darling-gdb/bfd/elf32-i386.c
Ian Lance Taylor eb4267a3f9 Use a hash table when writing out ELF symbol names.
* elfcode.h (elf_stringtab_init): New static function.
	(bfd_new_strtab, bfd_add_to_strtab, bfd_add_2_to_strtab): Remove.
	Change all callers to use elf_stringtab_init or
	_bfd_stringtab_add, and get stringtab lengths using
	_bfd_stringtab_size.
	(elf_fake_sections): Change ignored argument to pointer to
	boolean, and set the boolean to true if an error occurs.  If an
	error has already occurred, don't do anything.
	(assign_section_numbers): Just set sh_size, not contents.
	(elf_compute_section_file_positions): Pass the address of a
	boolean to elf_fake_sections.  Pass the address of a
	bfd_strtab_hash to swap_out_syms.  Write out the .strtab section.
	(prep_headers): Change shstrtab to bfd_strtab_hash.
	(swap_out_syms): Take a pointer to a bfd_strtab_hash as an
	argument.  Set it to the symbol names.
	(NAME(bfd_elf,write_object_contents)): Write out the section
	header names using _bfd_stringtab_emit.
	(elf_debug_section): Remove first argument; get the section name
	via the bfd_section pointer.  Change caller.
	(elf_bfd_final_link): Write out the symbol names using
	_bfd_stringtab_emit.  Likewise for the .dynstr section contents.
	Free the symbol names at the end of the function.
	(elf_link_input_bfd): Remove the last argument, output_names,
	from relocate_section.  Save the old symbol contents before
	calling elf_link_output_sym, and restore them afterward.
	* libelf.h (struct elf_link_hash_table): Change dynstr field to
	struct bfd_strtab_hash.
	(struct elf_backend_data): Remove last argument, output_names,
	from elf_backend_relocate_section field.
	(struct strtab): Don't define.
	(struct elf_obj_tdata): Change strtab_ptr field to struct
	bfd_strtab_hash.
	* elf32-hppa.c (elf32_hppa_relocate_section): Remove last
	argument, output_names.
	* elf32-i386.c (elf_i386_relocate_section): Likewise.
	* elf32-mips.c (mips_elf_relocate_section): Likewise.
	* elf32-sparc.c (elf32_sparc_relocate_section): Likewise.
1994-10-17 22:03:14 +00:00

1528 lines
44 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Intel 80386/80486-specific support for 32-bit ELF
Copyright 1993 Free Software Foundation, Inc.
This file is part of BFD, the Binary File Descriptor library.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
#include "bfd.h"
#include "sysdep.h"
#include "bfdlink.h"
#include "libbfd.h"
#include "libelf.h"
static CONST struct reloc_howto_struct *elf_i386_reloc_type_lookup
PARAMS ((bfd *, bfd_reloc_code_real_type));
static void elf_i386_info_to_howto
PARAMS ((bfd *, arelent *, Elf32_Internal_Rela *));
static void elf_i386_info_to_howto_rel
PARAMS ((bfd *, arelent *, Elf32_Internal_Rel *));
static boolean elf_i386_create_dynamic_sections
PARAMS ((bfd *, struct bfd_link_info *));
static boolean elf_i386_check_relocs
PARAMS ((bfd *, struct bfd_link_info *, asection *,
const Elf_Internal_Rela *));
static boolean elf_i386_adjust_dynamic_symbol
PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
static boolean elf_i386_size_dynamic_sections
PARAMS ((bfd *, struct bfd_link_info *));
static boolean elf_i386_relocate_section
PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
static boolean elf_i386_finish_dynamic_symbol
PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
Elf_Internal_Sym *));
static boolean elf_i386_finish_dynamic_sections
PARAMS ((bfd *, struct bfd_link_info *));
#define USE_REL 1 /* 386 uses REL relocations instead of RELA */
enum reloc_type
{
R_386_NONE = 0,
R_386_32,
R_386_PC32,
R_386_GOT32,
R_386_PLT32,
R_386_COPY,
R_386_GLOB_DAT,
R_386_JUMP_SLOT,
R_386_RELATIVE,
R_386_GOTOFF,
R_386_GOTPC,
R_386_max
};
#if 0
static CONST char *CONST reloc_type_names[] =
{
"R_386_NONE",
"R_386_32",
"R_386_PC32",
"R_386_GOT32",
"R_386_PLT32",
"R_386_COPY",
"R_386_GLOB_DAT",
"R_386_JUMP_SLOT",
"R_386_RELATIVE",
"R_386_GOTOFF",
"R_386_GOTPC",
};
#endif
static reloc_howto_type elf_howto_table[]=
{
HOWTO(R_386_NONE, 0,0, 0,false,0,complain_overflow_bitfield, bfd_elf_generic_reloc,"R_386_NONE", true,0x00000000,0x00000000,false),
HOWTO(R_386_32, 0,2,32,false,0,complain_overflow_bitfield, bfd_elf_generic_reloc,"R_386_32", true,0xffffffff,0xffffffff,false),
HOWTO(R_386_PC32, 0,2,32,true, 0,complain_overflow_bitfield, bfd_elf_generic_reloc,"R_386_PC32", true,0xffffffff,0xffffffff,true),
HOWTO(R_386_GOT32, 0,2,32,false,0,complain_overflow_bitfield, bfd_elf_generic_reloc,"R_386_GOT32", true,0xffffffff,0xffffffff,false),
HOWTO(R_386_PLT32, 0,2,32,true,0,complain_overflow_bitfield, bfd_elf_generic_reloc,"R_386_PLT32", true,0xffffffff,0xffffffff,true),
HOWTO(R_386_COPY, 0,2,32,false,0,complain_overflow_bitfield, bfd_elf_generic_reloc,"R_386_COPY", true,0xffffffff,0xffffffff,false),
HOWTO(R_386_GLOB_DAT, 0,2,32,false,0,complain_overflow_bitfield, bfd_elf_generic_reloc,"R_386_GLOB_DAT", true,0xffffffff,0xffffffff,false),
HOWTO(R_386_JUMP_SLOT, 0,2,32,false,0,complain_overflow_bitfield, bfd_elf_generic_reloc,"R_386_JUMP_SLOT",true,0xffffffff,0xffffffff,false),
