darling-gdb/gdb/moxie-tdep.c
Joel Brobecker 0b30217134 Copyright year update in most files of the GDB Project.
gdb/ChangeLog:

        Copyright year update in most files of the GDB Project.
2012-01-04 08:17:56 +00:00

1008 lines
26 KiB
C

/* Target-dependent code for Moxie.
Copyright (C) 2009-2012 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "defs.h"
#include "frame.h"
#include "frame-unwind.h"
#include "frame-base.h"
#include "symtab.h"
#include "gdbtypes.h"
#include "gdbcmd.h"
#include "gdbcore.h"
#include "gdb_string.h"
#include "value.h"
#include "inferior.h"
#include "symfile.h"
#include "objfiles.h"
#include "osabi.h"
#include "language.h"
#include "arch-utils.h"
#include "regcache.h"
#include "trad-frame.h"
#include "dis-asm.h"
#include "record.h"
#include "gdb_assert.h"
#include "moxie-tdep.h"
/* Local functions. */
extern void _initialize_moxie_tdep (void);
/* Use an invalid address value as 'not available' marker. */
enum { REG_UNAVAIL = (CORE_ADDR) -1 };
struct moxie_frame_cache
{
/* Base address. */
CORE_ADDR base;
CORE_ADDR pc;
LONGEST framesize;
CORE_ADDR saved_regs[MOXIE_NUM_REGS];
CORE_ADDR saved_sp;
};
/* Implement the "frame_align" gdbarch method. */
static CORE_ADDR
moxie_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
{
/* Align to the size of an instruction (so that they can safely be
pushed onto the stack. */
return sp & ~1;
}
/* Implement the "breakpoint_from_pc" gdbarch method. */
const static unsigned char *
moxie_breakpoint_from_pc (struct gdbarch *gdbarch,
CORE_ADDR *pcptr, int *lenptr)
{
static unsigned char breakpoint[] = { 0x35, 0x00 };
*lenptr = sizeof (breakpoint);
return breakpoint;
}
/* Moxie register names. */
char *moxie_register_names[] = {
"$fp", "$sp", "$r0", "$r1", "$r2",
"$r3", "$r4", "$r5", "$r6", "$r7",
"$r8", "$r9", "$r10", "$r11", "$r12",
"$r13", "$pc", "$cc" };
/* Implement the "register_name" gdbarch method. */
static const char *
moxie_register_name (struct gdbarch *gdbarch, int reg_nr)
{
if (reg_nr < 0)
return NULL;
if (reg_nr >= MOXIE_NUM_REGS)
return NULL;
return moxie_register_names[reg_nr];
}
/* Implement the "register_type" gdbarch method. */
static struct type *
moxie_register_type (struct gdbarch *gdbarch, int reg_nr)
{
if (reg_nr == MOXIE_PC_REGNUM)
return builtin_type (gdbarch)->builtin_func_ptr;
else if (reg_nr == MOXIE_SP_REGNUM || reg_nr == MOXIE_FP_REGNUM)
return builtin_type (gdbarch)->builtin_data_ptr;
else
return builtin_type (gdbarch)->builtin_int32;
}
/* Write into appropriate registers a function return value
of type TYPE, given in virtual format. */
static void
moxie_store_return_value (struct type *type, struct regcache *regcache,
const void *valbuf)
{
struct gdbarch *gdbarch = get_regcache_arch (regcache);
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
CORE_ADDR regval;
int len = TYPE_LENGTH (type);
/* Things always get returned in RET1_REGNUM, RET2_REGNUM. */
regval = extract_unsigned_integer (valbuf, len > 4 ? 4 : len, byte_order);
regcache_cooked_write_unsigned (regcache, RET1_REGNUM, regval);
if (len > 4)
{
regval = extract_unsigned_integer ((gdb_byte *) valbuf + 4,
len - 4, byte_order);
regcache_cooked_write_unsigned (regcache, RET1_REGNUM + 1, regval);
}
}
/* Decode the instructions within the given address range. Decide
when we must have reached the end of the function prologue. If a
frame_info pointer is provided, fill in its saved_regs etc.
