
||
/* A normal symbol. Increment the count. */
|
||
(*som_symbol_data ((*reloc->sym_ptr_ptr)))->reloc_count += scale;
|
||
}
|
||
}
|
||
|
||
/* Now sort the symbols. */
|
||
qsort (syms, num_syms, sizeof (asymbol *), compare_syms);
|
||
|
||
/* Compute the symbol indexes, they will be needed by the relocation
|
||
code. */
|
||
for (i = 0; i < num_syms; i++)
|
||
{
|
||
/* A section symbol. Again, there is no pointer to backend symbol
|
||
information, so we reuse (abuse) the udata field again. */
|
||
if (syms[i]->flags & BSF_SECTION_SYM)
|
||
syms[i]->udata = (PTR) i;
|
||
else
|
||
(*som_symbol_data (syms[i]))->index = i;
|
||
}
|
||
}
|
||
|
||
static boolean
|
||
som_write_fixups (abfd, current_offset, total_reloc_sizep)
|
||
bfd *abfd;
|
||
unsigned long current_offset;
|
||
unsigned int *total_reloc_sizep;
|
||
{
|
||
unsigned int i, j;
|
||
unsigned char *tmp_space, *p;
|
||
unsigned int total_reloc_size = 0;
|
||
unsigned int subspace_reloc_size = 0;
|
||
unsigned int num_spaces = obj_som_file_hdr (abfd)->space_total;
|
||
asection *section = abfd->sections;
|
||
|
||
/* Get a chunk of memory that we can use as buffer space, then throw
|
||
away. */
|
||
tmp_space = alloca (SOM_TMP_BUFSIZE);
|
||
bzero (tmp_space, SOM_TMP_BUFSIZE);
|
||
p = tmp_space;
|
||
|
||
/* All the fixups for a particular subspace are emitted in a single
|
||
stream. All the subspaces for a particular space are emitted
|
||
as a single stream.
|
||
|
||
So, to get all the locations correct one must iterate through all the
|
||
spaces, for each space iterate through its subspaces and output a
|
||
fixups stream. */
|
||
for (i = 0; i < num_spaces; i++)
|
||
{
|
||
asection *subsection;
|
||
|
||
/* Find a space. */
|
||
while (som_section_data (section)->is_space == 0)
|
||
section = section->next;
|
||
|
||
/* Now iterate through each of its subspaces. */
|
||
for (subsection = abfd->sections;
|
||
subsection != NULL;
|
||
subsection = subsection->next)
|
||
{
|
||
int reloc_offset;
|
||
|
||
/* Find a subspace of this space. */
|
||
if (som_section_data (subsection)->is_subspace == 0
|
||
|| som_section_data (subsection)->containing_space != section)
|
||
continue;
|
||
|
||
/* If this subspace had no relocations, then we're finished
|
||
with it. */
|
||
if (subsection->reloc_count <= 0)
|
||
{
|
||
som_section_data (subsection)->subspace_dict.fixup_request_index
|
||
= -1;
|
||
continue;
|
||
}
|
||
|
||
/* This subspace has some relocations. Put the relocation stream
|
||
index into the subspace record. */
|
||
som_section_data (subsection)->subspace_dict.fixup_request_index
|
||
= total_reloc_size;
|
||
|
||
/* To make life easier start over with a clean slate for
|
||
each subspace. Seek to the start of the relocation stream
|
||
for this subspace in preparation for writing out its fixup
|
||
stream. */
|
||
if (bfd_seek (abfd, current_offset + total_reloc_size, SEEK_SET) != 0)
|
||
{
|
||
bfd_error = system_call_error;
|
||
return false;
|
||
}
|
||
|
||
/* Buffer space has already been allocated. Just perform some
|
||
initialization here. */
|
||
p = tmp_space;
|
||
subspace_reloc_size = 0;
|
||
reloc_offset = 0;
|
||
som_initialize_reloc_queue (reloc_queue);
|
||
|
||
/* Translate each BFD relocation into one or more SOM
|
||
relocations. */
|
||
for (j = 0; j < subsection->reloc_count; j++)
|
||
{
|
||
arelent *bfd_reloc = subsection->orelocation[j];
|
||
unsigned int skip;
|
||
int sym_num;
|
||
|
||
/* Get the symbol number. Remember it's stored in a
|
||
special place for section symbols. */
|
||
if ((*bfd_reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
|
||
sym_num = (int) (*bfd_reloc->sym_ptr_ptr)->udata;
|
||
else
|
||
sym_num = (*som_symbol_data ((*bfd_reloc->sym_ptr_ptr)))->index;
|
||
|
||
/* If there is not enough room for the next couple relocations,
|
||
then dump the current buffer contents now. Also reinitialize
|
||
the relocation queue.
|
||
|
||
FIXME. We assume here that no BFD relocation will expand
|
||
to more than 100 bytes of SOM relocations. This should (?!?)
|
||
be quite safe. */
|
||
if (p - tmp_space + 100 > SOM_TMP_BUFSIZE)
|
||
{
|
||
if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
|
||
!= p - tmp_space)
|
||
{
|
||
bfd_error = system_call_error;
|
||
return false;
|
||
}
|
||
p = tmp_space;
|
||
som_initialize_reloc_queue (reloc_queue);
|
||
}
|
||
|
||
/* Emit R_NO_RELOCATION fixups to map any bytes which were
|
||
skipped. */
|
||
skip = bfd_reloc->address - reloc_offset;
|
||
p = som_reloc_skip (abfd, skip, p,
|
||
&subspace_reloc_size, reloc_queue);
|
||
|
||
/* Update reloc_offset for the next iteration.
|
||
|
||
Note R_ENTRY and R_EXIT relocations are just markers,
|
||
they do not consume input bytes. */
|
||
if (bfd_reloc->howto->type != R_ENTRY
|
||
&& bfd_reloc->howto->type != R_EXIT)
|
||
reloc_offset = bfd_reloc->address + 4;
|
||
else
|
||
reloc_offset = bfd_reloc->address;
|
||
|
||
|
||
/* Now the actual relocation we care about. */
|
||
switch (bfd_reloc->howto->type)
|
||
{
|
||
case R_PCREL_CALL:
|
||
case R_ABS_CALL:
|
||
p = som_reloc_call (abfd, p, &subspace_reloc_size,
|
||
bfd_reloc, sym_num, reloc_queue);
|
||
break;
|
||
|
||
case R_CODE_ONE_SYMBOL:
|
||
case R_DP_RELATIVE:
|
||
/* Account for any addend. */
|
||
if (bfd_reloc->addend)
|
||
p = som_reloc_addend (abfd, bfd_reloc->addend, p,
|
||
&subspace_reloc_size, reloc_queue);
|
||
|
||
if (sym_num < 0x20)
|
||
{
|
||
bfd_put_8 (abfd, bfd_reloc->howto->type + sym_num, p);
|
||
subspace_reloc_size += 1;
|
||
p += 1;
|
||
}
|
||
else if (sym_num < 0x100)
|
||
{
|
||
bfd_put_8 (abfd, bfd_reloc->howto->type + 32, p);
|
||
bfd_put_8 (abfd, sym_num, p + 1);
|
||
p = try_prev_fixup (abfd, &subspace_reloc_size, p,
|
||
2, reloc_queue);
|
||
}
|
||
else if (sym_num < 0x10000000)
|
||
{
|
||
bfd_put_8 (abfd, bfd_reloc->howto->type + 33, p);
|
||
bfd_put_8 (abfd, sym_num >> 16, p + 1);
|
||
bfd_put_16 (abfd, sym_num, p + 2);
|
||
p = try_prev_fixup (abfd, &subspace_reloc_size,
|
||
p, 4, reloc_queue);
|
||
}
|
||
else
|
||
abort ();
|
||
break;
|
||
|
||
case R_DATA_ONE_SYMBOL:
|
||
case R_DATA_PLABEL:
|
||
case R_CODE_PLABEL:
|
||
/* Account for any addend. */
|
||
if (bfd_reloc->addend)
|
||
p = som_reloc_addend (abfd, bfd_reloc->addend, p,
|
||
&subspace_reloc_size, reloc_queue);
|
||
|
||
if (sym_num < 0x100)
|
||
{
|
||
bfd_put_8 (abfd, bfd_reloc->howto->type, p);
|
||
bfd_put_8 (abfd, sym_num, p + 1);
|
||
p = try_prev_fixup (abfd, &subspace_reloc_size, p,
|
||
2, reloc_queue);
|
||
}
|
||
else if (sym_num < 0x10000000)
|
||
{
|
||
bfd_put_8 (abfd, bfd_reloc->howto->type + 1, p);
|
||
bfd_put_8 (abfd, sym_num >> 16, p + 1);
|
||
bfd_put_16 (abfd, sym_num, p + 2);
|
||
p = try_prev_fixup (abfd, &subspace_reloc_size,
|
||
p, 4, reloc_queue);
|
||
}
|
||
else
|
||
abort ();
|
||
break;
|
||
|
||
case R_ENTRY:
|
||
{
|
||
int *descp
|
||
= (int *) (*som_symbol_data ((*bfd_reloc->sym_ptr_ptr)))->unwind;
|
||
bfd_put_8 (abfd, R_ENTRY, p);
|
||
bfd_put_32 (abfd, descp[0], p + 1);
|
||
bfd_put_32 (abfd, descp[1], p + 5);
|
||
p = try_prev_fixup (abfd, &subspace_reloc_size,
|
||
p, 9, reloc_queue);
|
||
break;
|
||
}
|
||
|
||
case R_EXIT:
|
||
bfd_put_8 (abfd, R_EXIT, p);
|
||
subspace_reloc_size += 1;
|
||
p += 1;
|
||
break;
|
||
|
||
/* Put a "R_RESERVED" relocation in the stream if
|
||
we hit something we do not understand. The linker
|
||
will complain loudly if this ever happens. */
|
||
default:
|
||
bfd_put_8 (abfd, 0xff, p);
|
||
subspace_reloc_size += 1;
|
||
p += 1;
|
||
}
|
||
}
|
||
|
||
/* Last BFD relocation for a subspace has been processed.