HOWTO(R_386_RELATIVE, 0,2,32,false,0,complain_overflow_bitfield, bfd_elf_generic_reloc,"R_386_RELATIVE", true,0xffffffff,0xffffffff,false),
HOWTO(R_386_GOTOFF, 0,2,32,false,0,complain_overflow_bitfield, bfd_elf_generic_reloc,"R_386_GOTOFF", true,0xffffffff,0xffffffff,false),
HOWTO(R_386_GOTPC, 0,2,32,true,0,complain_overflow_bitfield, bfd_elf_generic_reloc,"R_386_GOTPC", true,0xffffffff,0xffffffff,true),
};
#ifdef DEBUG_GEN_RELOC
#define TRACE(str) fprintf (stderr, "i386 bfd reloc lookup %d (%s)\n", code, str)
#else
#define TRACE(str)
#endif
static CONST struct reloc_howto_struct *
elf_i386_reloc_type_lookup (abfd, code)
bfd *abfd;
bfd_reloc_code_real_type code;
{
switch (code)
{
case BFD_RELOC_NONE:
TRACE ("BFD_RELOC_NONE");
return &elf_howto_table[ (int)R_386_NONE ];
case BFD_RELOC_32:
TRACE ("BFD_RELOC_32");
return &elf_howto_table[ (int)R_386_32 ];
case BFD_RELOC_32_PCREL:
TRACE ("BFD_RELOC_PC32");
return &elf_howto_table[ (int)R_386_PC32 ];
case BFD_RELOC_386_GOT32:
TRACE ("BFD_RELOC_386_GOT32");
return &elf_howto_table[ (int)R_386_GOT32 ];
case BFD_RELOC_386_PLT32:
TRACE ("BFD_RELOC_386_PLT32");
return &elf_howto_table[ (int)R_386_PLT32 ];
case BFD_RELOC_386_COPY:
TRACE ("BFD_RELOC_386_COPY");
return &elf_howto_table[ (int)R_386_COPY ];
case BFD_RELOC_386_GLOB_DAT:
TRACE ("BFD_RELOC_386_GLOB_DAT");
return &elf_howto_table[ (int)R_386_GLOB_DAT ];
case BFD_RELOC_386_JUMP_SLOT:
TRACE ("BFD_RELOC_386_JUMP_SLOT");
return &elf_howto_table[ (int)R_386_JUMP_SLOT ];
case BFD_RELOC_386_RELATIVE:
TRACE ("BFD_RELOC_386_RELATIVE");
return &elf_howto_table[ (int)R_386_RELATIVE ];
case BFD_RELOC_386_GOTOFF:
TRACE ("BFD_RELOC_386_GOTOFF");
return &elf_howto_table[ (int)R_386_GOTOFF ];
case BFD_RELOC_386_GOTPC:
TRACE ("BFD_RELOC_386_GOTPC");
return &elf_howto_table[ (int)R_386_GOTPC ];
default:
break;
}
TRACE ("Unknown");
return 0;
}
static void
elf_i386_info_to_howto (abfd, cache_ptr, dst)
bfd *abfd;
arelent *cache_ptr;
Elf32_Internal_Rela *dst;
{
BFD_ASSERT (ELF32_R_TYPE(dst->r_info) < (unsigned int) R_386_max);
cache_ptr->howto = &elf_howto_table[ELF32_R_TYPE(dst->r_info)];
}
static void
elf_i386_info_to_howto_rel (abfd, cache_ptr, dst)
bfd *abfd;
arelent *cache_ptr;
Elf32_Internal_Rel *dst;
{
BFD_ASSERT (ELF32_R_TYPE(dst->r_info) < (unsigned int) R_386_max);
cache_ptr->howto = &elf_howto_table[ELF32_R_TYPE(dst->r_info)];
}
/* Functions for the i386 ELF linker. */
/* The name of the dynamic interpreter. This is put in the .interp
section. */
#define ELF_DYNAMIC_INTERPRETER "/usr/lib/libc.so.1"
/* The size in bytes of an entry in the procedure linkage table. */
#define PLT_ENTRY_SIZE 16
/* The first entry in an absolute procedure linkage table looks like
this. See the SVR4 ABI i386 supplement to see how this works. */
static bfd_byte elf_i386_plt0_entry[PLT_ENTRY_SIZE] =
{
0xff, 0x35, /* pushl contents of address */
0, 0, 0, 0, /* replaced with address of .got + 4. */
0xff, 0x25, /* jmp indirect */
0, 0, 0, 0, /* replaced with address of .got + 8. */
0, 0, 0, 0 /* pad out to 16 bytes. */
};
/* Subsequent entries in an absolute procedure linkage table look like
this. */
static bfd_byte elf_i386_plt_entry[PLT_ENTRY_SIZE] =
{
0xff, 0x25, /* jmp indirect */
0, 0, 0, 0, /* replaced with address of this symbol in .got. */
0x68, /* pushl immediate */
0, 0, 0, 0, /* replaced with offset into relocation table. */
0xe9, /* jmp relative */
0, 0, 0, 0 /* replaced with offset to start of .plt. */
};
/* The first entry in a PIC procedure linkage table look like this. */
static bfd_byte elf_i386_pic_plt0_entry[PLT_ENTRY_SIZE] =
{
0xff, 0xb3, 4, 0, 0, 0, /* pushl 4(%ebx) */
0xff, 0xa3, 8, 0, 0, 0, /* jmp *8(%ebx) */
0, 0, 0, 0 /* pad out to 16 bytes. */
};
/* Subsequent entries in a PIC procedure linkage table look like this. */
static bfd_byte elf_i386_pic_plt_entry[PLT_ENTRY_SIZE] =
{
0xff, 0xa3, /* jmp *offset(%ebx) */
0, 0, 0, 0, /* replaced with offset of this symbol in .got. */
0x68, /* pushl immediate */
0, 0, 0, 0, /* replaced with offset into relocation table. */
0xe9, /* jmp relative */
0, 0, 0, 0 /* replaced with offset to start of .plt. */
};
/* Create dynamic sections when linking against a dynamic object. */
static boolean
elf_i386_create_dynamic_sections (abfd, info)
bfd *abfd;
struct bfd_link_info *info;
{
flagword flags;
register asection *s;
struct elf_link_hash_entry *h;
/* We need to create .plt, .rel.plt, .got, .got.plt, .dynbss, and
.rel.bss sections. */
flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY;
s = bfd_make_section (abfd, ".plt");
if (s == NULL
|| ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY | SEC_CODE)
|| ! bfd_set_section_alignment (abfd, s, 2))
return false;
s = bfd_make_section (abfd, ".rel.plt");
if (s == NULL
|| ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
|| ! bfd_set_section_alignment (abfd, s, 2))
return false;
s = bfd_make_section (abfd, ".got");
if (s == NULL
|| ! bfd_set_section_flags (abfd, s, flags)
|| ! bfd_set_section_alignment (abfd, s, 2))
return false;
s = bfd_make_section (abfd, ".got.plt");
if (s == NULL
|| ! bfd_set_section_flags (abfd, s, flags)
|| ! bfd_set_section_alignment (abfd, s, 2))
return false;
/* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the
.got.plt section, which will be placed at the start of the output
.got section. We don't do this in the linker script because we
don't want to define the symbol if we are not creating a global
offset table. */
h = NULL;
if (! (_bfd_generic_link_add_one_symbol
(info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s, (bfd_vma) 0,
(const char *) NULL, false, get_elf_backend_data (abfd)->collect,
(struct bfd_link_hash_entry **) &h)))
return false;
h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
h->type = STT_OBJECT;
if (info->shared
&& ! bfd_elf32_link_record_dynamic_symbol (info, h))
return false;
/* The first three global offset table entries are reserved. */
s->_raw_size += 3 * 4;
/* The .dynbss section is a place to put symbols which are defined
by dynamic objects, are referenced by regular objects, and are
not functions. We must allocate space for them in the process
image and use a R_386_COPY reloc to tell the dynamic linker to
initialize them at run time. The linker script puts the .dynbss
section into the .bss section of the final image. */
s = bfd_make_section (abfd, ".dynbss");
if (s == NULL
|| ! bfd_set_section_flags (abfd, s, SEC_ALLOC))
return false;
/* The .rel.bss section holds copy relocs. This section is not
normally needed. We need to create it here, though, so that the
linker will map it to an output section. We can't just create it
only if we need it, because we will not know whether we need it
until we have seen all the input files, and the first time the
main linker code calls BFD after examining all the input files
(size_dynamic_sections) the input sections have already been
mapped to the output sections. If the section turns out not to
be needed, we can discard it later. We will never need this
section when generating a shared object, since they do not use
copy relocs. */
if (! info->shared)
{
s = bfd_make_section (abfd, ".rel.bss");
if (s == NULL
|| ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
|| ! bfd_set_section_alignment (abfd, s, 2))
return false;
}
return true;
}
/* Look through the relocs for a section during the first phase, and
allocate space in the global offset table or procedure linkage
table. */
static boolean
elf_i386_check_relocs (abfd, info, sec, relocs)
bfd *abfd;
struct bfd_link_info *info;
asection *sec;
const Elf_Internal_Rela *relocs;
{
bfd *dynobj;
Elf_Internal_Shdr *symtab_hdr;
struct elf_link_hash_entry **sym_hashes;
bfd_vma *local_got_offsets;
const Elf_Internal_Rela *rel;
const Elf_Internal_Rela *rel_end;
asection *sgot;
asection *srelgot;
asection *splt;
asection *sgotplt;
asection *srelplt;
asection *sreloc;
if (info->relocateable)
return true;
dynobj = elf_hash_table (info)->dynobj;
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
sym_hashes = elf_sym_hashes (abfd);
local_got_offsets = elf_local_got_offsets (abfd);
sgot = NULL;
srelgot = NULL;
splt = NULL;
sgotplt = NULL;
srelplt = NULL;
sreloc = NULL;
rel_end = relocs + sec->reloc_count;
for (rel = relocs; rel < rel_end; rel++)
{
long r_symndx;
struct elf_link_hash_entry *h;
r_symndx = ELF32_R_SYM (rel->r_info);
if (r_symndx < symtab_hdr->sh_info)
h = NULL;
else
h = sym_hashes[r_symndx - symtab_hdr->sh_info];
/* Some relocs require a global offset table. FIXME: If this is
a static link of PIC code, we need a global offset table but
we don't really need to create the full dynamic linking
information. */
if (dynobj == NULL)
{
switch (ELF32_R_TYPE (rel->r_info))
{
case R_386_GOT32:
case R_386_PLT32:
case R_386_GOTOFF:
case R_386_GOTPC:
elf_hash_table (info)->dynobj = dynobj = abfd;
if (! bfd_elf32_link_create_dynamic_sections (dynobj, info))
return false;
break;
default:
break;
}
}
switch (ELF32_R_TYPE (rel->r_info))
{
case R_386_GOT32:
/* This symbol requires a global offset table entry. */
if (sgot == NULL)
{
sgot = bfd_get_section_by_name (dynobj, ".got");
srelgot = bfd_get_section_by_name (dynobj, ".rel.got");
if (srelgot == NULL)
{
srelgot = bfd_make_section (dynobj, ".rel.got");
if (srelgot == NULL
|| ! bfd_set_section_flags (dynobj, srelgot,
(SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
| SEC_IN_MEMORY
| SEC_READONLY))
|| ! bfd_set_section_alignment (dynobj, srelgot, 2))
return false;
}
BFD_ASSERT (sgot != NULL && srelgot != NULL);
}
if (h != NULL)
{
if (h->got_offset != (bfd_vma) -1)
{
/* We have already allocated space in the .got. */
break;
}
h->got_offset = sgot->_raw_size;
/* Make sure this symbol is output as a dynamic symbol. */
if (h->dynindx == -1)
{
if (! bfd_elf32_link_record_dynamic_symbol (info, h))
return false;
}
}
else
{
/* This is a global offset table entry for a local
symbol. */
if (local_got_offsets == NULL)
{
size_t size;
register int i;
size = symtab_hdr->sh_info * sizeof (bfd_vma);
local_got_offsets = (bfd_vma *) bfd_alloc (abfd, size);
if (local_got_offsets == NULL)
{
bfd_set_error (bfd_error_no_memory);
return false;
}
elf_local_got_offsets (abfd) = local_got_offsets;
for (i = 0; i < symtab_hdr->sh_info; i++)
local_got_offsets[i] = (bfd_vma) -1;
}
if (local_got_offsets[r_symndx] != (bfd_vma) -1)
{