Returns the address of the first instruction after the prologue. */
static CORE_ADDR
moxie_analyze_prologue (CORE_ADDR start_addr, CORE_ADDR end_addr,
struct moxie_frame_cache *cache,
struct gdbarch *gdbarch)
{
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
CORE_ADDR next_addr;
ULONGEST inst, inst2;
LONGEST offset;
int regnum;
/* Record where the jsra instruction saves the PC and FP. */
cache->saved_regs[MOXIE_PC_REGNUM] = -4;
cache->saved_regs[MOXIE_FP_REGNUM] = 0;
cache->framesize = 0;
if (start_addr >= end_addr)
return end_addr;
for (next_addr = start_addr; next_addr < end_addr; )
{
inst = read_memory_unsigned_integer (next_addr, 2, byte_order);
/* Match "push $rN" where N is between 2 and 13 inclusive. */
if (inst >= 0x0614 && inst <= 0x061f)
{
regnum = inst & 0x000f;
cache->framesize += 4;
cache->saved_regs[regnum] = cache->framesize;
next_addr += 2;
}
else
break;
}
inst = read_memory_unsigned_integer (next_addr, 2, byte_order);
/* Optional stack allocation for args and local vars <= 4
byte. */
if (inst == 0x0170) /* ldi.l $r5, X */
{
offset = read_memory_integer (next_addr + 2, 4, byte_order);
inst2 = read_memory_unsigned_integer (next_addr + 6, 2, byte_order);
if (inst2 == 0x0517) /* add.l $sp, $r5 */
{
cache->framesize += offset;
}
return (next_addr + 8);
}
else if ((inst & 0xff00) == 0x91) /* dec $sp, X */
{
cache->framesize += (inst & 0x00ff);
next_addr += 2;
while (next_addr < end_addr)
{
inst = read_memory_unsigned_integer (next_addr, 2, byte_order);
if ((inst & 0xff00) != 0x91) /* no more dec $sp, X */
break;
cache->framesize += (inst & 0x00ff);
next_addr += 2;
}
}
return next_addr;
}
/* Find the end of function prologue. */
static CORE_ADDR
moxie_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
{
CORE_ADDR func_addr = 0, func_end = 0;
char *func_name;
/* See if we can determine the end of the prologue via the symbol table.
If so, then return either PC, or the PC after the prologue, whichever
is greater. */
if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
{
CORE_ADDR post_prologue_pc
= skip_prologue_using_sal (gdbarch, func_addr);
if (post_prologue_pc != 0)
return max (pc, post_prologue_pc);
else
{
/* Can't determine prologue from the symbol table, need to examine
instructions. */
struct symtab_and_line sal;
struct symbol *sym;
struct moxie_frame_cache cache;
CORE_ADDR plg_end;
memset (&cache, 0, sizeof cache);
plg_end = moxie_analyze_prologue (func_addr,
func_end, &cache, gdbarch);
/* Found a function. */
sym = lookup_symbol (func_name, NULL, VAR_DOMAIN, NULL);
/* Don't use line number debug info for assembly source
files. */
if (sym && SYMBOL_LANGUAGE (sym) != language_asm)
{
sal = find_pc_line (func_addr, 0);
if (sal.end && sal.end < func_end)
{
/* Found a line number, use it as end of
prologue. */
return sal.end;
}
}
/* No useable line symbol. Use result of prologue parsing
method. */
return plg_end;
}
}
/* No function symbol -- just return the PC. */
return (CORE_ADDR) pc;
}
struct moxie_unwind_cache
{
/* The previous frame's inner most stack address. Used as this
frame ID's stack_addr. */
CORE_ADDR prev_sp;
/* The frame's base, optionally used by the high-level debug info. */
CORE_ADDR base;
int size;
/* How far the SP and r13 (FP) have been offset from the start of
the stack frame (as defined by the previous frame's stack