|
||
Map the rest of the subspace with R_NO_RELOCATION fixups. */
|
||
p = som_reloc_skip (abfd, bfd_section_size (abfd, subsection)
|
||
- reloc_offset,
|
||
p, &subspace_reloc_size, reloc_queue);
|
||
|
||
/* Scribble out the relocations. */
|
||
if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
|
||
!= p - tmp_space)
|
||
{
|
||
bfd_error = system_call_error;
|
||
return false;
|
||
}
|
||
p = tmp_space;
|
||
|
||
total_reloc_size += subspace_reloc_size;
|
||
som_section_data (subsection)->subspace_dict.fixup_request_quantity
|
||
= subspace_reloc_size;
|
||
}
|
||
section = section->next;
|
||
}
|
||
*total_reloc_sizep = total_reloc_size;
|
||
return true;
|
||
}
|
||
|
||
/* Write out the space/subspace string table. */
|
||
|
||
static boolean
|
||
som_write_space_strings (abfd, current_offset, string_sizep)
|
||
bfd *abfd;
|
||
unsigned long current_offset;
|
||
unsigned int *string_sizep;
|
||
{
|
||
unsigned char *tmp_space, *p;
|
||
unsigned int strings_size = 0;
|
||
asection *section;
|
||
|
||
/* Get a chunk of memory that we can use as buffer space, then throw
|
||
away. */
|
||
tmp_space = alloca (SOM_TMP_BUFSIZE);
|
||
bzero (tmp_space, SOM_TMP_BUFSIZE);
|
||
p = tmp_space;
|
||
|
||
/* Seek to the start of the space strings in preparation for writing
|
||
them out. */
|
||
if (bfd_seek (abfd, current_offset, SEEK_SET) != 0)
|
||
{
|
||
bfd_error = system_call_error;
|
||
return false;
|
||
}
|
||
|
||
/* Walk through all the spaces and subspaces (order is not important)
|
||
building up and writing string table entries for their names. */
|
||
for (section = abfd->sections; section != NULL; section = section->next)
|
||
{
|
||
int length;
|
||
|
||
/* Only work with space/subspaces; avoid any other sections
|
||
which might have been made (.text for example). */
|
||
if (som_section_data (section)->is_space == 0
|
||
&& som_section_data (section)->is_subspace == 0)
|
||
continue;
|
||
|
||
/* Get the length of the space/subspace name. */
|
||
length = strlen (section->name);
|
||
|
||
/* If there is not enough room for the next entry, then dump the
|
||
current buffer contents now. Each entry will take 4 bytes to
|
||
hold the string length + the string itself + null terminator. */
|
||
if (p - tmp_space + 5 + length > SOM_TMP_BUFSIZE)
|
||
{
|
||
if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
|
||
!= p - tmp_space)
|
||
{
|
||
bfd_error = system_call_error;
|
||
return false;
|
||
}
|
||
/* Reset to beginning of the buffer space. */
|
||
p = tmp_space;
|
||
}
|
||
|
||
/* First element in a string table entry is the length of the
|
||
string. Alignment issues are already handled. */
|
||
bfd_put_32 (abfd, length, p);
|
||
p += 4;
|
||
strings_size += 4;
|
||
|
||
/* Record the index in the space/subspace records. */
|
||
if (som_section_data (section)->is_space)
|
||
som_section_data (section)->space_dict.name.n_strx = strings_size;
|
||
else
|
||
som_section_data (section)->subspace_dict.name.n_strx = strings_size;
|
||
|
||
/* Next comes the string itself + a null terminator. */
|
||
strcpy (p, section->name);
|
||
p += length + 1;
|
||
strings_size += length + 1;
|
||
|
||
/* Always align up to the next word boundary. */
|
||
while (strings_size % 4)
|
||
{
|
||
bfd_put_8 (abfd, 0, p);
|
||
p++;
|
||
strings_size++;
|
||
}
|
||
}
|
||
|
||
/* Done with the space/subspace strings. Write out any information
|
||
contained in a partial block. */
|
||
if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd) != p - tmp_space)
|
||
{
|
||
bfd_error = system_call_error;
|
||
return false;
|
||
}
|
||
*string_sizep = strings_size;
|
||
return true;
|
||
}
|
||
|
||
/* Write out the symbol string table. */
|
||
|
||
static boolean
|
||
som_write_symbol_strings (abfd, current_offset, syms, num_syms, string_sizep)
|
||
bfd *abfd;
|
||
unsigned long current_offset;
|
||
asymbol **syms;
|
||
unsigned int num_syms;
|
||
unsigned int *string_sizep;
|
||
{
|
||
unsigned int i;
|
||
unsigned char *tmp_space, *p;
|
||
unsigned int strings_size = 0;
|
||
|
||
/* Get a chunk of memory that we can use as buffer space, then throw
|
||
away. */
|
||
tmp_space = alloca (SOM_TMP_BUFSIZE);
|
||
bzero (tmp_space, SOM_TMP_BUFSIZE);
|
||
p = tmp_space;
|
||
|
||
/* Seek to the start of the space strings in preparation for writing
|
||
them out. */
|
||
if (bfd_seek (abfd, current_offset, SEEK_SET) != 0)
|
||
{
|
||
bfd_error = system_call_error;
|
||
return false;
|
||
}
|
||
|
||
for (i = 0; i < num_syms; i++)
|
||
{
|
||
int length = strlen (syms[i]->name);
|
||
|
||
/* If there is not enough room for the next entry, then dump the
|
||
current buffer contents now. */
|
||
if (p - tmp_space + 5 + length > SOM_TMP_BUFSIZE)
|
||
{
|
||
if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
|
||
!= p - tmp_space)
|
||
{
|
||
bfd_error = system_call_error;
|
||
return false;
|
||
}
|
||
/* Reset to beginning of the buffer space. */
|
||
p = tmp_space;
|
||
}
|
||
|
||
/* First element in a string table entry is the length of the
|
||
string. This must always be 4 byte aligned. This is also
|
||
an appropriate time to fill in the string index field in the
|
||
symbol table entry. */
|
||
bfd_put_32 (abfd, length, p);
|
||
strings_size += 4;
|
||
p += 4;
|
||
|
||
/* Next comes the string itself + a null terminator. */
|
||
strcpy (p, syms[i]->name);
|
||
|
||
/* ACK. FIXME. */
|
||
syms[i]->name = (char *)strings_size;
|
||
p += length + 1;
|
||
strings_size += length + 1;
|
||
|
||
/* Always align up to the next word boundary. */
|
||
while (strings_size % 4)
|
||
{
|
||
bfd_put_8 (abfd, 0, p);
|
||
strings_size++;
|
||
p++;
|
||
}
|
||
}
|
||
|
||
/* Scribble out any partial block. */
|
||
if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd) != p - tmp_space)
|
||
{
|
||
bfd_error = system_call_error;
|
||
return false;
|
||
}
|
||
|
||
*string_sizep = strings_size;
|
||
return true;
|
||
}
|
||
|
||
/* Compute variable information to be placed in the SOM headers,
|
||
space/subspace dictionaries, relocation streams, etc. Begin
|
||
writing parts of the object file. */
|
||
|
||
static boolean
|
||
som_begin_writing (abfd)
|
||
bfd *abfd;
|
||
{
|
||
unsigned long current_offset = 0;
|
||
int strings_size = 0;
|
||
unsigned int total_reloc_size = 0;
|
||
unsigned long num_spaces, num_subspaces, num_syms, i;
|
||
asection *section;
|
||
asymbol **syms = bfd_get_outsymbols (abfd);
|
||
unsigned int total_subspaces = 0;
|
||
|
||
/* The file header will always be first in an object file,
|
||
everything else can be in random locations. To keep things
|
||
"simple" BFD will lay out the object file in the manner suggested
|
||
by the PRO ABI for PA-RISC Systems. */
|
||
|
||
/* Before any output can really begin offsets for all the major
|
||
portions of the object file must be computed. So, starting
|
||
with the initial file header compute (and sometimes write)
|
||
each portion of the object file. */
|
||
|
||
/* Make room for the file header, it's contents are not complete
|
||
yet, so it can not be written at this time. */
|
||
current_offset += sizeof (struct header);
|
||
|
||
/* Any auxiliary headers will follow the file header. Right now
|
||
we have no auxiliary headers, so current_offset does not change. */
|
||
obj_som_file_hdr (abfd)->aux_header_location = current_offset;
|
||
obj_som_file_hdr (abfd)->aux_header_size = 0;
|
||
|
||
/* Next comes the initialization pointers; again we have no
|
||
initialization pointers, so current offset does not change. */
|
||
obj_som_file_hdr (abfd)->init_array_location = current_offset;
|
||
obj_som_file_hdr (abfd)->init_array_total = 0;
|
||
|
||
/* Next are the space records. These are fixed length records.
|
||
|
||
Count the number of spaces to determine how much room is needed
|
||
in the object file for the space records.