/* We have already allocated space in the .got. */
break;
}
local_got_offsets[r_symndx] = sgot->_raw_size;
}
sgot->_raw_size += 4;
srelgot->_raw_size += sizeof (Elf32_External_Rel);
break;
case R_386_PLT32:
/* This symbol requires a procedure linkage table entry. */
/* If this is a local symbol, we resolve it directly without
creating a procedure linkage table entry. */
if (h == NULL)
continue;
if (h->plt_offset != (bfd_vma) -1)
{
/* There is already an entry for this symbol in the
procedure linkage table. */
break;
}
if (splt == NULL)
{
splt = bfd_get_section_by_name (dynobj, ".plt");
sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
srelplt = bfd_get_section_by_name (dynobj, ".rel.plt");
BFD_ASSERT (splt != NULL && sgotplt != NULL && srelplt != NULL);
}
/* If this is the first .plt entry, make room for the
special first entry. */
if (splt->_raw_size == 0)
splt->_raw_size += PLT_ENTRY_SIZE;
/* Make sure this symbol is output as a dynamic symbol. */
if (h->dynindx == -1)
{
if (! bfd_elf32_link_record_dynamic_symbol (info, h))
return false;
}
h->plt_offset = splt->_raw_size;
/* Make room for this entry. We need a procedure linkage
table entry in .plt, a global offset table entry in
.got.plt (which is placed in .got by the linker script),
and a relocation in .rel.plt. */
splt->_raw_size += PLT_ENTRY_SIZE;
sgotplt->_raw_size += 4;
srelplt->_raw_size += sizeof (Elf32_External_Rel);
break;
case R_386_32:
case R_386_PC32:
if (info->shared
&& (sec->flags & SEC_ALLOC) != 0)
{
/* When creating a shared object, we must output a
R_386_RELATIVE reloc for this location. We create a
reloc section in dynobj and make room for this reloc. */
if (sreloc == NULL)
{
const char *name;
name = (elf_string_from_elf_section
(abfd,
elf_elfheader (abfd)->e_shstrndx,
elf_section_data (sec)->rel_hdr.sh_name));
if (name == NULL)
return false;
BFD_ASSERT (strncmp (name, ".rel", 4) == 0
&& strcmp (bfd_get_section_name (abfd, sec),
name + 4) == 0);
sreloc = bfd_get_section_by_name (dynobj, name);
if (sreloc == NULL)
{
sreloc = bfd_make_section (dynobj, name);
if (sreloc == NULL
|| ! bfd_set_section_flags (dynobj, sreloc,
(SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
| SEC_IN_MEMORY
| SEC_READONLY))
|| ! bfd_set_section_alignment (dynobj, sreloc, 2))
return false;
}
}
sreloc->_raw_size += sizeof (Elf32_External_Rel);
}
break;
default:
break;
}
}
return true;
}
/* Adjust a symbol defined by a dynamic object and referenced by a
regular object. The current definition is in some section of the
dynamic object, but we're not including those sections. We have to
change the definition to something the rest of the link can
understand. */
static boolean
elf_i386_adjust_dynamic_symbol (info, h)
struct bfd_link_info *info;
struct elf_link_hash_entry *h;
{
bfd *dynobj;
asection *s;
unsigned int power_of_two;
dynobj = elf_hash_table (info)->dynobj;
/* Make sure we know what is going on here. */
BFD_ASSERT (dynobj != NULL
&& (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
&& (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
&& (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
&& h->root.type == bfd_link_hash_defined
&& (bfd_get_flavour (h->root.u.def.section->owner)
== bfd_target_elf_flavour)
&& (elf_elfheader (h->root.u.def.section->owner)->e_type
== ET_DYN)
&& h->root.u.def.section->output_section == NULL);
/* If this is a function, put it in the procedure linkage table. We
will fill in the contents of the procedure linkage table later,
when we know the address of the .got section. */
if (h->type == STT_FUNC)
{
s = bfd_get_section_by_name (dynobj, ".plt");
BFD_ASSERT (s != NULL);
if (h->plt_offset != (bfd_vma) -1)
{
h->root.u.def.section = s;
h->root.u.def.value = h->plt_offset;
}
else
{
/* If this is the first .plt entry, make room for the
special first entry. */
if (s->_raw_size == 0)
s->_raw_size += PLT_ENTRY_SIZE;
/* Set the symbol to this location in the .plt. */
h->root.u.def.section = s;
h->root.u.def.value = s->_raw_size;
h->plt_offset = s->_raw_size;
/* Make room for this entry. */
s->_raw_size += PLT_ENTRY_SIZE;
/* We also need to make an entry in the .got.plt section,
which will be placed in the .got section by the linker
script. */
s = bfd_get_section_by_name (dynobj, ".got.plt");
BFD_ASSERT (s != NULL);
s->_raw_size += 4;
/* We also need to make an entry in the .rel.plt section. */
s = bfd_get_section_by_name (dynobj, ".rel.plt");
BFD_ASSERT (s != NULL);
s->_raw_size += sizeof (Elf32_External_Rel);
}
return true;
}
/* If this is a weak symbol, and there is a real definition, the
processor independent code will have arranged for us to see the
real definition first, and we can just use the same value. */
if (h->weakdef != NULL)
{
BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined);
h->root.u.def.section = h->weakdef->root.u.def.section;
h->root.u.def.value = h->weakdef->root.u.def.value;
return true;
}
/* This is a reference to a symbol defined by a dynamic object which
is not a function. */
/* If we are creating a shared library, we must presume that the
only references to the symbol are via the global offset table.
