mirror of
https://github.com/darlinghq/darling-gdb.git
synced 2024-11-25 21:19:54 +00:00
2f9429aea3
void*. From Philippe De Muyter <phdm@macqel.be>: * printcmd.c (print_address_symbolic): Call `make_cleanup' with `(free_current_contents, &x)', not `(free, x)'. * utils.c (free_current_contents): Do not `free (NULL)'. * printcmd.c (print_address_symbolic): Cleanup after a failed call to build_address_symbolic.
2699 lines
73 KiB
C
2699 lines
73 KiB
C
/* Print values for GNU debugger GDB.
|
||
Copyright 1986-1991, 1993-1995, 1998, 2000 Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 59 Temple Place - Suite 330,
|
||
Boston, MA 02111-1307, USA. */
|
||
|
||
#include "defs.h"
|
||
#include "gdb_string.h"
|
||
#include "frame.h"
|
||
#include "symtab.h"
|
||
#include "gdbtypes.h"
|
||
#include "value.h"
|
||
#include "language.h"
|
||
#include "expression.h"
|
||
#include "gdbcore.h"
|
||
#include "gdbcmd.h"
|
||
#include "target.h"
|
||
#include "breakpoint.h"
|
||
#include "demangle.h"
|
||
#include "valprint.h"
|
||
#include "annotate.h"
|
||
#include "symfile.h" /* for overlay functions */
|
||
#include "objfiles.h" /* ditto */
|
||
#ifdef UI_OUT
|
||
#include "ui-out.h"
|
||
#endif
|
||
|
||
extern int asm_demangle; /* Whether to demangle syms in asm printouts */
|
||
extern int addressprint; /* Whether to print hex addresses in HLL " */
|
||
|
||
struct format_data
|
||
{
|
||
int count;
|
||
char format;
|
||
char size;
|
||
};
|
||
|
||
/* Last specified output format. */
|
||
|
||
static char last_format = 'x';
|
||
|
||
/* Last specified examination size. 'b', 'h', 'w' or `q'. */
|
||
|
||
static char last_size = 'w';
|
||
|
||
/* Default address to examine next. */
|
||
|
||
static CORE_ADDR next_address;
|
||
|
||
/* Default section to examine next. */
|
||
|
||
static asection *next_section;
|
||
|
||
/* Last address examined. */
|
||
|
||
static CORE_ADDR last_examine_address;
|
||
|
||
/* Contents of last address examined.
|
||
This is not valid past the end of the `x' command! */
|
||
|
||
static value_ptr last_examine_value;
|
||
|
||
/* Largest offset between a symbolic value and an address, that will be
|
||
printed as `0x1234 <symbol+offset>'. */
|
||
|
||
static unsigned int max_symbolic_offset = UINT_MAX;
|
||
|
||
/* Append the source filename and linenumber of the symbol when
|
||
printing a symbolic value as `<symbol at filename:linenum>' if set. */
|
||
static int print_symbol_filename = 0;
|
||
|
||
/* Number of auto-display expression currently being displayed.
|
||
So that we can disable it if we get an error or a signal within it.