|
||
|
||
The names of the spaces are stored in a separate string table,
|
||
and the index for each space into the string table is computed
|
||
below. Therefore, it is not possible to write the space headers
|
||
at this time. */
|
||
num_spaces = som_count_spaces (abfd);
|
||
obj_som_file_hdr (abfd)->space_location = current_offset;
|
||
obj_som_file_hdr (abfd)->space_total = num_spaces;
|
||
current_offset += num_spaces * sizeof (struct space_dictionary_record);
|
||
|
||
/* Next are the subspace records. These are fixed length records.
|
||
|
||
Count the number of subspaes to determine how much room is needed
|
||
in the object file for the subspace records.
|
||
|
||
A variety if fields in the subspace record are still unknown at
|
||
this time (index into string table, fixup stream location/size, etc). */
|
||
num_subspaces = som_count_subspaces (abfd);
|
||
obj_som_file_hdr (abfd)->subspace_location = current_offset;
|
||
obj_som_file_hdr (abfd)->subspace_total = num_subspaces;
|
||
current_offset += num_subspaces * sizeof (struct subspace_dictionary_record);
|
||
|
||
/* Next is the string table for the space/subspace names. We will
|
||
build and write the string table on the fly. At the same time
|
||
we will fill in the space/subspace name index fields. */
|
||
|
||
/* The string table needs to be aligned on a word boundary. */
|
||
if (current_offset % 4)
|
||
current_offset += (4 - (current_offset % 4));
|
||
|
||
/* Mark the offset of the space/subspace string table in the
|
||
file header. */
|
||
obj_som_file_hdr (abfd)->space_strings_location = current_offset;
|
||
|
||
/* Scribble out the space strings. */
|
||
if (som_write_space_strings (abfd, current_offset, &strings_size) == false)
|
||
return false;
|
||
|
||
/* Record total string table size in the header and update the
|
||
current offset. */
|
||
obj_som_file_hdr (abfd)->space_strings_size = strings_size;
|
||
current_offset += strings_size;
|
||
|
||
/* Next is the symbol table. These are fixed length records.
|
||
|
||
Count the number of symbols to determine how much room is needed
|
||
in the object file for the symbol table.
|
||
|
||
The names of the symbols are stored in a separate string table,
|
||
and the index for each symbol name into the string table is computed
|
||
below. Therefore, it is not possible to write the symobl table
|
||
at this time. */
|
||
num_syms = bfd_get_symcount (abfd);
|
||
obj_som_file_hdr (abfd)->symbol_location = current_offset;
|
||
obj_som_file_hdr (abfd)->symbol_total = num_syms;
|
||
current_offset += num_syms * sizeof (struct symbol_dictionary_record);
|
||
|
||
/* Do prep work before handling fixups. */
|
||
som_prep_for_fixups (abfd, syms, num_syms);
|
||
|
||
/* Next comes the fixup stream which starts on a word boundary. */
|
||
if (current_offset % 4)
|
||
current_offset += (4 - (current_offset % 4));
|
||
obj_som_file_hdr (abfd)->fixup_request_location = current_offset;
|
||
|
||
/* Write the fixups and update fields in subspace headers which
|
||
relate to the fixup stream. */
|
||
if (som_write_fixups (abfd, current_offset, &total_reloc_size) == false)
|
||
return false;
|
||
|
||
/* Record the total size of the fixup stream in the file header. */
|
||
obj_som_file_hdr (abfd)->fixup_request_total = total_reloc_size;
|
||
current_offset += total_reloc_size;
|
||
|
||
/* Next are the symbol strings.
|
||
Align them to a word boundary. */
|
||
if (current_offset % 4)
|
||
current_offset += (4 - (current_offset % 4));
|
||
obj_som_file_hdr (abfd)->symbol_strings_location = current_offset;
|
||
|
||
/* Scribble out the symbol strings. */
|
||
if (som_write_symbol_strings (abfd, current_offset, syms,
|
||
num_syms, &strings_size)
|
||
== false)
|
||
return false;
|
||
|
||
/* Record total string table size in header and update the
|
||
current offset. */
|
||
obj_som_file_hdr (abfd)->symbol_strings_size = strings_size;
|
||
current_offset += strings_size;
|
||
|
||
/* Next is the compiler records. We do not use these. */
|
||
obj_som_file_hdr (abfd)->compiler_location = current_offset;
|
||
obj_som_file_hdr (abfd)->compiler_total = 0;
|
||
|
||
/* Now compute the file positions for the loadable subspaces. */
|
||
|
||
section = abfd->sections;
|
||
for (i = 0; i < num_spaces; i++)
|
||
{
|
||
asection *subsection;
|
||
|
||
/* Find a space. */
|
||
while (som_section_data (section)->is_space == 0)
|
||
section = section->next;
|
||
|
||
/* Now look for all its subspaces. */
|
||
for (subsection = abfd->sections;
|
||
subsection != NULL;
|
||
subsection = subsection->next)
|
||
{
|
||
|
||
if (som_section_data (subsection)->is_subspace == 0
|
||
|| som_section_data (subsection)->containing_space != section
|
||
|| (subsection->flags & SEC_ALLOC) == 0)
|
||
continue;
|
||
|
||
som_section_data (subsection)->subspace_index = total_subspaces++;
|
||
/* This is real data to be loaded from the file. */
|
||
if (subsection->flags & SEC_LOAD)
|
||
{
|
||
som_section_data (subsection)->subspace_dict.file_loc_init_value
|
||
= current_offset;
|
||
section->filepos = current_offset;
|
||
current_offset += bfd_section_size (abfd, subsection);
|
||
}
|
||
/* Looks like uninitialized data. */
|
||
else
|
||
{
|
||
som_section_data (subsection)->subspace_dict.file_loc_init_value
|
||
= 0;
|
||
som_section_data (subsection)->subspace_dict.
|
||
initialization_length = 0;
|
||
}
|
||
}
|
||
/* Goto the next section. */
|
||
section = section->next;
|
||
}
|
||
|
||
/* Finally compute the file positions for unloadable subspaces. */
|
||
|
||
obj_som_file_hdr (abfd)->unloadable_sp_location = current_offset;
|
||
section = abfd->sections;
|
||
for (i = 0; i < num_spaces; i++)
|
||
{
|
||
asection *subsection;
|
||
|
||
/* Find a space. */
|
||
while (som_section_data (section)->is_space == 0)
|
||
section = section->next;
|
||
|
||
/* Now look for all its subspaces. */
|
||
for (subsection = abfd->sections;
|
||
subsection != NULL;
|
||
subsection = subsection->next)
|
||
{
|
||
|
||
if (som_section_data (subsection)->is_subspace == 0
|
||
|| som_section_data (subsection)->containing_space != section
|
||
|| (subsection->flags & SEC_ALLOC) != 0)
|
||
continue;
|
||
|
||
som_section_data (subsection)->subspace_index = total_subspaces++;
|
||
/* This is real data to be loaded from the file. */
|
||
if ((subsection->flags & SEC_LOAD) == 0)
|
||
{
|
||
som_section_data (subsection)->subspace_dict.file_loc_init_value
|
||
= current_offset;
|
||
section->filepos = current_offset;
|
||
current_offset += bfd_section_size (abfd, subsection);
|
||
}
|
||
/* Looks like uninitialized data. */
|
||
else
|
||
{
|
||
som_section_data (subsection)->subspace_dict.file_loc_init_value
|
||
= 0;
|
||
som_section_data (subsection)->subspace_dict.