For such cases we need not do anything here; the relocations will
be handled correctly by relocate_section. */
if (info->shared)
return true;
/* We must allocate the symbol in our .dynbss section, which will
become part of the .bss section of the executable. There will be
an entry for this symbol in the .dynsym section. The dynamic
object will contain position independent code, so all references
from the dynamic object to this symbol will go through the global
offset table. The dynamic linker will use the .dynsym entry to
determine the address it must put in the global offset table, so
both the dynamic object and the regular object will refer to the
same memory location for the variable. */
s = bfd_get_section_by_name (dynobj, ".dynbss");
BFD_ASSERT (s != NULL);
/* If the symbol is currently defined in the .bss section of the
dynamic object, then it is OK to simply initialize it to zero.
If the symbol is in some other section, we must generate a
R_386_COPY reloc to tell the dynamic linker to copy the initial
value out of the dynamic object and into the runtime process
image. We need to remember the offset into the .rel.bss section
we are going to use. */
if ((h->root.u.def.section->flags & SEC_LOAD) != 0)
{
asection *srel;
srel = bfd_get_section_by_name (dynobj, ".rel.bss");
BFD_ASSERT (srel != NULL);
srel->_raw_size += sizeof (Elf32_External_Rel);
h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
}
/* We need to figure out the alignment required for this symbol. I
have no idea how ELF linkers handle this. */
power_of_two = bfd_log2 (h->size);
if (power_of_two > 3)
power_of_two = 3;
/* Apply the required alignment. */
s->_raw_size = BFD_ALIGN (s->_raw_size,
(bfd_size_type) (1 << power_of_two));
if (power_of_two > bfd_get_section_alignment (dynobj, s))
{
if (! bfd_set_section_alignment (dynobj, s, power_of_two))
return false;
}
/* Define the symbol as being at this point in the section. */
h->root.u.def.section = s;
h->root.u.def.value = s->_raw_size;
/* Increment the section size to make room for the symbol. */
s->_raw_size += h->size;
return true;
}
/* Set the sizes of the dynamic sections. */
static boolean
elf_i386_size_dynamic_sections (output_bfd, info)
bfd *output_bfd;
struct bfd_link_info *info;
{
bfd *dynobj;
asection *s;
boolean plt;
boolean relocs;
boolean reltext;
dynobj = elf_hash_table (info)->dynobj;
BFD_ASSERT (dynobj != NULL);
/* Set the contents of the .interp section to the interpreter. */
if (! info->shared)
{
s = bfd_get_section_by_name (dynobj, ".interp");
BFD_ASSERT (s != NULL);
s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
}
/* The check_relocs and adjust_dynamic_symbol entry points have
determined the sizes of the various dynamic sections. Allocate
memory for them. */
plt = false;
relocs = false;
reltext = false;
for (s = dynobj->sections; s != NULL; s = s->next)
{
const char *name;
boolean strip;
if ((s->flags & SEC_IN_MEMORY) == 0)
continue;
/* It's OK to base decisions on the section name, because none
of the dynobj section names depend upon the input files. */
name = bfd_get_section_name (dynobj, s);
strip = false;
if (strcmp (name, ".plt") == 0)
{
if (s->_raw_size == 0)
{
/* Strip this section if we don't need it; see the
comment below. */
strip = true;
}
else
{
/* Remember whether there is a PLT. */
plt = true;
}
}
else if (strncmp (name, ".rel", 4) == 0)
{
if (s->_raw_size == 0)
{
/* If we don't need this section, strip it from the
output file. This is mostly to handle .rel.bss and
.rel.plt. We must create both sections in
create_dynamic_sections, because they must be created
before the linker maps input sections to output
sections. The linker does that before
adjust_dynamic_symbol is called, and it is that
function which decides whether anything needs to go
into these sections. */
strip = true;
}
else
{
asection *target;
/* Remember whether there are any reloc sections other
than .rel.plt. */
if (strcmp (name, ".rel.plt") != 0)
relocs = true;
/* If this relocation section applies to a read only
section, then we probably need a DT_TEXTREL entry. */
target = bfd_get_section_by_name (output_bfd, name + 4);
if (target != NULL
&& (target->flags & SEC_READONLY) != 0)
reltext = true;
/* We use the reloc_count field as a counter if we need
to copy relocs into the output file. */
s->reloc_count = 0;
}
}
else if (strncmp (name, ".got", 4) != 0)
{
/* It's not one of our sections, so don't allocate space. */
continue;
}
if (strip)
{
asection **spp;
for (spp = &s->output_section->owner->sections;
*spp != s->output_section;
spp = &(*spp)->next)
;
*spp = s->output_section->next;
--s->output_section->owner->section_count;
continue;
}