|
||
-1 when not doing one. */
|
||
|
||
int current_display_number;
|
||
|
||
/* Flag to low-level print routines that this value is being printed
|
||
in an epoch window. We'd like to pass this as a parameter, but
|
||
every routine would need to take it. Perhaps we can encapsulate
|
||
this in the I/O stream once we have GNU stdio. */
|
||
|
||
int inspect_it = 0;
|
||
|
||
struct display
|
||
{
|
||
/* Chain link to next auto-display item. */
|
||
struct display *next;
|
||
/* Expression to be evaluated and displayed. */
|
||
struct expression *exp;
|
||
/* Item number of this auto-display item. */
|
||
int number;
|
||
/* Display format specified. */
|
||
struct format_data format;
|
||
/* Innermost block required by this expression when evaluated */
|
||
struct block *block;
|
||
/* Status of this display (enabled or disabled) */
|
||
enum enable status;
|
||
};
|
||
|
||
/* Chain of expressions whose values should be displayed
|
||
automatically each time the program stops. */
|
||
|
||
static struct display *display_chain;
|
||
|
||
static int display_number;
|
||
|
||
/* Prototypes for exported functions. */
|
||
|
||
void output_command PARAMS ((char *, int));
|
||
|
||
void _initialize_printcmd PARAMS ((void));
|
||
|
||
/* Prototypes for local functions. */
|
||
|
||
static void delete_display PARAMS ((int));
|
||
|
||
static void enable_display PARAMS ((char *, int));
|
||
|
||
static void disable_display_command PARAMS ((char *, int));
|
||
|
||
static void disassemble_command PARAMS ((char *, int));
|
||
|
||
static void printf_command PARAMS ((char *, int));
|
||
|
||
static void print_frame_nameless_args (struct frame_info *, long,
|
||
int, int, struct ui_file *);
|
||
|
||
static void display_info PARAMS ((char *, int));
|
||
|
||
static void do_one_display PARAMS ((struct display *));
|
||
|
||
static void undisplay_command PARAMS ((char *, int));
|
||
|
||
static void free_display PARAMS ((struct display *));
|
||
|
||
static void display_command PARAMS ((char *, int));
|
||
|
||
void x_command PARAMS ((char *, int));
|
||
|
||
static void address_info PARAMS ((char *, int));
|
||
|
||
static void set_command PARAMS ((char *, int));
|
||
|
||
static void call_command PARAMS ((char *, int));
|
||
|
||
static void inspect_command PARAMS ((char *, int));
|
||
|
||
static void print_command PARAMS ((char *, int));
|
||
|
||
static void print_command_1 PARAMS ((char *, int, int));
|
||
|
||
static void validate_format PARAMS ((struct format_data, char *));
|
||
|
||
static void do_examine PARAMS ((struct format_data, CORE_ADDR addr, asection * section));
|
||
|
||
static void print_formatted (value_ptr, int, int, struct ui_file *);
|
||
|
||
static struct format_data decode_format PARAMS ((char **, int, int));
|
||
|
||
static int print_insn (CORE_ADDR, struct ui_file *);
|
||
|
||
static void sym_info PARAMS ((char *, int));
|
||
|
||
|
||
/* Decode a format specification. *STRING_PTR should point to it.
|
||
OFORMAT and OSIZE are used as defaults for the format and size
|
||
if none are given in the format specification.
|
||
If OSIZE is zero, then the size field of the returned value
|
||
should be set only if a size is explicitly specified by the
|
||
user.
|
||
The structure returned describes all the data
|
||
found in the specification. In addition, *STRING_PTR is advanced
|
||
past the specification and past all whitespace following it. */
|
||
|
||
static struct format_data
|
||
decode_format (string_ptr, oformat, osize)
|
||
char **string_ptr;
|
||
int oformat;
|
||
int osize;
|
||
{
|
||
struct format_data val;
|
||
register char *p = *string_ptr;
|
||
|
||
val.format = '?';
|
||
val.size = '?';
|
||
val.count = 1;
|
||
|
||
if (*p >= '0' && *p <= '9')
|
||
val.count = atoi (p);
|
||
while (*p >= '0' && *p <= '9')
|
||
p++;
|
||
|
||
/* Now process size or format letters that follow. */
|
||
|
||
while (1)
|
||
{
|
||
if (*p == 'b' || *p == 'h' || *p == 'w' || *p == 'g')
|
||
val.size = *p++;
|
||
else if (*p >= 'a' && *p <= 'z')
|
||
val.format = *p++;
|
||
else
|
||
break;
|
||
}
|
||
|
||
while (*p == ' ' || *p == '\t')
|
||
p++;
|
||
*string_ptr = p;
|
||
|
||
/* Set defaults for format and size if not specified. */
|
||
if (val.format == '?')
|
||
{
|
||
if (val.size == '?')
|
||
{
|
||
/* Neither has been specified. */
|
||
val.format = oformat;
|
||
val.size = osize;
|
||
}
|
||
else
|
||
/* If a size is specified, any format makes a reasonable
|
||
default except 'i'. */
|
||
val.format = oformat == 'i' ? 'x' : oformat;
|
||
}
|
||
else if (val.size == '?')