|
||
initialization_length = bfd_section_size (abfd, subsection);
|
||
}
|
||
}
|
||
/* Goto the next section. */
|
||
section = section->next;
|
||
}
|
||
|
||
obj_som_file_hdr (abfd)->unloadable_sp_size
|
||
= current_offset - obj_som_file_hdr (abfd)->unloadable_sp_location;
|
||
|
||
/* Loader fixups are not supported in any way shape or form. */
|
||
obj_som_file_hdr (abfd)->loader_fixup_location = 0;
|
||
obj_som_file_hdr (abfd)->loader_fixup_total = 0;
|
||
|
||
/* Done. Store the total size of the SOM. */
|
||
obj_som_file_hdr (abfd)->som_length = current_offset;
|
||
return true;
|
||
}
|
||
|
||
/* Finally, scribble out the various headers to the disk. */
|
||
|
||
static boolean
|
||
som_write_headers (abfd)
|
||
bfd *abfd;
|
||
{
|
||
int num_spaces = som_count_spaces (abfd);
|
||
int i;
|
||
int subspace_index = 0;
|
||
file_ptr location;
|
||
asection *section;
|
||
|
||
/* Subspaces are written first so that we can set up information
|
||
about them in their containing spaces as the subspace is written. */
|
||
|
||
/* Seek to the start of the subspace dictionary records. */
|
||
location = obj_som_file_hdr (abfd)->subspace_location;
|
||
bfd_seek (abfd, location, SEEK_SET);
|
||
section = abfd->sections;
|
||
/* Now for each loadable space write out records for its subspaces. */
|
||
for (i = 0; i < num_spaces; i++)
|
||
{
|
||
asection *subsection;
|
||
|
||
/* Find a space. */
|
||
while (som_section_data (section)->is_space == 0)
|
||
section = section->next;
|
||
|
||
/* Now look for all its subspaces. */
|
||
for (subsection = abfd->sections;
|
||
subsection != NULL;
|
||
subsection = subsection->next)
|
||
{
|
||
|
||
/* Skip any section which does not correspond to a space
|
||
or subspace. Or does not have SEC_ALLOC set (and therefore
|
||
has no real bits on the disk). */
|
||
if (som_section_data (subsection)->is_subspace == 0
|
||
|| som_section_data (subsection)->containing_space != section
|
||
|| (subsection->flags & SEC_ALLOC) == 0)
|
||
continue;
|
||
|
||
/* If this is the first subspace for this space, then save
|
||
the index of the subspace in its containing space. Also
|
||
set "is_loadable" in the containing space. */
|
||
|
||
if (som_section_data (section)->space_dict.subspace_quantity == 0)
|
||
{
|
||
som_section_data (section)->space_dict.is_loadable = 1;
|
||
som_section_data (section)->space_dict.subspace_index
|
||
= subspace_index;
|
||
}
|
||
|
||
/* Increment the number of subspaces seen and the number of
|
||
subspaces contained within the current space. */
|
||
subspace_index++;
|
||
som_section_data (section)->space_dict.subspace_quantity++;
|
||
|
||
/* Mark the index of the current space within the subspace's
|
||
dictionary record. */
|
||
som_section_data (subsection)->subspace_dict.space_index = i;
|
||
|
||
/* Dump the current subspace header. */
|
||
if (bfd_write ((PTR) &som_section_data (subsection)->subspace_dict,
|
||
sizeof (struct subspace_dictionary_record), 1, abfd)
|
||
!= sizeof (struct subspace_dictionary_record))
|
||
{
|
||
bfd_error = system_call_error;
|
||
return false;
|
||
}
|
||
}
|
||
/* Goto the next section. */
|
||
section = section->next;
|
||
}
|
||
|
||
/* Now repeat the process for unloadable subspaces. */
|
||
section = abfd->sections;
|
||
/* Now for each space write out records for its subspaces. */
|
||
for (i = 0; i < num_spaces; i++)
|
||
{
|
||
asection *subsection;
|
||
|
||
/* Find a space. */
|
||
while (som_section_data (section)->is_space == 0)
|
||
section = section->next;
|
||
|
||
/* Now look for all its subspaces. */
|
||
for (subsection = abfd->sections;
|
||
subsection != NULL;
|
||
subsection = subsection->next)
|
||
{
|
||
|
||
/* Skip any section which does not correspond to a space or
|
||
subspace, or which SEC_ALLOC set (and therefore handled
|
||
in the loadable spaces/subspaces code above. */
|
||
|
||
if (som_section_data (subsection)->is_subspace == 0
|
||
|| som_section_data (subsection)->containing_space != section
|
||
|| (subsection->flags & SEC_ALLOC) != 0)
|
||
continue;
|
||
|
||
/* If this is the first subspace for this space, then save
|
||
the index of the subspace in its containing space. Clear
|
||
"is_loadable". */
|
||
|
||
if (som_section_data (section)->space_dict.subspace_quantity == 0)
|
||
{
|
||
som_section_data (section)->space_dict.is_loadable = 0;
|
||
som_section_data (section)->space_dict.subspace_index
|
||
= subspace_index;
|
||
}
|
||
|
||
/* Increment the number of subspaces seen and the number of
|
||
subspaces contained within the current space. */
|
||
som_section_data (section)->space_dict.subspace_quantity++;
|
||
subspace_index++;
|
||
|
||
/* Mark the index of the current space within the subspace's
|
||
dictionary record. */
|
||
som_section_data (subsection)->subspace_dict.space_index = i;
|
||
|
||
/* Dump this subspace header. */
|
||
if (bfd_write ((PTR) &som_section_data (subsection)->subspace_dict,
|
||
sizeof (struct subspace_dictionary_record), 1, abfd)
|
||
!= sizeof (struct subspace_dictionary_record))
|
||
{
|
||
bfd_error = system_call_error;
|
||
return false;
|
||
}
|
||
}
|
||
/* Goto the next section. */
|
||
section = section->next;
|
||
}
|
||
|
||
/* All the subspace dictiondary records are written, and all the
|
||
fields are set up in the space dictionary records.
|
||
|
||
Seek to the right location and start writing the space
|
||
dictionary records. */
|
||
location = obj_som_file_hdr (abfd)->space_location;
|
||
bfd_seek (abfd, location, SEEK_SET);
|
||
|
||
section = abfd->sections;
|
||
for (i = 0; i < num_spaces; i++)
|
||
{
|
||
|
||
/* Find a space. */
|
||
while (som_section_data (section)->is_space == 0)
|
||
section = section->next;
|
||
|
||
/* Dump its header */
|
||
if (bfd_write ((PTR) &som_section_data (section)->space_dict,
|
||
sizeof (struct space_dictionary_record), 1, abfd)
|
||
!= sizeof (struct space_dictionary_record))
|
||
{
|
||
bfd_error = system_call_error;
|
||
return false;
|
||
}
|
||
|
||
/* Goto the next section. */
|
||
section = section->next;
|
||
}
|
||
|
||
/* Only thing left to do is write out the file header. It is always
|
||
at location zero. Seek there and write it. */
|
||
bfd_seek (abfd, (file_ptr) 0, SEEK_SET);
|
||
if (bfd_write ((PTR) obj_som_file_hdr (abfd),
|
||
sizeof (struct header), 1, abfd)
|
||
!= sizeof (struct header))
|
||
{
|
||
bfd_error = system_call_error;
|
||
return false;
|
||
}
|
||
return true;
|
||
}
|
||
|
||
/* Compute and return the checksum for a SOM file header. */
|
||
|
||
static unsigned long
|
||
som_compute_checksum (abfd)
|
||
bfd *abfd;
|
||
{
|
||
unsigned long checksum, count, i;
|
||
unsigned long *buffer = (unsigned long *) obj_som_file_hdr (abfd);
|
||
|
||
checksum = 0;
|
||
count = sizeof (struct header) / sizeof (unsigned long);
|
||
for (i = 0; i < count; i++)
|
||
checksum ^= *(buffer + i);
|
||
|
||
return checksum;
|
||
}
|
||
|
||
/* Build and write, in one big chunk, the entire symbol table for
|
||
this BFD. */
|
||
|
||
static boolean
|
||
som_build_and_write_symbol_table (abfd)
|
||
bfd *abfd;
|
||
{
|
||
unsigned int num_syms = bfd_get_symcount (abfd);
|
||
file_ptr symtab_location = obj_som_file_hdr (abfd)->symbol_location;
|
||
asymbol **bfd_syms = bfd_get_outsymbols (abfd);
|
||
struct symbol_dictionary_record *som_symtab;
|
||
int i, symtab_size;
|
||
|
||
/* Compute total symbol table size and allocate a chunk of memory
|
||
to hold the symbol table as we build it. */
|
||
symtab_size = num_syms * sizeof (struct symbol_dictionary_record);
|
||
som_symtab = (struct symbol_dictionary_record *) alloca (symtab_size);
|
||
bzero (som_symtab, symtab_size);
|
||
|
||
/* Walk over each symbol. */
|
||
for (i = 0; i < num_syms; i++)
|
||
{
|
||
/* This is really an index into the symbol strings table.
|
||
By the time we get here, the index has already been
|
||
computed and stored into the name field in the BFD symbol. */
|
||
som_symtab[i].name.n_strx = (int) bfd_syms[i]->name;
|
||
|
||
/* The HP SOM linker requires detailed type information about
|
||
all symbols (including undefined symbols!). Unfortunately,
|
||
the type specified in an import/export statement does not
|
||
always match what the linker wants. Severe braindamage. */
|
||
|
||
/* Section symbols will not have a SOM symbol type assigned to
|
||
them yet. Assign all section symbols type ST_DATA. */
|
||
if (bfd_syms[i]->flags & BSF_SECTION_SYM)
|
||
som_symtab[i].symbol_type = ST_DATA;
|
||
else
|
||
{
|
||
/* Common symbols must have scope SS_UNSAT and type
|
||
ST_STORAGE or the linker will choke. */
|
||
if (bfd_syms[i]->section == &bfd_com_section)
|
||
{
|
||
som_symtab[i].symbol_scope = SS_UNSAT;
|
||
som_symtab[i].symbol_type = ST_STORAGE;
|
||
}
|
||
|
||
/* It is possible to have a symbol without an associated
|
||
type. This happens if the user imported the symbol
|
||
without a type and the symbol was never defined
|
||
locally. If BSF_FUNCTION is set for this symbol, then
|
||
assign it type ST_CODE (the HP linker requires undefined
|
||
external functions to have type ST_CODE rather than ST_ENTRY. */
|
||
else if (((*som_symbol_data (bfd_syms[i]))->som_type
|
||
== SYMBOL_TYPE_UNKNOWN)
|
||
&& (bfd_syms[i]->section == &bfd_und_section)
|
||
&& (bfd_syms[i]->flags & BSF_FUNCTION))
|
||
som_symtab[i].symbol_type = ST_CODE;
|
||
|
||
/* Handle function symbols which were defined in this file.