pointer). */
LONGEST sp_offset;
LONGEST r13_offset;
int uses_frame;
/* Table indicating the location of each and every register. */
struct trad_frame_saved_reg *saved_regs;
};
/* Implement the "read_pc" gdbarch method. */
static CORE_ADDR
moxie_read_pc (struct regcache *regcache)
{
ULONGEST pc;
regcache_cooked_read_unsigned (regcache, MOXIE_PC_REGNUM, &pc);
return pc;
}
/* Implement the "write_pc" gdbarch method. */
static void
moxie_write_pc (struct regcache *regcache, CORE_ADDR val)
{
regcache_cooked_write_unsigned (regcache, MOXIE_PC_REGNUM, val);
}
/* Implement the "unwind_sp" gdbarch method. */
static CORE_ADDR
moxie_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
{
return frame_unwind_register_unsigned (next_frame, MOXIE_SP_REGNUM);
}
/* Given a return value in `regbuf' with a type `valtype',
extract and copy its value into `valbuf'. */
static void
moxie_extract_return_value (struct type *type, struct regcache *regcache,
void *dst)
{
struct gdbarch *gdbarch = get_regcache_arch (regcache);
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
bfd_byte *valbuf = dst;
int len = TYPE_LENGTH (type);
ULONGEST tmp;
/* By using store_unsigned_integer we avoid having to do
anything special for small big-endian values. */
regcache_cooked_read_unsigned (regcache, RET1_REGNUM, &tmp);
store_unsigned_integer (valbuf, (len > 4 ? len - 4 : len), byte_order, tmp);
/* Ignore return values more than 8 bytes in size because the moxie
returns anything more than 8 bytes in the stack. */
if (len > 4)
{
regcache_cooked_read_unsigned (regcache, RET1_REGNUM + 1, &tmp);
store_unsigned_integer (valbuf + len - 4, 4, byte_order, tmp);
}
}
/* Implement the "return_value" gdbarch method. */
static enum return_value_convention
moxie_return_value (struct gdbarch *gdbarch, struct type *func_type,
struct type *valtype, struct regcache *regcache,
gdb_byte *readbuf, const gdb_byte *writebuf)
{
if (TYPE_LENGTH (valtype) > 8)
return RETURN_VALUE_STRUCT_CONVENTION;
else
{
if (readbuf != NULL)
moxie_extract_return_value (valtype, regcache, readbuf);
if (writebuf != NULL)
moxie_store_return_value (valtype, regcache, writebuf);
return RETURN_VALUE_REGISTER_CONVENTION;
}
}
/* Allocate and initialize a moxie_frame_cache object. */
static struct moxie_frame_cache *
moxie_alloc_frame_cache (void)
{
struct moxie_frame_cache *cache;
int i;
cache = FRAME_OBSTACK_ZALLOC (struct moxie_frame_cache);
cache->base = 0;
cache->saved_sp = 0;
cache->pc = 0;
cache->framesize = 0;
for (i = 0; i < MOXIE_NUM_REGS; ++i)
cache->saved_regs[i] = REG_UNAVAIL;
return cache;
}
/* Populate a moxie_frame_cache object for this_frame. */
static struct moxie_frame_cache *
moxie_frame_cache (struct frame_info *this_frame, void **this_cache)
{
struct moxie_frame_cache *cache;
CORE_ADDR current_pc;
int i;
if (*this_cache)
return *this_cache;
cache = moxie_alloc_frame_cache ();
*this_cache = cache;
cache->base = get_frame_register_unsigned (this_frame, MOXIE_FP_REGNUM);
if (cache->base == 0)
return cache;
cache->pc = get_frame_func (this_frame);
current_pc = get_frame_pc (this_frame);
if (cache->pc)
{
struct gdbarch *gdbarch = get_frame_arch (this_frame);
moxie_analyze_prologue (cache->pc, current_pc, cache, gdbarch);
}
cache->saved_sp = cache->base - cache->framesize;
for (i = 0; i < MOXIE_NUM_REGS; ++i)