/* Allocate memory for the section contents. */
s->contents = (bfd_byte *) bfd_alloc (dynobj, s->_raw_size);
if (s->contents == NULL && s->_raw_size != 0)
{
bfd_set_error (bfd_error_no_memory);
return false;
}
}
/* Add some entries to the .dynamic section. We fill in the values
later, in elf_i386_finish_dynamic_sections, but we must add the
entries now so that we get the correct size for the .dynamic
section. The DT_DEBUG entry is filled in by the dynamic linker
and used by the debugger. */
if (! info->shared)
{
if (! bfd_elf32_add_dynamic_entry (info, DT_DEBUG, 0))
return false;
}
if (plt)
{
if (! bfd_elf32_add_dynamic_entry (info, DT_PLTGOT, 0)
|| ! bfd_elf32_add_dynamic_entry (info, DT_PLTRELSZ, 0)
|| ! bfd_elf32_add_dynamic_entry (info, DT_PLTREL, DT_REL)
|| ! bfd_elf32_add_dynamic_entry (info, DT_JMPREL, 0))
return false;
}
if (relocs)
{
if (! bfd_elf32_add_dynamic_entry (info, DT_REL, 0)
|| ! bfd_elf32_add_dynamic_entry (info, DT_RELSZ, 0)
|| ! bfd_elf32_add_dynamic_entry (info, DT_RELENT,
sizeof (Elf32_External_Rel)))
return false;
}
if (reltext)
{
if (! bfd_elf32_add_dynamic_entry (info, DT_TEXTREL, 0))
return false;
}
return true;
}
/* Relocate an i386 ELF section. */
static boolean
elf_i386_relocate_section (output_bfd, info, input_bfd, input_section,
contents, relocs, local_syms, local_sections)
bfd *output_bfd;
struct bfd_link_info *info;
bfd *input_bfd;
asection *input_section;
bfd_byte *contents;
Elf_Internal_Rela *relocs;
Elf_Internal_Sym *local_syms;
asection **local_sections;
char *output_names;
{
bfd *dynobj;
Elf_Internal_Shdr *symtab_hdr;
struct elf_link_hash_entry **sym_hashes;
bfd_vma *local_got_offsets;
asection *sgot;
asection *splt;
asection *sreloc;
Elf_Internal_Rela *rel;
Elf_Internal_Rela *relend;
dynobj = elf_hash_table (info)->dynobj;
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
sym_hashes = elf_sym_hashes (input_bfd);
local_got_offsets = elf_local_got_offsets (input_bfd);
sgot = NULL;
splt = NULL;
sreloc = NULL;
rel = relocs;
relend = relocs + input_section->reloc_count;
for (; rel < relend; rel++)
{
int r_type;
const reloc_howto_type *howto;
long r_symndx;
struct elf_link_hash_entry *h;
Elf_Internal_Sym *sym;
asection *sec;
bfd_vma relocation;
bfd_reloc_status_type r;
r_type = ELF32_R_TYPE (rel->r_info);
if (r_type < 0 || r_type >= (int) R_386_max)
{
bfd_set_error (bfd_error_bad_value);
return false;
}
howto = elf_howto_table + r_type;
r_symndx = ELF32_R_SYM (rel->r_info);
if (info->relocateable)
{
/* This is a relocateable link. We don't have to change
anything, unless the reloc is against a section symbol,
in which case we have to adjust according to where the
section symbol winds up in the output section. */
if (r_symndx < symtab_hdr->sh_info)
{
sym = local_syms + r_symndx;
if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
{
bfd_vma val;
sec = local_sections[r_symndx];
val = bfd_get_32 (input_bfd, contents + rel->r_offset);
val += sec->output_offset + sym->st_value;
bfd_put_32 (input_bfd, val, contents + rel->r_offset);
}
}
continue;
}
/* This is a final link. */
h = NULL;
sym = NULL;
sec = NULL;
if (r_symndx < symtab_hdr->sh_info)
{
sym = local_syms + r_symndx;
sec = local_sections[r_symndx];
relocation = (sec->output_section->vma
+ sec->output_offset
+ sym->st_value);
}
else
{
h = sym_hashes[r_symndx - symtab_hdr->sh_info];
if (h->root.type == bfd_link_hash_defined)
{
sec = h->root.u.def.section;
relocation = (h->root.u.def.value
+ sec->output_section->vma
+ sec->output_offset);
}
else if (h->root.type == bfd_link_hash_weak)
relocation = 0;
else if (info->shared)
relocation = 0;
else
{
if (! ((*info->callbacks->undefined_symbol)
(info, h->root.root.string, input_bfd,
input_section, rel->r_offset)))
return false;
relocation = 0;
}
}
switch (r_type)
{
case R_386_GOT32:
/* Relocation is to the entry for this symbol in the global
offset table. */
if (sgot == NULL)
{
sgot = bfd_get_section_by_name (dynobj, ".got");
BFD_ASSERT (sgot != NULL);
}
if (h != NULL)
{
BFD_ASSERT (h->got_offset != (bfd_vma) -1);
relocation = sgot->output_offset + h->got_offset;
}
else
{
bfd_vma off;
BFD_ASSERT (local_got_offsets != NULL
&& local_got_offsets[r_symndx] != (bfd_vma) -1);
off = local_got_offsets[r_symndx];
/* The offset must always be a multiple of 4. We use
the least significant bit to record whether we have
already generated the necessary reloc. */
if ((off & 1) != 0)
off &= ~1;
else
{
asection *srelgot;
Elf_Internal_Rel outrel;
bfd_put_32 (output_bfd, relocation, sgot->contents + off);
srelgot = bfd_get_section_by_name (dynobj, ".rel.got");
BFD_ASSERT (srelgot != NULL);
outrel.r_offset = (sgot->output_section->vma
+ sgot->output_offset
+ off);