|
||
They should have type ST_ENTRY. Also retrieve the argument
|
||
relocation bits from the SOM backend information. */
|
||
else if (((*som_symbol_data (bfd_syms[i]))->som_type
|
||
== SYMBOL_TYPE_ENTRY)
|
||
|| (((*som_symbol_data (bfd_syms[i]))->som_type
|
||
== SYMBOL_TYPE_CODE)
|
||
&& (bfd_syms[i]->flags & BSF_FUNCTION))
|
||
|| (((*som_symbol_data (bfd_syms[i]))->som_type
|
||
== SYMBOL_TYPE_UNKNOWN)
|
||
&& (bfd_syms[i]->flags & BSF_FUNCTION)))
|
||
{
|
||
som_symtab[i].symbol_type = ST_ENTRY;
|
||
som_symtab[i].arg_reloc
|
||
= (*som_symbol_data (bfd_syms[i]))->tc_data.hppa_arg_reloc;
|
||
}
|
||
|
||
/* If the type is unknown at this point, it should be
|
||
ST_DATA (functions were handled as special cases above). */
|
||
else if ((*som_symbol_data (bfd_syms[i]))->som_type
|
||
== SYMBOL_TYPE_UNKNOWN)
|
||
som_symtab[i].symbol_type = ST_DATA;
|
||
|
||
/* From now on it's a very simple mapping. */
|
||
else if ((*som_symbol_data (bfd_syms[i]))->som_type
|
||
== SYMBOL_TYPE_ABSOLUTE)
|
||
som_symtab[i].symbol_type = ST_ABSOLUTE;
|
||
else if ((*som_symbol_data (bfd_syms[i]))->som_type
|
||
== SYMBOL_TYPE_CODE)
|
||
som_symtab[i].symbol_type = ST_CODE;
|
||
else if ((*som_symbol_data (bfd_syms[i]))->som_type
|
||
== SYMBOL_TYPE_DATA)
|
||
som_symtab[i].symbol_type = ST_DATA;
|
||
else if ((*som_symbol_data (bfd_syms[i]))->som_type
|
||
== SYMBOL_TYPE_MILLICODE)
|
||
som_symtab[i].symbol_type = ST_MILLICODE;
|
||
else if ((*som_symbol_data (bfd_syms[i]))->som_type
|
||
== SYMBOL_TYPE_PLABEL)
|
||
som_symtab[i].symbol_type = ST_PLABEL;
|
||
else if ((*som_symbol_data (bfd_syms[i]))->som_type
|
||
== SYMBOL_TYPE_PRI_PROG)
|
||
som_symtab[i].symbol_type = ST_PRI_PROG;
|
||
else if ((*som_symbol_data (bfd_syms[i]))->som_type
|
||
== SYMBOL_TYPE_SEC_PROG)
|
||
som_symtab[i].symbol_type = ST_SEC_PROG;
|
||
}
|
||
|
||
/* Now handle the symbol's scope. Exported data which is not
|
||
in the common section has scope SS_UNIVERSAL. Note scope
|
||
of common symbols was handled earlier! */
|
||
if (bfd_syms[i]->flags & BSF_EXPORT
|
||
&& bfd_syms[i]->section != &bfd_com_section)
|
||
som_symtab[i].symbol_scope = SS_UNIVERSAL;
|
||
/* Any undefined symbol at this point has a scope SS_UNSAT. */
|
||
else if (bfd_syms[i]->section == &bfd_und_section)
|
||
som_symtab[i].symbol_scope = SS_UNSAT;
|
||
/* Anything else which is not in the common section has scope
|
||
SS_LOCAL. */
|
||
else if (bfd_syms[i]->section != &bfd_com_section)
|
||
som_symtab[i].symbol_scope = SS_LOCAL;
|
||
|
||
/* Now set the symbol_info field. It has no real meaning
|
||
for undefined or common symbols, but the HP linker will
|
||
choke if it's not set to some "reasonable" value. We
|
||
use zero as a reasonable value. */
|
||
if (bfd_syms[i]->section == &bfd_com_section
|
||
|| bfd_syms[i]->section == &bfd_und_section)
|
||
som_symtab[i].symbol_info = 0;
|
||
/* For all other symbols, the symbol_info field contains the
|
||
subspace index of the space this symbol is contained in. */
|
||
else
|
||
som_symtab[i].symbol_info
|
||
= som_section_data (bfd_syms[i]->section)->subspace_index;
|
||
|
||
/* Set the symbol's value. */
|
||
som_symtab[i].symbol_value
|
||
= bfd_syms[i]->value + bfd_syms[i]->section->vma;
|
||
}
|
||
|
||
/* Egad. Everything is ready, seek to the right location and
|
||
scribble out the symbol table. */
|
||
if (bfd_seek (abfd, symtab_location, SEEK_SET) != 0)
|
||
{
|
||
bfd_error = system_call_error;
|
||
return false;
|
||
}
|
||
|
||
if (bfd_write ((PTR) som_symtab, symtab_size, 1, abfd) != symtab_size)
|
||
{
|
||
bfd_error = system_call_error;
|
||
return false;
|
||
}
|
||
return true;
|
||
}
|
||
|
||
/* Write an object in SOM format. */
|
||
|
||
static boolean
|
||
som_write_object_contents (abfd)
|
||
bfd *abfd;
|
||
{
|
||
if (abfd->output_has_begun == false)
|
||
{
|
||
/* Set up fixed parts of the file, space, and subspace headers.
|
||
Notify the world that output has begun. */
|
||
som_prep_headers (abfd);
|
||
abfd->output_has_begun = true;
|
||
/* Start writing the object file. This include all the string
|
||
tables, fixup streams, and other portions of the object file. */
|
||
som_begin_writing (abfd);
|
||
}
|
||
|
||
/* Now that the symbol table information is complete, build and
|
||
write the symbol table. */
|
||
if (som_build_and_write_symbol_table (abfd) == false)
|
||
return false;
|
||
|
||
/* Compute the checksum for the file header just before writing
|
||
the header to disk. */
|
||
obj_som_file_hdr (abfd)->checksum = som_compute_checksum (abfd);
|
||
return (som_write_headers (abfd));
|
||
}
|
||
|
||
|
||
/* Read and save the string table associated with the given BFD. */
|
||
|
||
static boolean
|
||
som_slurp_string_table (abfd)
|
||
bfd *abfd;
|
||
{
|
||
char *stringtab;
|
||
|
||
/* Use the saved version if its available. */
|
||
if (obj_som_stringtab (abfd) != NULL)
|
||
return true;
|
||
|
||
/* Allocate and read in the string table. */
|
||
stringtab = bfd_zalloc (abfd, obj_som_stringtab_size (abfd));
|
||
if (stringtab == NULL)
|
||
{
|
||
bfd_error = no_memory;
|
||
return false;
|
||
}
|
||
|
||
if (bfd_seek (abfd, obj_som_str_filepos (abfd), SEEK_SET) < 0)
|
||
{
|
||
bfd_error = system_call_error;
|
||
return false;
|
||
}
|
||
|
||
if (bfd_read (stringtab, obj_som_stringtab_size (abfd), 1, abfd)
|
||
!= obj_som_stringtab_size (abfd))
|
||
{
|
||
bfd_error = system_call_error;
|
||
return false;
|
||
}
|
||
|
||
/* Save our results and return success. */
|
||
obj_som_stringtab (abfd) = stringtab;
|
||
return true;
|
||
}
|
||
|
||
/* Return the amount of data (in bytes) required to hold the symbol
|
||
table for this object. */
|
||
|
||
static unsigned int
|
||
som_get_symtab_upper_bound (abfd)
|
||
bfd *abfd;
|
||
{
|
||
if (!som_slurp_symbol_table (abfd))
|
||
return 0;
|
||
|
||
return (bfd_get_symcount (abfd) + 1) * (sizeof (som_symbol_type *));
|
||
}
|
||
|
||
/* Convert from a SOM subspace index to a BFD section. */
|
||
|
||
static asection *
|
||
som_section_from_subspace_index (abfd, index)
|
||
bfd *abfd;
|
||
unsigned int index;
|
||
{
|
||
asection *section;
|
||
|
||
for (section = abfd->sections; section != NULL; section = section->next)
|
||
if (som_section_data (section)->subspace_index == index)
|
||
return section;
|
||
|
||
/* Should never happen. */
|
||
abort();
|
||
}
|
||
|
||
/* Read and save the symbol table associated with the given BFD. */
|
||
|
||
static unsigned int
|
||
som_slurp_symbol_table (abfd)
|
||
bfd *abfd;
|
||
{
|
||
int symbol_count = bfd_get_symcount (abfd);
|
||
int symsize = sizeof (struct symbol_dictionary_record);
|
||
char *stringtab;
|
||
struct symbol_dictionary_record *buf, *bufp, *endbufp;
|
||
som_symbol_type *sym, *symbase;
|
||
|
||
/* Return saved value if it exists. */
|
||
if (obj_som_symtab (abfd) != NULL)
|
||
return true;
|
||
|
||
/* Sanity checking. Make sure there are some symbols and that
|
||
we can read the string table too. */
|
||
if (symbol_count == 0)
|
||
{
|
||
bfd_error = no_symbols;
|
||
return false;
|
||
}
|
||
|
||
if (!som_slurp_string_table (abfd))
|
||
return false;
|
||
|
||
stringtab = obj_som_stringtab (abfd);
|
||
|
||
symbase = (som_symbol_type *)
|
||
bfd_zalloc (abfd, symbol_count * sizeof (som_symbol_type));
|
||
if (symbase == NULL)
|
||
{
|
||
bfd_error = no_memory;
|
||
return false;
|
||
}
|
||
|
||
/* Read in the external SOM representation. */
|
||
buf = alloca (symbol_count * symsize);
|
||
if (buf == NULL)
|
||
{
|
||
bfd_error = no_memory;
|
||
return false;
|
||
}
|
||
if (bfd_seek (abfd, obj_som_sym_filepos (abfd), SEEK_SET) < 0)
|
||
{
|
||
bfd_error = system_call_error;
|
||
return false;
|
||
}
|
||
if (bfd_read (buf, symbol_count * symsize, 1, abfd)
|
||
!= symbol_count * symsize)
|
||
{
|
||
bfd_error = no_symbols;
|
||
return (false);
|
||
}
|
||
|
||
/* Iterate over all the symbols and internalize them. */
|
||
endbufp = buf + symbol_count;
|
||
for (bufp = buf, sym = symbase; bufp < endbufp; ++bufp)
|
||
{
|
||
|
||
/* I don't think we care about these. */
|
||
if (bufp->symbol_type == ST_SYM_EXT
|
||
|| bufp->symbol_type == ST_ARG_EXT)
|
||
continue;
|
||
|
||
/* Some reasonable defaults. */
|
||
sym->symbol.the_bfd = abfd;
|
||
sym->symbol.name = bufp->name.n_strx + stringtab;
|
||
sym->symbol.value = bufp->symbol_value;
|
||
sym->symbol.section = 0;
|
||
sym->symbol.flags = 0;
|
||
|
||
switch (bufp->symbol_type)
|
||
{
|
||
case ST_ENTRY:
|
||
case ST_PRI_PROG:
|
||
case ST_SEC_PROG:
|
||
case ST_MILLICODE:
|
||
sym->symbol.flags |= BSF_FUNCTION;
|
||
sym->symbol.value &= ~0x3;
|
||
break;
|
||
|
||
case ST_STUB:
|
||
case ST_CODE:
|
||
sym->symbol.value &= ~0x3;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
/* Handle scoping and section information. */
|
||
switch (bufp->symbol_scope)
|
||
{
|
||
/* symbol_info field is undefined for SS_EXTERNAL and SS_UNSAT symbols,
|
||
so the section associated with this symbol can't be known. */
|
||
case SS_EXTERNAL:
|
||
case SS_UNSAT:
|
||
sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
|
||
break;
|
||
|
||
case SS_UNIVERSAL:
|
||
sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
|
||
sym->symbol.section
|
||
= som_section_from_subspace_index (abfd, bufp->symbol_info);
|
||
sym->symbol.value -= sym->symbol.section->vma;
|
||
break;
|
||
|
||
#if 0
|
||
/* SS_GLOBAL and SS_LOCAL are two names for the same thing.