if (cache->saved_regs[i] != REG_UNAVAIL)
cache->saved_regs[i] = cache->base - cache->saved_regs[i];
return cache;
}
/* Implement the "unwind_pc" gdbarch method. */
static CORE_ADDR
moxie_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
{
return frame_unwind_register_unsigned (next_frame, MOXIE_PC_REGNUM);
}
/* Given a GDB frame, determine the address of the calling function's
frame. This will be used to create a new GDB frame struct. */
static void
moxie_frame_this_id (struct frame_info *this_frame,
void **this_prologue_cache, struct frame_id *this_id)
{
struct moxie_frame_cache *cache = moxie_frame_cache (this_frame,
this_prologue_cache);
/* This marks the outermost frame. */
if (cache->base == 0)
return;
*this_id = frame_id_build (cache->saved_sp, cache->pc);
}
/* Get the value of register regnum in the previous stack frame. */
static struct value *
moxie_frame_prev_register (struct frame_info *this_frame,
void **this_prologue_cache, int regnum)
{
struct moxie_frame_cache *cache = moxie_frame_cache (this_frame,
this_prologue_cache);
gdb_assert (regnum >= 0);
if (regnum == MOXIE_SP_REGNUM && cache->saved_sp)
return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
if (regnum < MOXIE_NUM_REGS && cache->saved_regs[regnum] != REG_UNAVAIL)
return frame_unwind_got_memory (this_frame, regnum,
cache->saved_regs[regnum]);
return frame_unwind_got_register (this_frame, regnum, regnum);
}
static const struct frame_unwind moxie_frame_unwind = {
NORMAL_FRAME,
default_frame_unwind_stop_reason,
moxie_frame_this_id,
moxie_frame_prev_register,
NULL,
default_frame_sniffer
};
/* Return the base address of this_frame. */
static CORE_ADDR
moxie_frame_base_address (struct frame_info *this_frame, void **this_cache)
{
struct moxie_frame_cache *cache = moxie_frame_cache (this_frame,
this_cache);
return cache->base;
}
static const struct frame_base moxie_frame_base = {
&moxie_frame_unwind,
moxie_frame_base_address,
moxie_frame_base_address,
moxie_frame_base_address
};
static struct frame_id
moxie_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
{
CORE_ADDR sp = get_frame_register_unsigned (this_frame, MOXIE_SP_REGNUM);
return frame_id_build (sp, get_frame_pc (this_frame));
}
/* Read an unsigned integer from the inferior, and adjust
endianess. */
static ULONGEST
moxie_process_readu (CORE_ADDR addr, char *buf,
int length, enum bfd_endian byte_order)
{
if (target_read_memory (addr, buf, length))
{
if (record_debug)
printf_unfiltered (_("Process record: error reading memory at "
"addr 0x%s len = %d.\n"),
paddress (target_gdbarch, addr), length);
return -1;
}
return extract_unsigned_integer (buf, length, byte_order);
}
/* Parse the current instruction and record the values of the registers and
memory that will be changed in current instruction to "record_arch_list".
Return -1 if something wrong. */
int
moxie_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
CORE_ADDR addr)
{
gdb_byte buf[4];
uint16_t inst;
uint32_t tmpu32;
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
if (record_debug > 1)
fprintf_unfiltered (gdb_stdlog, "Process record: moxie_process_record "
"addr = 0x%s\n",
paddress (target_gdbarch, addr));
inst = (uint16_t) moxie_process_readu (addr, buf, 2, byte_order);
/* Decode instruction. */
if (inst & (1 << 15))
{