outrel.r_info = ELF32_R_INFO (0, R_386_RELATIVE);
bfd_elf32_swap_reloc_out (output_bfd, &outrel,
(((Elf32_External_Rel *)
srelgot->contents)
+ srelgot->reloc_count));
++srelgot->reloc_count;
local_got_offsets[r_symndx] |= 1;
}
relocation = sgot->output_offset + off;
}
break;
case R_386_GOTOFF:
/* Relocation is relative to the start of the global offset
table. */
if (sgot == NULL)
{
sgot = bfd_get_section_by_name (dynobj, ".got");
BFD_ASSERT (sgot != NULL);
}
/* Note that sgot->output_offset is not involved in this
calculation. We always want the start of .got. If we
defined _GLOBAL_OFFSET_TABLE in a different way, as is
permitted by the ABI, we might have to change this
calculation. */
relocation -= sgot->output_section->vma;
break;
case R_386_GOTPC:
/* Use global offset table as symbol value. */
if (sgot == NULL)
{
sgot = bfd_get_section_by_name (dynobj, ".got");
BFD_ASSERT (sgot != NULL);
}
relocation = sgot->output_section->vma;
break;
case R_386_PLT32:
/* Relocation is to the entry for this symbol in the
procedure linkage table. */
/* Resolve a PLT32 reloc again a local symbol directly,
without using the procedure linkage table. */
if (h == NULL)
break;
if (splt == NULL)
{
splt = bfd_get_section_by_name (dynobj, ".plt");
BFD_ASSERT (splt != NULL);
}
BFD_ASSERT (h != NULL && h->plt_offset != (bfd_vma) -1);
relocation = (splt->output_section->vma
+ splt->output_offset
+ h->plt_offset);
break;
case R_386_32:
case R_386_PC32:
if (info->shared
&& (input_section->flags & SEC_ALLOC) != 0)
{
Elf_Internal_Rel outrel;
/* When generating a shared object, these relocations
are copied into the output file to be resolved at run
time. */
if (sreloc == NULL)
{
const char *name;
name = (elf_string_from_elf_section
(input_bfd,
elf_elfheader (input_bfd)->e_shstrndx,
elf_section_data (input_section)->rel_hdr.sh_name));
if (name == NULL)
return false;
BFD_ASSERT (strncmp (name, ".rel", 4) == 0
&& strcmp (bfd_get_section_name (input_bfd,
input_section),
name + 4) == 0);
sreloc = bfd_get_section_by_name (dynobj, name);
BFD_ASSERT (sreloc != NULL);
}
outrel.r_offset = (rel->r_offset
+ input_section->output_section->vma
+ input_section->output_offset);
if (r_type == R_386_PC32)
{
BFD_ASSERT (h != NULL && h->dynindx != (bfd_vma) -1);
outrel.r_info = ELF32_R_INFO (h->dynindx, R_386_PC32);
}
else
{
if (h == NULL)
outrel.r_info = ELF32_R_INFO (0, R_386_RELATIVE);
else
{
BFD_ASSERT (h->dynindx != (bfd_vma) -1);
outrel.r_info = ELF32_R_INFO (h->dynindx, R_386_32);
}
}
bfd_elf32_swap_reloc_out (output_bfd, &outrel,
(((Elf32_External_Rel *)
sreloc->contents)
+ sreloc->reloc_count));
++sreloc->reloc_count;
/* If this reloc is against an external symbol, we do
not want to fiddle with the addend. Otherwise, we
need to include the symbol value so that it becomes
an addend for the dynamic reloc. */
if (h != NULL)
continue;
}
break;
default:
break;
}
r = _bfd_final_link_relocate (howto, input_bfd, input_section,
contents, rel->r_offset,
relocation, (bfd_vma) 0);
if (r != bfd_reloc_ok)
{
switch (r)
{
default:
case bfd_reloc_outofrange:
abort ();
case bfd_reloc_overflow:
{
const char *name;
if (h != NULL)
name = h->root.root.string;
else
{
name = elf_string_from_elf_section (input_bfd,
symtab_hdr->sh_link,
sym->st_name);
if (name == NULL)
return false;
if (*name == '\0')
name = bfd_section_name (input_bfd, sec);
}
if (! ((*info->callbacks->reloc_overflow)
(info, name, howto->name, (bfd_vma) 0,
input_bfd, input_section, rel->r_offset)))
return false;
}
break;
}
}
}
return true;
}
/* Finish up dynamic symbol handling. We set the contents of various
dynamic sections here. */
static boolean
elf_i386_finish_dynamic_symbol (output_bfd, info, h, sym)
bfd *output_bfd;
struct bfd_link_info *info;
struct elf_link_hash_entry *h;
Elf_Internal_Sym *sym;
{
bfd *dynobj;
dynobj = elf_hash_table (info)->dynobj;
if (h->plt_offset != (bfd_vma) -1)
{
asection *splt;
asection *sgot;
asection *srel;
bfd_vma plt_index;
bfd_vma got_offset;
Elf_Internal_Rel rel;
/* This symbol has an entry in the procedure linkage table. Set
it up. */
BFD_ASSERT (h->dynindx != -1);
splt = bfd_get_section_by_name (dynobj, ".plt");
sgot = bfd_get_section_by_name (dynobj, ".got.plt");
srel = bfd_get_section_by_name (dynobj, ".rel.plt");
BFD_ASSERT (splt != NULL && sgot != NULL && srel != NULL);
/* Get the index in the procedure linkage table which
corresponds to this symbol. This is the index of this symbol
in all the symbols for which we are making plt entries. The
first entry in the procedure linkage table is reserved. */
plt_index = h->plt_offset / PLT_ENTRY_SIZE - 1;
/* Get the offset into the .got table of the entry that
corresponds to this function. Each .got entry is 4 bytes.