|
||
Sound dumb? It is. */
|
||
case SS_GLOBAL:
|
||
#endif
|
||
case SS_LOCAL:
|
||
sym->symbol.flags |= BSF_LOCAL;
|
||
sym->symbol.section
|
||
= som_section_from_subspace_index (abfd, bufp->symbol_info);
|
||
sym->symbol.value -= sym->symbol.section->vma;
|
||
break;
|
||
}
|
||
|
||
/* Mark symbols left around by the debugger. */
|
||
if (strlen (sym->symbol.name) >= 2
|
||
&& sym->symbol.name[0] == 'L'
|
||
&& (sym->symbol.name[1] == '$' || sym->symbol.name[2] == '$'
|
||
|| sym->symbol.name[3] == '$'))
|
||
sym->symbol.flags |= BSF_DEBUGGING;
|
||
|
||
/* Note increment at bottom of loop, since we skip some symbols
|
||
we can not include it as part of the for statement. */
|
||
sym++;
|
||
}
|
||
|
||
/* Save our results and return success. */
|
||
obj_som_symtab (abfd) = symbase;
|
||
return (true);
|
||
}
|
||
|
||
/* Canonicalize a SOM symbol table. Return the number of entries
|
||
in the symbol table. */
|
||
|
||
static unsigned int
|
||
som_get_symtab (abfd, location)
|
||
bfd *abfd;
|
||
asymbol **location;
|
||
{
|
||
int i;
|
||
som_symbol_type *symbase;
|
||
|
||
if (!som_slurp_symbol_table (abfd))
|
||
return 0;
|
||
|
||
i = bfd_get_symcount (abfd);
|
||
symbase = obj_som_symtab (abfd);
|
||
|
||
for (; i > 0; i--, location++, symbase++)
|
||
*location = &symbase->symbol;
|
||
|
||
/* Final null pointer. */
|
||
*location = 0;
|
||
return (bfd_get_symcount (abfd));
|
||
}
|
||
|
||
/* Make a SOM symbol. There is nothing special to do here. */
|
||
|
||
static asymbol *
|
||
som_make_empty_symbol (abfd)
|
||
bfd *abfd;
|
||
{
|
||
som_symbol_type *new =
|
||
(som_symbol_type *) bfd_zalloc (abfd, sizeof (som_symbol_type));
|
||
if (new == NULL)
|
||
{
|
||
bfd_error = no_memory;
|
||
return 0;
|
||
}
|
||
new->symbol.the_bfd = abfd;
|
||
|
||
return &new->symbol;
|
||
}
|
||
|
||
/* Print symbol information. */
|
||
|
||
static void
|
||
som_print_symbol (ignore_abfd, afile, symbol, how)
|
||
bfd *ignore_abfd;
|
||
PTR afile;
|
||
asymbol *symbol;
|
||
bfd_print_symbol_type how;
|
||
{
|
||
FILE *file = (FILE *) afile;
|
||
switch (how)
|
||
{
|
||
case bfd_print_symbol_name:
|
||
fprintf (file, "%s", symbol->name);
|
||
break;
|
||
case bfd_print_symbol_more:
|
||
fprintf (file, "som ");
|
||
fprintf_vma (file, symbol->value);
|
||
fprintf (file, " %lx", (long) symbol->flags);
|
||
break;
|
||
case bfd_print_symbol_all:
|
||
{
|
||
CONST char *section_name;
|
||
section_name = symbol->section ? symbol->section->name : "(*none*)";
|
||
bfd_print_symbol_vandf ((PTR) file, symbol);
|
||
fprintf (file, " %s\t%s", section_name, symbol->name);
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Count or process variable-length SOM fixup records.
|
||
|
||
To avoid code duplication we use this code both to compute the number
|
||
of relocations requested by a stream, and to internalize the stream.
|
||
|
||
When computing the number of relocations requested by a stream the
|
||
variables rptr, section, and symbols have no meaning.
|
||
|
||
Return the number of relocations requested by the fixup stream. When
|
||
not just counting
|
||
|
||
This needs at least two or three more passes to get it cleaned up. */
|
||
|
||
static unsigned int
|
||
som_set_reloc_info (fixup, end, internal_relocs, section, symbols, just_count)
|
||
unsigned char *fixup;
|
||
unsigned int end;
|
||
arelent *internal_relocs;
|
||
asection *section;
|
||
asymbol **symbols;
|
||
boolean just_count;
|
||
{
|
||
unsigned int op, varname;
|
||
unsigned char *end_fixups = &fixup[end];
|
||
const struct fixup_format *fp;
|
||
char *cp;
|
||
unsigned char *save_fixup;
|
||
int variables[26], stack[20], c, v, count, prev_fixup, *sp;
|
||
const int *subop;
|
||
arelent *rptr= internal_relocs;
|
||
unsigned int offset = just_count ? 0 : section->vma;
|
||
|
||
#define var(c) variables[(c) - 'A']
|
||
#define push(v) (*sp++ = (v))
|
||
#define pop() (*--sp)
|
||
#define emptystack() (sp == stack)
|
||
|
||
som_initialize_reloc_queue (reloc_queue);
|
||
bzero (variables, sizeof (variables));
|
||
bzero (stack, sizeof (stack));
|
||
count = 0;
|
||
prev_fixup = 0;
|
||
sp = stack;
|
||
|
||
while (fixup < end_fixups)
|
||
{
|
||
|
||
/* Save pointer to the start of this fixup. We'll use
|
||
it later to determine if it is necessary to put this fixup
|
||
on the queue. */
|
||
save_fixup = fixup;
|
||
|
||
/* Get the fixup code and its associated format. */
|
||
op = *fixup++;
|
||
fp = &som_fixup_formats[op];
|
||
|
||
/* Handle a request for a previous fixup. */
|
||
if (*fp->format == 'P')
|
||
{
|
||
/* Get pointer to the beginning of the prev fixup, move
|
||
the repeated fixup to the head of the queue. */
|
||
fixup = reloc_queue[fp->D].reloc;
|
||
som_reloc_queue_fix (reloc_queue, fp->D);
|
||
prev_fixup = 1;
|
||
|
||
/* Get the fixup code and its associated format. */
|
||
op = *fixup++;
|
||
fp = &som_fixup_formats[op];
|
||
}
|
||
|
||
/* If we are not just counting, set some reasonable defaults. */
|
||
if (! just_count)
|
||
{
|
||
rptr->address = offset;
|
||
rptr->howto = &som_hppa_howto_table[op];
|
||
rptr->addend = 0;
|
||
}
|
||
|
||
/* Set default input length to 0. Get the opcode class index
|
||
into D. */
|
||
var ('L') = 0;
|
||
var ('D') = fp->D;
|
||
|
||
/* Get the opcode format. */
|
||
cp = fp->format;
|
||
|
||
/* Process the format string. Parsing happens in two phases,
|
||
parse RHS, then assign to LHS. Repeat until no more
|
||
characters in the format string. */
|
||
while (*cp)
|
||
{
|
||
/* The variable this pass is going to compute a value for. */
|
||
varname = *cp++;
|
||
|
||
/* Start processing RHS. Continue until a NULL or '=' is found. */
|
||
do
|
||
{
|
||
c = *cp++;
|
||
|
||
/* If this is a variable, push it on the stack. */
|
||
if (isupper (c))
|
||
push (var (c));
|
||
|
||
/* If this is a lower case letter, then it represents
|
||
additional data from the fixup stream to be pushed onto
|
||
the stack. */
|
||
else if (islower (c))
|
||
{
|
||
for (v = 0; c > 'a'; --c)
|
||
v = (v << 8) | *fixup++;
|
||
push (v);
|
||
}
|
||
|
||
/* A decimal constant. Push it on the stack. */
|
||
else if (isdigit (c))
|
||
{
|
||
v = c - '0';
|
||
while (isdigit (*cp))
|
||
v = (v * 10) + (*cp++ - '0');
|
||
push (v);
|
||
}
|
||
else
|
||
|
||
/* An operator. Pop two two values from the stack and
|
||
use them as operands to the given operation. Push
|
||
the result of the operation back on the stack. */
|
||
switch (c)
|
||
{
|
||
case '+':
|
||
v = pop ();
|
||
v += pop ();
|
||
push (v);
|
||
break;
|
||
case '*':
|
||
v = pop ();
|
||
v *= pop ();
|
||
push (v);
|
||
break;
|
||
case '<':
|
||
v = pop ();
|
||
v = pop () << v;
|
||
push (v);
|
||
break;
|
||
default:
|
||
abort ();
|
||
}
|
||
}
|
||
while (*cp && *cp != '=');
|
||
|
||
/* Move over the equal operator. */
|
||
cp++;
|
||
|
||
/* Pop the RHS off the stack. */
|
||
c = pop ();
|
||
|
||
/* Perform the assignment. */
|
||
var (varname) = c;
|
||
|
||
/* Handle side effects. and special 'O' stack cases. */
|