|
||
switch (val.format)
|
||
{
|
||
case 'a':
|
||
case 's':
|
||
/* Pick the appropriate size for an address. */
|
||
if (TARGET_PTR_BIT == 64)
|
||
val.size = osize ? 'g' : osize;
|
||
else if (TARGET_PTR_BIT == 32)
|
||
val.size = osize ? 'w' : osize;
|
||
else if (TARGET_PTR_BIT == 16)
|
||
val.size = osize ? 'h' : osize;
|
||
else
|
||
/* Bad value for TARGET_PTR_BIT */
|
||
abort ();
|
||
break;
|
||
case 'f':
|
||
/* Floating point has to be word or giantword. */
|
||
if (osize == 'w' || osize == 'g')
|
||
val.size = osize;
|
||
else
|
||
/* Default it to giantword if the last used size is not
|
||
appropriate. */
|
||
val.size = osize ? 'g' : osize;
|
||
break;
|
||
case 'c':
|
||
/* Characters default to one byte. */
|
||
val.size = osize ? 'b' : osize;
|
||
break;
|
||
default:
|
||
/* The default is the size most recently specified. */
|
||
val.size = osize;
|
||
}
|
||
|
||
return val;
|
||
}
|
||
|
||
/* Print value VAL on stream according to FORMAT, a letter or 0.
|
||
Do not end with a newline.
|
||
0 means print VAL according to its own type.
|
||
SIZE is the letter for the size of datum being printed.
|
||
This is used to pad hex numbers so they line up. */
|
||
|
||
static void
|
||
print_formatted (val, format, size, stream)
|
||
register value_ptr val;
|
||
register int format;
|
||
int size;
|
||
struct ui_file *stream;
|
||
{
|
||
struct type *type = check_typedef (VALUE_TYPE (val));
|
||
int len = TYPE_LENGTH (type);
|
||
|
||
if (VALUE_LVAL (val) == lval_memory)
|
||
{
|
||
next_address = VALUE_ADDRESS (val) + len;
|
||
next_section = VALUE_BFD_SECTION (val);
|
||
}
|
||
|
||
switch (format)
|
||
{
|
||
case 's':
|
||
/* FIXME: Need to handle wchar_t's here... */
|
||
next_address = VALUE_ADDRESS (val)
|
||
+ val_print_string (VALUE_ADDRESS (val), -1, 1, stream);
|
||
next_section = VALUE_BFD_SECTION (val);
|
||
break;
|
||
|
||
case 'i':
|
||
/* The old comment says
|
||
"Force output out, print_insn not using _filtered".
|
||
I'm not completely sure what that means, I suspect most print_insn
|
||
now do use _filtered, so I guess it's obsolete.
|
||
--Yes, it does filter now, and so this is obsolete. -JB */
|
||
|
||
/* We often wrap here if there are long symbolic names. */
|
||
wrap_here (" ");
|
||
next_address = VALUE_ADDRESS (val)
|
||
+ print_insn (VALUE_ADDRESS (val), stream);
|
||
next_section = VALUE_BFD_SECTION (val);
|
||
break;
|
||
|
||
default:
|
||
if (format == 0
|
||
|| TYPE_CODE (type) == TYPE_CODE_ARRAY
|
||
|| TYPE_CODE (type) == TYPE_CODE_STRING
|
||
|| TYPE_CODE (type) == TYPE_CODE_STRUCT
|
||
|| TYPE_CODE (type) == TYPE_CODE_UNION)
|
||
/* If format is 0, use the 'natural' format for
|
||
* that type of value. If the type is non-scalar,
|
||
* we have to use language rules to print it as
|
||
* a series of scalars.
|
||
*/
|
||
value_print (val, stream, format, Val_pretty_default);
|
||
else
|
||
/* User specified format, so don't look to the
|
||
* the type to tell us what to do.
|
||
*/
|
||
print_scalar_formatted (VALUE_CONTENTS (val), type,
|
||
format, size, stream);
|
||
}
|
||
}
|
||
|
||
/* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
|
||
according to letters FORMAT and SIZE on STREAM.
|
||
FORMAT may not be zero. Formats s and i are not supported at this level.