The first three are reserved. */
got_offset = (plt_index + 3) * 4;
/* Fill in the entry in the procedure linkage table. */
if (! info->shared)
{
memcpy (splt->contents + h->plt_offset, elf_i386_plt_entry,
PLT_ENTRY_SIZE);
bfd_put_32 (output_bfd,
(sgot->output_section->vma
+ sgot->output_offset
+ got_offset),
splt->contents + h->plt_offset + 2);
}
else
{
memcpy (splt->contents + h->plt_offset, elf_i386_pic_plt_entry,
PLT_ENTRY_SIZE);
bfd_put_32 (output_bfd, got_offset,
splt->contents + h->plt_offset + 2);
}
bfd_put_32 (output_bfd, plt_index * sizeof (Elf32_External_Rel),
splt->contents + h->plt_offset + 7);
bfd_put_32 (output_bfd, - (h->plt_offset + PLT_ENTRY_SIZE),
splt->contents + h->plt_offset + 12);
/* Fill in the entry in the global offset table. */
bfd_put_32 (output_bfd,
(splt->output_section->vma
+ splt->output_offset
+ h->plt_offset
+ 6),
sgot->contents + got_offset);
/* Fill in the entry in the .rel.plt section. */
rel.r_offset = (sgot->output_section->vma
+ sgot->output_offset
+ got_offset);
rel.r_info = ELF32_R_INFO (h->dynindx, R_386_JUMP_SLOT);
bfd_elf32_swap_reloc_out (output_bfd, &rel,
((Elf32_External_Rel *) srel->contents
+ plt_index));
if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
{
/* Mark the symbol as undefined, rather than as defined in
the .plt section. Leave the value alone. */
sym->st_shndx = SHN_UNDEF;
}
}
if (h->got_offset != (bfd_vma) -1)
{
asection *sgot;
asection *srel;
Elf_Internal_Rel rel;
/* This symbol has an entry in the global offset table. Set it
up. */
BFD_ASSERT (h->dynindx != -1);
sgot = bfd_get_section_by_name (dynobj, ".got");
srel = bfd_get_section_by_name (dynobj, ".rel.got");
BFD_ASSERT (sgot != NULL && srel != NULL);
bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + h->got_offset);
rel.r_offset = (sgot->output_section->vma
+ sgot->output_offset
+ h->got_offset);
rel.r_info = ELF32_R_INFO (h->dynindx, R_386_GLOB_DAT);
bfd_elf32_swap_reloc_out (output_bfd, &rel,
((Elf32_External_Rel *) srel->contents
+ srel->reloc_count));
++srel->reloc_count;
}
if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
{
asection *s;
Elf_Internal_Rel rel;
/* This symbol needs a copy reloc. Set it up. */
BFD_ASSERT (h->dynindx != -1
&& h->root.type == bfd_link_hash_defined);
s = bfd_get_section_by_name (h->root.u.def.section->owner,
".rel.bss");
BFD_ASSERT (s != NULL);
rel.r_offset = (h->root.u.def.value
+ h->root.u.def.section->output_section->vma
+ h->root.u.def.section->output_offset);
rel.r_info = ELF32_R_INFO (h->dynindx, R_386_COPY);
bfd_elf32_swap_reloc_out (output_bfd, &rel,
((Elf32_External_Rel *) s->contents
+ s->reloc_count));
++s->reloc_count;
}
/* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
if (strcmp (h->root.root.string, "_DYNAMIC") == 0
|| strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
sym->st_shndx = SHN_ABS;
return true;
}
/* Finish up the dynamic sections. */
static boolean
elf_i386_finish_dynamic_sections (output_bfd, info)
bfd *output_bfd;
struct bfd_link_info *info;
{
bfd *dynobj;
asection *splt;
asection *sgot;
asection *sdyn;
Elf32_External_Dyn *dyncon, *dynconend;
dynobj = elf_hash_table (info)->dynobj;
splt = bfd_get_section_by_name (dynobj, ".plt");
sgot = bfd_get_section_by_name (dynobj, ".got.plt");
sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
BFD_ASSERT (splt != NULL && sgot != NULL && sdyn != NULL);
dyncon = (Elf32_External_Dyn *) sdyn->contents;
dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
for (; dyncon < dynconend; dyncon++)
{
Elf_Internal_Dyn dyn;
const char *name;
asection *s;
bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
switch (dyn.d_tag)
{
default:
break;
case DT_PLTGOT:
name = ".got";
goto get_vma;
case DT_JMPREL:
name = ".rel.plt";
get_vma:
s = bfd_get_section_by_name (output_bfd, name);
BFD_ASSERT (s != NULL);
dyn.d_un.d_ptr = s->vma;
bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
break;
case DT_PLTRELSZ:
s = bfd_get_section_by_name (output_bfd, ".rel.plt");
BFD_ASSERT (s != NULL);
if (s->_cooked_size != 0)
dyn.d_un.d_val = s->_cooked_size;
else
dyn.d_un.d_val = s->_raw_size;
bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
break;
case DT_RELSZ:
/* My reading of the SVR4 ABI indicates that the procedure
linkage table relocs (DT_JMPREL) should be included in
the overall relocs (DT_REL). This is what Solaris does.
However, UnixWare can not handle that case. Therefore,
we override the DT_RELSZ entry here to make it not
include the JMPREL relocs. Since the linker script
arranges for .rel.plt to follow all other relocation
sections, we don't have to worry about changing the
DT_REL entry. */
s = bfd_get_section_by_name (output_bfd, ".rel.plt");
if (s != NULL)
{
if (s->_cooked_size != 0)
dyn.d_un.d_val -= s->_cooked_size;
else
dyn.d_un.d_val -= s->_raw_size;
}
bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
break;
}
}
/* Fill in the first entry in the procedure linkage table. */
if (splt->_raw_size > 0)
{
if (info->shared)
memcpy (splt->contents, elf_i386_pic_plt0_entry, PLT_ENTRY_SIZE);
else
{
memcpy (splt->contents, elf_i386_plt0_entry, PLT_ENTRY_SIZE);
bfd_put_32 (output_bfd,
sgot->output_section->vma + sgot->output_offset + 4,
splt->contents + 2);
bfd_put_32 (output_bfd,
sgot->output_section->vma + sgot->output_offset + 8,
splt->contents + 8);
}
}
/* Fill in the first three entries in the global offset table. */
if (sgot->_raw_size > 0)
{
bfd_put_32 (output_bfd,
sdyn->output_section->vma + sdyn->output_offset,
sgot->contents);
bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
}
elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
/* UnixWare sets the entsize of .plt to 4, although that doesn't
really seem like the right value. */
elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
return true;
}
#define TARGET_LITTLE_SYM bfd_elf32_i386_vec
#define TARGET_LITTLE_NAME "elf32-i386"
#define ELF_ARCH bfd_arch_i386
#define ELF_MACHINE_CODE EM_386
#define elf_info_to_howto elf_i386_info_to_howto
#define elf_info_to_howto_rel elf_i386_info_to_howto_rel
#define bfd_elf32_bfd_reloc_type_lookup elf_i386_reloc_type_lookup
#define ELF_MAXPAGESIZE 0x1000
#define elf_backend_create_dynamic_sections \
elf_i386_create_dynamic_sections
#define elf_backend_check_relocs elf_i386_check_relocs
#define elf_backend_adjust_dynamic_symbol \
elf_i386_adjust_dynamic_symbol
#define elf_backend_size_dynamic_sections \
elf_i386_size_dynamic_sections
#define elf_backend_relocate_section elf_i386_relocate_section
#define elf_backend_finish_dynamic_symbol \
elf_i386_finish_dynamic_symbol
#define elf_backend_finish_dynamic_sections \
elf_i386_finish_dynamic_sections
#include "elf32-target.h"