||
switch (varname)
|
||
{
|
||
/* Consume some bytes from the input space. */
|
||
case 'L':
|
||
offset += c;
|
||
break;
|
||
/* A symbol to use in the relocation. Make a note
|
||
of this if we are not just counting. */
|
||
case 'S':
|
||
if (! just_count)
|
||
rptr->sym_ptr_ptr = &symbols[c];
|
||
break;
|
||
/* Handle the linker expression stack. */
|
||
case 'O':
|
||
switch (op)
|
||
{
|
||
case R_COMP1:
|
||
subop = comp1_opcodes;
|
||
break;
|
||
case R_COMP2:
|
||
subop = comp2_opcodes;
|
||
break;
|
||
case R_COMP3:
|
||
subop = comp3_opcodes;
|
||
break;
|
||
default:
|
||
abort ();
|
||
}
|
||
while (*subop <= (unsigned char) c)
|
||
++subop;
|
||
--subop;
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* If we used a previous fixup, clean up after it. */
|
||
if (prev_fixup)
|
||
{
|
||
fixup = save_fixup + 1;
|
||
prev_fixup = 0;
|
||
}
|
||
/* Queue it. */
|
||
else if (fixup > save_fixup + 1)
|
||
som_reloc_queue_insert (save_fixup, fixup - save_fixup, reloc_queue);
|
||
|
||
/* We do not pass R_DATA_OVERRIDE or R_NO_RELOCATION
|
||
fixups to BFD. */
|
||
if (som_hppa_howto_table[op].type != R_DATA_OVERRIDE
|
||
&& som_hppa_howto_table[op].type != R_NO_RELOCATION)
|
||
{
|
||
/* Done with a single reloction. Loop back to the top. */
|
||
if (! just_count)
|
||
{
|
||
rptr->addend = var ('V');
|
||
rptr++;
|
||
}
|
||
count++;
|
||
/* Now that we've handled a "full" relocation, reset
|
||
some state. */
|
||
bzero (variables, sizeof (variables));
|
||
bzero (stack, sizeof (stack));
|
||
}
|
||
}
|
||
return count;
|
||
|
||
#undef var
|
||
#undef push
|
||
#undef pop
|
||
#undef emptystack
|
||
}
|
||
|
||
/* Read in the relocs (aka fixups in SOM terms) for a section.
|
||
|
||
som_get_reloc_upper_bound calls this routine with JUST_COUNT
|
||
set to true to indicate it only needs a count of the number
|
||
of actual relocations. */
|
||
|
||
static boolean
|
||
som_slurp_reloc_table (abfd, section, symbols, just_count)
|
||
bfd *abfd;
|
||
asection *section;
|
||
asymbol **symbols;
|
||
boolean just_count;
|
||
{
|
||
char *external_relocs;
|
||
unsigned int fixup_stream_size;
|
||
arelent *internal_relocs;
|
||
unsigned int num_relocs;
|
||
|
||
fixup_stream_size = som_section_data (section)->reloc_size;
|
||
/* If there were no relocations, then there is nothing to do. */
|
||
if (section->reloc_count == 0)
|
||
return true;
|
||
|
||
/* If reloc_count is -1, then the relocation stream has not been
|
||
parsed. We must do so now to know how many relocations exist. */
|
||
if (section->reloc_count == -1)
|
||
{
|
||
external_relocs = (char *) bfd_zalloc (abfd, fixup_stream_size);
|
||
if (external_relocs == (char *) NULL)
|
||
{
|
||
bfd_error = no_memory;
|
||
return false;
|
||
}
|
||
/* Read in the external forms. */
|
||
if (bfd_seek (abfd,
|
||
obj_som_reloc_filepos (abfd) + section->rel_filepos,
|
||
SEEK_SET)
|
||
!= 0)
|
||
{
|
||
bfd_error = system_call_error;
|
||
return false;
|
||
}
|
||
if (bfd_read (external_relocs, 1, fixup_stream_size, abfd)
|
||
!= fixup_stream_size)
|
||
{
|
||
bfd_error = system_call_error;
|
||
return false;
|
||
}
|
||
/* Let callers know how many relocations found.
|
||
also save the relocation stream as we will
|
||
need it again. */
|
||
section->reloc_count = som_set_reloc_info (external_relocs,
|
||
fixup_stream_size,
|
||
NULL, NULL, NULL, true);
|
||
|
||
som_section_data (section)->reloc_stream = external_relocs;
|
||
}
|
||
|
||
/* If the caller only wanted a count, then return now. */
|
||
if (just_count)
|
||
return true;
|
||
|
||
num_relocs = section->reloc_count;
|
||
external_relocs = som_section_data (section)->reloc_stream;
|
||
/* Return saved information about the relocations if it is available. */
|
||
if (section->relocation != (arelent *) NULL)
|
||
return true;
|
||
|
||
internal_relocs = (arelent *) bfd_zalloc (abfd,
|
||
num_relocs * sizeof (arelent));
|
||
if (internal_relocs == (arelent *) NULL)
|
||
{
|
||
bfd_error = no_memory;
|
||
return false;
|
||
}
|
||
|
||
/* Process and internalize the relocations. */
|
||
som_set_reloc_info (external_relocs, fixup_stream_size,
|
||
internal_relocs, section, symbols, false);
|
||
|
||
/* Save our results and return success. */
|
||
section->relocation = internal_relocs;
|
||
return (true);
|
||
}
|
||
|
||
/* Return the number of bytes required to store the relocation
|
||
information associated with the given section. */
|
||
|
||
static unsigned int
|
||
som_get_reloc_upper_bound (abfd, asect)
|
||
bfd *abfd;
|
||
sec_ptr asect;
|
||
{
|
||
/* If section has relocations, then read in the relocation stream
|
||
and parse it to determine how many relocations exist. */
|
||
if (asect->flags & SEC_RELOC)
|
||
{
|
||
if (som_slurp_reloc_table (abfd, asect, NULL, true))
|
||
return (asect->reloc_count + 1) * sizeof (arelent);
|
||
}
|
||
/* Either there are no relocations or an error occurred while
|
||
reading and parsing the relocation stream. */
|
||
return 0;
|
||
}
|
||
|
||
/* Convert relocations from SOM (external) form into BFD internal
|
||
form. Return the number of relocations. */
|
||
|
||
static unsigned int
|
||
som_canonicalize_reloc (abfd, section, relptr, symbols)
|
||
bfd *abfd;
|
||
sec_ptr section;
|
||
arelent **relptr;
|
||
asymbol **symbols;
|
||
{
|
||
arelent *tblptr;
|
||
int count;
|
||
|
||
if (som_slurp_reloc_table (abfd, section, symbols, false) == false)
|
||
return 0;
|
||
|
||
count = section->reloc_count;
|
||
tblptr = section->relocation;
|
||
if (tblptr == (arelent *) NULL)
|
||
return 0;
|
||
|
||
while (count--)
|
||
*relptr++ = tblptr++;
|
||
|
||
*relptr = (arelent *) NULL;
|
||
return section->reloc_count;
|
||
}
|
||
|
||
extern bfd_target som_vec;
|
||
|
||
/* A hook to set up object file dependent section information. */
|
||
|
||
static boolean
|
||
som_new_section_hook (abfd, newsect)
|
||
bfd *abfd;
|
||
asection *newsect;
|
||
{
|
||
newsect->used_by_bfd = (struct som_section_data_struct *)
|
||
bfd_zalloc (abfd, sizeof (struct som_section_data_struct));
|
||
newsect->alignment_power = 3;
|
||
|
||
/* Initialize the subspace_index field to -1 so that it does
|
||
not match a subspace with an index of 0. */
|
||
som_section_data (newsect)->subspace_index = -1;
|
||
|
||
/* We allow more than three sections internally */
|
||
return true;
|
||
}
|
||
|
||
/* Set backend info for sections which can not be described
|
||
in the BFD data structures. */
|
||
|
||
void
|
||
bfd_som_set_section_attributes (section, defined, private, sort_key, spnum)
|
||
asection *section;
|
||
char defined;
|
||
char private;
|
||
unsigned char sort_key;
|
||
int spnum;
|
||
{
|
||
struct space_dictionary_record *space_dict;
|
||
|
||
som_section_data (section)->is_space = 1;
|
||
space_dict = &som_section_data (section)->space_dict;
|
||
space_dict->is_defined = defined;
|
||
space_dict->is_private = private;
|
||
space_dict->sort_key = sort_key;
|
||
space_dict->space_number = spnum;
|
||
}
|
||
|
||
/* Set backend info for subsections which can not be described