if (inst & (1 << 14))
{
/* This is a Form 3 instruction. */
int opcode = (inst >> 10 & 0xf);
switch (opcode)
{
case 0x00: /* beq */
case 0x01: /* bne */
case 0x02: /* blt */
case 0x03: /* bgt */
case 0x04: /* bltu */
case 0x05: /* bgtu */
case 0x06: /* bge */
case 0x07: /* ble */
case 0x08: /* bgeu */
case 0x09: /* bleu */
/* Do nothing. */
break;
default:
{
/* Do nothing. */
break;
}
}
}
else
{
/* This is a Form 2 instruction. */
int opcode = (inst >> 12 & 0x3);
switch (opcode)
{
case 0x00: /* inc */
case 0x01: /* dec */
case 0x02: /* gsr */
{
int reg = (inst >> 8) & 0xf;
if (record_arch_list_add_reg (regcache, reg))
return -1;
}
break;
case 0x03: /* ssr */
{
/* Do nothing until GDB learns about moxie's special
registers. */
}
break;
default:
/* Do nothing. */
break;
}
}
}
else
{
/* This is a Form 1 instruction. */
int opcode = inst >> 8;
switch (opcode)
{
case 0x00: /* nop */
/* Do nothing. */
break;
case 0x01: /* ldi.l (immediate) */
case 0x02: /* mov (register-to-register) */
{
int reg = (inst >> 4) & 0xf;
if (record_arch_list_add_reg (regcache, reg))
return -1;
}
break;
case 0x03: /* jsra */
{
regcache_raw_read (regcache,
MOXIE_SP_REGNUM, (gdb_byte *) & tmpu32);
tmpu32 = extract_unsigned_integer ((gdb_byte *) & tmpu32,
4, byte_order);
if (record_arch_list_add_reg (regcache, MOXIE_FP_REGNUM)
|| (record_arch_list_add_reg (regcache,
MOXIE_SP_REGNUM))
|| record_arch_list_add_mem (tmpu32 - 12, 12))
return -1;
}
break;
case 0x04: /* ret */
{
if (record_arch_list_add_reg (regcache, MOXIE_FP_REGNUM)
|| (record_arch_list_add_reg (regcache,
MOXIE_SP_REGNUM)))
return -1;
}
break;
case 0x05: /* add.l */
{
int reg = (inst >> 4) & 0xf;
if (record_arch_list_add_reg (regcache, reg))
return -1;
}
break;
case 0x06: /* push */
{
int reg = (inst >> 4) & 0xf;
regcache_raw_read (regcache, reg, (gdb_byte *) & tmpu32);
tmpu32 = extract_unsigned_integer ((gdb_byte *) & tmpu32,
4, byte_order);
if (record_arch_list_add_reg (regcache, reg)
|| record_arch_list_add_mem (tmpu32 - 4, 4))
return -1;
}
break;
case 0x07: /* pop */
{
int a = (inst >> 4) & 0xf;
int b = inst & 0xf;
if (record_arch_list_add_reg (regcache, a)
|| record_arch_list_add_reg (regcache, b))
return -1;
}
break;
case 0x08: /* lda.l */
{
int reg = (inst >> 4) & 0xf;
if (record_arch_list_add_reg (regcache, reg))
return -1;
}
break;
case 0x09: /* sta.l */
{
tmpu32 = (uint32_t) moxie_process_readu (addr+2, buf,
4, byte_order);
if (record_arch_list_add_mem (tmpu32, 4))
return -1;
}
break;
case 0x0a: /* ld.l (register indirect) */
{
int reg = (inst >> 4) & 0xf;
if (record_arch_list_add_reg (regcache, reg))
return -1;
}
break;
case 0x0b: /* st.l */
{
int reg = (inst >> 4) & 0xf;
regcache_raw_read (regcache, reg, (gdb_byte *) & tmpu32);
tmpu32 = extract_unsigned_integer ((gdb_byte *) & tmpu32,
4, byte_order);
if (record_arch_list_add_mem (tmpu32, 4))
return -1;
}
break;
case 0x0c: /* ldo.l */
{
int reg = (inst >> 4) & 0xf;
if (record_arch_list_add_reg (regcache, reg))
return -1;
}
break;
case 0x0d: /* sto.l */
{
int reg = (inst >> 4) & 0xf;
uint32_t offset = (uint32_t) moxie_process_readu (addr+2, buf, 4,
byte_order);
regcache_raw_read (regcache, reg, (gdb_byte *) & tmpu32);
tmpu32 = extract_unsigned_integer ((gdb_byte *) & tmpu32,
4, byte_order);
tmpu32 += offset;
if (record_arch_list_add_mem (tmpu32, 4))
return -1;
}