|
||
|
||
This is how the elements of an array or structure are printed
|
||
with a format. */
|
||
|
||
void
|
||
print_scalar_formatted (valaddr, type, format, size, stream)
|
||
char *valaddr;
|
||
struct type *type;
|
||
int format;
|
||
int size;
|
||
struct ui_file *stream;
|
||
{
|
||
LONGEST val_long;
|
||
unsigned int len = TYPE_LENGTH (type);
|
||
|
||
if (len > sizeof (LONGEST)
|
||
&& (format == 't'
|
||
|| format == 'c'
|
||
|| format == 'o'
|
||
|| format == 'u'
|
||
|| format == 'd'
|
||
|| format == 'x'))
|
||
{
|
||
if (!TYPE_UNSIGNED (type)
|
||
|| !extract_long_unsigned_integer (valaddr, len, &val_long))
|
||
{
|
||
/* We can't print it normally, but we can print it in hex.
|
||
Printing it in the wrong radix is more useful than saying
|
||
"use /x, you dummy". */
|
||
/* FIXME: we could also do octal or binary if that was the
|
||
desired format. */
|
||
/* FIXME: we should be using the size field to give us a
|
||
minimum field width to print. */
|
||
|
||
if (format == 'o')
|
||
print_octal_chars (stream, valaddr, len);
|
||
else if (format == 'd')
|
||
print_decimal_chars (stream, valaddr, len);
|
||
else if (format == 't')
|
||
print_binary_chars (stream, valaddr, len);
|
||
else
|
||
/* replace with call to print_hex_chars? Looks
|
||
like val_print_type_code_int is redoing
|
||
work. - edie */
|
||
|
||
val_print_type_code_int (type, valaddr, stream);
|
||
|
||
return;
|
||
}
|
||
|
||
/* If we get here, extract_long_unsigned_integer set val_long. */
|
||
}
|
||
else if (format != 'f')
|
||
val_long = unpack_long (type, valaddr);
|
||
|
||
/* If we are printing it as unsigned, truncate it in case it is actually
|
||
a negative signed value (e.g. "print/u (short)-1" should print 65535
|
||
(if shorts are 16 bits) instead of 4294967295). */
|
||
if (format != 'd')
|
||
{
|
||
if (len < sizeof (LONGEST))
|
||
val_long &= ((LONGEST) 1 << HOST_CHAR_BIT * len) - 1;
|
||
}
|
||
|
||
switch (format)
|
||
{
|
||
case 'x':
|
||
if (!size)
|
||
{
|
||
/* no size specified, like in print. Print varying # of digits. */
|
||
print_longest (stream, 'x', 1, val_long);
|
||
}
|
||
else
|
||
switch (size)
|
||
{
|
||
case 'b':
|
||
case 'h':
|
||
case 'w':
|
||
case 'g':
|
||
print_longest (stream, size, 1, val_long);
|
||
break;
|
||
default:
|
||
error ("Undefined output size \"%c\".", size);
|
||
}
|
||
break;
|
||
|
||
case 'd':
|
||
print_longest (stream, 'd', 1, val_long);
|
||
break;
|
||
|
||
case 'u':
|
||
print_longest (stream, 'u', 0, val_long);
|
||
break;
|
||
|
||
case 'o':
|
||
if (val_long)
|
||
print_longest (stream, 'o', 1, val_long);
|
||
else
|
||
fprintf_filtered (stream, "0");
|
||
break;
|
||
|
||
case 'a':
|
||
{
|
||
/* Truncate address to the size of a target pointer, avoiding
|
||
shifts larger or equal than the width of a CORE_ADDR. The
|
||
local variable PTR_BIT stops the compiler reporting a shift
|
||
overflow when it won't occure. */
|
||
CORE_ADDR addr = unpack_pointer (type, valaddr);
|
||
int ptr_bit = TARGET_PTR_BIT;
|
||
if (ptr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
|
||
addr &= ((CORE_ADDR) 1 << ptr_bit) - 1;
|
||
print_address (addr, stream);
|
||
}
|
||
break;
|
||
|
||
case 'c':
|
||
value_print (value_from_longest (builtin_type_true_char, val_long),
|
||
stream, 0, Val_pretty_default);
|
||
break;
|
||
|
||
case 'f':
|
||
if (len == sizeof (float))
|
||
type = builtin_type_float;