|
||
in the BFD data structures. */
|
||
|
||
void
|
||
bfd_som_set_subsection_attributes (section, container, access,
|
||
sort_key, quadrant)
|
||
asection *section;
|
||
asection *container;
|
||
int access;
|
||
unsigned char sort_key;
|
||
int quadrant;
|
||
{
|
||
struct subspace_dictionary_record *subspace_dict;
|
||
som_section_data (section)->is_subspace = 1;
|
||
subspace_dict = &som_section_data (section)->subspace_dict;
|
||
subspace_dict->access_control_bits = access;
|
||
subspace_dict->sort_key = sort_key;
|
||
subspace_dict->quadrant = quadrant;
|
||
som_section_data (section)->containing_space = container;
|
||
}
|
||
|
||
/* Set the full SOM symbol type. SOM needs far more symbol information
|
||
than any other object file format I'm aware of. It is mandatory
|
||
to be able to know if a symbol is an entry point, millicode, data,
|
||
code, absolute, storage request, or procedure label. If you get
|
||
the symbol type wrong your program will not link. */
|
||
|
||
void
|
||
bfd_som_set_symbol_type (symbol, type)
|
||
asymbol *symbol;
|
||
unsigned int type;
|
||
{
|
||
(*som_symbol_data (symbol))->som_type = type;
|
||
}
|
||
|
||
/* Attach 64bits of unwind information to a symbol (which hopefully
|
||
is a function of some kind!). It would be better to keep this
|
||
in the R_ENTRY relocation, but there is not enough space. */
|
||
|
||
void
|
||
bfd_som_attach_unwind_info (symbol, unwind_desc)
|
||
asymbol *symbol;
|
||
char *unwind_desc;
|
||
{
|
||
(*som_symbol_data (symbol))->unwind = unwind_desc;
|
||
}
|
||
|
||
static boolean
|
||
som_set_section_contents (abfd, section, location, offset, count)
|
||
bfd *abfd;
|
||
sec_ptr section;
|
||
PTR location;
|
||
file_ptr offset;
|
||
bfd_size_type count;
|
||
{
|
||
if (abfd->output_has_begun == false)
|
||
{
|
||
/* Set up fixed parts of the file, space, and subspace headers.
|
||
Notify the world that output has begun. */
|
||
som_prep_headers (abfd);
|
||
abfd->output_has_begun = true;
|
||
/* Start writing the object file. This include all the string
|
||
tables, fixup streams, and other portions of the object file. */
|
||
som_begin_writing (abfd);
|
||
}
|
||
|
||
/* Only write subspaces which have "real" contents (eg. the contents
|
||
are not generated at run time by the OS). */
|
||
if (som_section_data (section)->is_subspace != 1
|
||
|| ((section->flags & (SEC_LOAD | SEC_DEBUGGING)) == 0))
|
||
return true;
|
||
|
||
/* Seek to the proper offset within the object file and write the
|
||
data. */
|
||
offset += som_section_data (section)->subspace_dict.file_loc_init_value;
|
||
if (bfd_seek (abfd, offset, SEEK_SET) == -1)
|
||
{
|
||
bfd_error = system_call_error;
|
||
return false;
|
||
}
|
||
|
||
if (bfd_write ((PTR) location, 1, count, abfd) != count)
|
||
{
|
||
bfd_error = system_call_error;
|
||
return false;
|
||
}
|
||
return true;
|
||
}
|
||
|
||
static boolean
|
||
som_set_arch_mach (abfd, arch, machine)
|
||
bfd *abfd;
|
||
enum bfd_architecture arch;
|
||
unsigned long machine;
|
||
{
|
||
/* Allow any architecture to be supported by the SOM backend */
|
||
return bfd_default_set_arch_mach (abfd, arch, machine);
|
||
}
|
||
|
||
static boolean
|
||
som_find_nearest_line (abfd, section, symbols, offset, filename_ptr,
|
||
functionname_ptr, line_ptr)
|
||
bfd *abfd;
|
||
asection *section;
|
||
asymbol **symbols;
|
||
bfd_vma offset;
|
||
CONST char **filename_ptr;
|
||
CONST char **functionname_ptr;
|
||
unsigned int *line_ptr;
|
||
{
|
||
fprintf (stderr, "som_find_nearest_line unimplemented\n");
|
||
fflush (stderr);
|
||
abort ();
|
||
return (false);
|
||
}
|
||
|
||
static int
|
||
som_sizeof_headers (abfd, reloc)
|
||
bfd *abfd;
|
||
boolean reloc;
|
||
{
|
||
fprintf (stderr, "som_sizeof_headers unimplemented\n");
|
||
fflush (stderr);
|
||
abort ();
|
||
return (0);
|
||
}
|
||
|
||
/* Return information about SOM symbol SYMBOL in RET. */
|
||
|
||
static void
|
||
som_get_symbol_info (ignore_abfd, symbol, ret)
|
||
bfd *ignore_abfd; /* Ignored. */
|
||
asymbol *symbol;
|
||
symbol_info *ret;
|
||
{
|
||
bfd_symbol_info (symbol, ret);
|
||
}
|
||
|
||
/* End of miscellaneous support functions. */
|
||
|
||
#define som_bfd_debug_info_start bfd_void
|
||
#define som_bfd_debug_info_end bfd_void
|
||
#define som_bfd_debug_info_accumulate (PROTO(void,(*),(bfd*, struct sec *))) bfd_void
|
||
|
||
#define som_openr_next_archived_file bfd_generic_openr_next_archived_file
|
||
#define som_generic_stat_arch_elt bfd_generic_stat_arch_elt
|
||
#define som_slurp_armap bfd_false
|
||
#define som_slurp_extended_name_table _bfd_slurp_extended_name_table
|
||
#define som_truncate_arname (void (*)())bfd_nullvoidptr
|
||
#define som_write_armap 0
|
||
|
||
#define som_get_lineno (struct lineno_cache_entry *(*)())bfd_nullvoidptr
|
||
#define som_close_and_cleanup bfd_generic_close_and_cleanup
|
||
#define som_get_section_contents bfd_generic_get_section_contents
|
||
|
||
#define som_bfd_get_relocated_section_contents \
|
||
bfd_generic_get_relocated_section_contents
|
||
#define som_bfd_relax_section bfd_generic_relax_section
|
||
#define som_bfd_seclet_link bfd_generic_seclet_link
|
||
#define som_bfd_make_debug_symbol \
|
||
((asymbol *(*) PARAMS ((bfd *, void *, unsigned long))) bfd_nullvoidptr)
|
||
|
||
/* Core file support is in the hpux-core backend. */
|
||
#define som_core_file_failing_command _bfd_dummy_core_file_failing_command
|
||
#define som_core_file_failing_signal _bfd_dummy_core_file_failing_signal
|
||
#define som_core_file_matches_executable_p _bfd_dummy_core_file_matches_executable_p
|
||
|
||
bfd_target som_vec =
|
||
{
|
||
"som", /* name */
|
||
bfd_target_som_flavour,
|
||
true, /* target byte order */
|
||
true, /* target headers byte order */
|
||
(HAS_RELOC | EXEC_P | /* object flags */
|
||
HAS_LINENO | HAS_DEBUG |
|
||
HAS_SYMS | HAS_LOCALS | WP_TEXT | D_PAGED),
|
||
(SEC_CODE | SEC_DATA | SEC_ROM | SEC_HAS_CONTENTS
|
||
| SEC_ALLOC | SEC_LOAD | SEC_RELOC), /* section flags */
|
||
|
||
/* leading_symbol_char: is the first char of a user symbol
|
||
predictable, and if so what is it */
|
||
0,
|
||
' ', /* ar_pad_char */
|
||
16, /* ar_max_namelen */
|
||
3, /* minimum alignment */
|
||
bfd_getb64, bfd_getb_signed_64, bfd_putb64,
|
||
bfd_getb32, bfd_getb_signed_32, bfd_putb32,
|
||
bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* data */
|
||
bfd_getb64, bfd_getb_signed_64, bfd_putb64,
|
||
bfd_getb32, bfd_getb_signed_32, bfd_putb32,
|
||
bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* hdrs */
|
||
{_bfd_dummy_target,
|
||
som_object_p, /* bfd_check_format */
|
||
bfd_generic_archive_p,
|
||
_bfd_dummy_target
|
||
},
|
||
{
|
||
bfd_false,
|
||
som_mkobject,
|
||
_bfd_generic_mkarchive,
|
||
bfd_false
|
||
},
|
||
{
|
||
bfd_false,
|
||
som_write_object_contents,
|
||
_bfd_write_archive_contents,
|
||
bfd_false,
|
||
},
|
||
#undef som
|
||
JUMP_TABLE (som),
|
||
(PTR) 0
|
||
};
|
||
|
||
#endif /* HOST_HPPAHPUX || HOST_HPPABSD */
|