break;
case 0x0e: /* cmp */
{
if (record_arch_list_add_reg (regcache, MOXIE_CC_REGNUM))
return -1;
}
break;
case 0x0f:
case 0x10:
case 0x11:
case 0x12:
case 0x13:
case 0x14:
case 0x15:
case 0x16:
case 0x17:
case 0x18:
{
/* Do nothing. */
break;
}
case 0x19: /* jsr */
{
regcache_raw_read (regcache,
MOXIE_SP_REGNUM, (gdb_byte *) & tmpu32);
tmpu32 = extract_unsigned_integer ((gdb_byte *) & tmpu32,
4, byte_order);
if (record_arch_list_add_reg (regcache, MOXIE_FP_REGNUM)
|| (record_arch_list_add_reg (regcache,
MOXIE_SP_REGNUM))
|| record_arch_list_add_mem (tmpu32 - 12, 12))
return -1;
}
break;
case 0x1a: /* jmpa */
{
/* Do nothing. */
}
break;
case 0x1b: /* ldi.b (immediate) */
case 0x1c: /* ld.b (register indirect) */
case 0x1d: /* lda.b */
{
int reg = (inst >> 4) & 0xf;
if (record_arch_list_add_reg (regcache, reg))
return -1;
}
break;
case 0x1e: /* st.b */
{
int reg = (inst >> 4) & 0xf;
regcache_raw_read (regcache, reg, (gdb_byte *) & tmpu32);
tmpu32 = extract_unsigned_integer ((gdb_byte *) & tmpu32,
4, byte_order);
if (record_arch_list_add_mem (tmpu32, 1))
return -1;
}
break;
case 0x1f: /* sta.b */
{
tmpu32 = moxie_process_readu (addr+2, (char *) buf,
4, byte_order);
if (record_arch_list_add_mem (tmpu32, 1))
return -1;
}
break;
case 0x20: /* ldi.s (immediate) */
case 0x21: /* ld.s (register indirect) */
case 0x22: /* lda.s */
{
int reg = (inst >> 4) & 0xf;
if (record_arch_list_add_reg (regcache, reg))
return -1;
}
break;
case 0x23: /* st.s */
{
int reg = (inst >> 4) & 0xf;
regcache_raw_read (regcache, reg, (gdb_byte *) & tmpu32);
tmpu32 = extract_unsigned_integer ((gdb_byte *) & tmpu32,
4, byte_order);
if (record_arch_list_add_mem (tmpu32, 2))
return -1;
}
break;
case 0x24: /* sta.s */
{
tmpu32 = moxie_process_readu (addr+2, (char *) buf,
4, byte_order);
if (record_arch_list_add_mem (tmpu32, 2))
return -1;
}
break;
case 0x25: /* jmp */
{
/* Do nothing. */
}
break;
case 0x26: /* and */
case 0x27: /* lshr */
case 0x28: /* ashl */
case 0x29: /* sub.l */
case 0x2a: /* neg */
case 0x2b: /* or */
case 0x2c: /* not */
case 0x2d: /* ashr */
case 0x2e: /* xor */
case 0x2f: /* mul.l */
{
int reg = (inst >> 4) & 0xf;
if (record_arch_list_add_reg (regcache, reg))
return -1;
}
break;
case 0x30: /* swi */
{
/* We currently implement support for libgloss'
system calls. */
int inum = moxie_process_readu (addr+2, (char *) buf,
4, byte_order);
switch (inum)
{
case 0x1: /* SYS_exit */
{
/* Do nothing. */
}
break;
case 0x2: /* SYS_open */
{
if (record_arch_list_add_reg (regcache, RET1_REGNUM))
return -1;
}
break;
case 0x4: /* SYS_read */
{
uint32_t length, ptr;
/* Read buffer pointer is in $r1. */
regcache_raw_read (regcache, 3, (gdb_byte *) & ptr);
ptr = extract_unsigned_integer ((gdb_byte *) & ptr,
4, byte_order);
/* String length is at 0x12($fp). */
regcache_raw_read (regcache,
MOXIE_FP_REGNUM, (gdb_byte *) & tmpu32);
tmpu32 = extract_unsigned_integer ((gdb_byte *) & tmpu32,
4, byte_order);
length = moxie_process_readu (tmpu32+20, (char *) buf,
4, byte_order);
if (record_arch_list_add_mem (ptr, length))
return -1;
}
break;
case 0x5: /* SYS_write */
{
if (record_arch_list_add_reg (regcache, RET1_REGNUM))
return -1;
}
break;
default:
break;
}
}
break;
case 0x31: /* div.l */
case 0x32: /* udiv.l */
case 0x33: /* mod.l */
case 0x34: /* umod.l */
{
int reg = (inst >> 4) & 0xf;
if (record_arch_list_add_reg (regcache, reg))
return -1;
}
break;
case 0x35: /* brk */
/* Do nothing. */
break;
case 0x36: /* ldo.b */
{
int reg = (inst >> 4) & 0xf;
if (record_arch_list_add_reg (regcache, reg))
return -1;
}
break;
case 0x37: /* sto.b */
{
int reg = (inst >> 4) & 0xf;
uint32_t offset = (uint32_t) moxie_process_readu (addr+2, buf, 4,
byte_order);
regcache_raw_read (regcache, reg, (gdb_byte *) & tmpu32);
tmpu32 = extract_unsigned_integer ((gdb_byte *) & tmpu32,
4, byte_order);
tmpu32 += offset;
if (record_arch_list_add_mem (tmpu32, 1))
return -1;
}
break;
case 0x38: /* ldo.s */
{
int reg = (inst >> 4) & 0xf;
if (record_arch_list_add_reg (regcache, reg))
return -1;
}
break;
case 0x39: /* sto.s */
{
int reg = (inst >> 4) & 0xf;
uint32_t offset = (uint32_t) moxie_process_readu (addr+2, buf, 4,
byte_order);
regcache_raw_read (regcache, reg, (gdb_byte *) & tmpu32);
tmpu32 = extract_unsigned_integer ((gdb_byte *) & tmpu32,
4, byte_order);
tmpu32 += offset;
if (record_arch_list_add_mem (tmpu32, 2))
return -1;
}
break;
default:
/* Do nothing. */
break;
}
}
if (record_arch_list_add_reg (regcache, MOXIE_PC_REGNUM))
return -1;
if (record_arch_list_add_end ())
return -1;
return 0;
}
/* Allocate and initialize the moxie gdbarch object. */
static struct gdbarch *
moxie_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
{
struct gdbarch *gdbarch;
struct gdbarch_tdep *tdep;
/* If there is already a candidate, use it. */
arches = gdbarch_list_lookup_by_info (arches, &info);
if (arches != NULL)
return arches->gdbarch;
/* Allocate space for the new architecture. */
tdep = XMALLOC (struct gdbarch_tdep);
gdbarch = gdbarch_alloc (&info, tdep);
set_gdbarch_read_pc (gdbarch, moxie_read_pc);
set_gdbarch_write_pc (gdbarch, moxie_write_pc);
set_gdbarch_unwind_sp (gdbarch, moxie_unwind_sp);
set_gdbarch_num_regs (gdbarch, MOXIE_NUM_REGS);
set_gdbarch_sp_regnum (gdbarch, MOXIE_SP_REGNUM);
set_gdbarch_pc_regnum (gdbarch, MOXIE_PC_REGNUM);
set_gdbarch_register_name (gdbarch, moxie_register_name);
set_gdbarch_register_type (gdbarch, moxie_register_type);
set_gdbarch_return_value (gdbarch, moxie_return_value);
set_gdbarch_skip_prologue (gdbarch, moxie_skip_prologue);
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
set_gdbarch_breakpoint_from_pc (gdbarch, moxie_breakpoint_from_pc);
set_gdbarch_frame_align (gdbarch, moxie_frame_align);
frame_base_set_default (gdbarch, &moxie_frame_base);
/* Methods for saving / extracting a dummy frame's ID. The ID's
stack address must match the SP value returned by
PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
set_gdbarch_dummy_id (gdbarch, moxie_dummy_id);
set_gdbarch_unwind_pc (gdbarch, moxie_unwind_pc);
set_gdbarch_print_insn (gdbarch, print_insn_moxie);
/* Hook in ABI-specific overrides, if they have been registered. */
gdbarch_init_osabi (info, gdbarch);
/* Hook in the default unwinders. */
frame_unwind_append_unwinder (gdbarch, &moxie_frame_unwind);
/* Support simple overlay manager. */
set_gdbarch_overlay_update (gdbarch, simple_overlay_update);
/* Support reverse debugging. */
set_gdbarch_process_record (gdbarch, moxie_process_record);
return gdbarch;
}
/* Register this machine's init routine. */
void
_initialize_moxie_tdep (void)
{
register_gdbarch_init (bfd_arch_moxie, moxie_gdbarch_init);
}