|
||
else if (len == sizeof (double))
|
||
type = builtin_type_double;
|
||
print_floating (valaddr, type, stream);
|
||
break;
|
||
|
||
case 0:
|
||
abort ();
|
||
|
||
case 't':
|
||
/* Binary; 't' stands for "two". */
|
||
{
|
||
char bits[8 * (sizeof val_long) + 1];
|
||
char buf[8 * (sizeof val_long) + 32];
|
||
char *cp = bits;
|
||
int width;
|
||
|
||
if (!size)
|
||
width = 8 * (sizeof val_long);
|
||
else
|
||
switch (size)
|
||
{
|
||
case 'b':
|
||
width = 8;
|
||
break;
|
||
case 'h':
|
||
width = 16;
|
||
break;
|
||
case 'w':
|
||
width = 32;
|
||
break;
|
||
case 'g':
|
||
width = 64;
|
||
break;
|
||
default:
|
||
error ("Undefined output size \"%c\".", size);
|
||
}
|
||
|
||
bits[width] = '\0';
|
||
while (width-- > 0)
|
||
{
|
||
bits[width] = (val_long & 1) ? '1' : '0';
|
||
val_long >>= 1;
|
||
}
|
||
if (!size)
|
||
{
|
||
while (*cp && *cp == '0')
|
||
cp++;
|
||
if (*cp == '\0')
|
||
cp--;
|
||
}
|
||
strcpy (buf, local_binary_format_prefix ());
|
||
strcat (buf, cp);
|
||
strcat (buf, local_binary_format_suffix ());
|
||
fprintf_filtered (stream, buf);
|
||
}
|
||
break;
|
||
|
||
default:
|
||
error ("Undefined output format \"%c\".", format);
|
||
}
|
||
}
|
||
|
||
/* Specify default address for `x' command.
|
||
`info lines' uses this. */
|
||
|
||
void
|
||
set_next_address (addr)
|
||
CORE_ADDR addr;
|
||
{
|
||
next_address = addr;
|
||
|
||
/* Make address available to the user as $_. */
|
||
set_internalvar (lookup_internalvar ("_"),
|
||
value_from_pointer (lookup_pointer_type (builtin_type_void),
|
||
addr));
|
||
}
|
||
|
||
/* Optionally print address ADDR symbolically as <SYMBOL+OFFSET> on STREAM,
|
||
after LEADIN. Print nothing if no symbolic name is found nearby.
|
||
Optionally also print source file and line number, if available.
|
||
DO_DEMANGLE controls whether to print a symbol in its native "raw" form,
|
||
or to interpret it as a possible C++ name and convert it back to source
|
||
form. However note that DO_DEMANGLE can be overridden by the specific
|
||
settings of the demangle and asm_demangle variables. */
|
||
|
||
void
|
||
print_address_symbolic (addr, stream, do_demangle, leadin)
|
||
CORE_ADDR addr;
|
||
struct ui_file *stream;
|
||
int do_demangle;
|
||
char *leadin;
|
||
{
|
||
char *name = NULL;
|
||
char *filename = NULL;
|
||
int unmapped = 0;
|
||
int offset = 0;
|
||
int line = 0;
|
||
|
||
/* throw away both name and filename */
|
||
struct cleanup *cleanup_chain = make_cleanup (free_current_contents, &name);
|
||
make_cleanup (free_current_contents, &filename);
|
||
|
||
if (build_address_symbolic (addr, do_demangle, &name, &offset, &filename, &line, &unmapped))
|
||
{
|
||
do_cleanups (cleanup_chain);
|
||
return;
|
||
}
|
||
|
||
fputs_filtered (leadin, stream);
|
||
if (unmapped)
|
||
fputs_filtered ("<*", stream);
|
||
else
|
||
fputs_filtered ("<", stream);
|
||
fputs_filtered (name, stream);
|
||
if (offset != 0)
|
||
fprintf_filtered (stream, "+%u", (unsigned int) offset);
|
||
|
||
/* Append source filename and line number if desired. Give specific
|
||
line # of this addr, if we have it; else line # of the nearest symbol. */
|
||
if (print_symbol_filename && filename != NULL)
|
||
{
|
||
if (line != -1)
|
||
fprintf_filtered (stream, " at %s:%d", filename, line);
|
||
else
|
||
fprintf_filtered (stream, " in %s", filename);
|
||
}
|
||
if (unmapped)
|
||
fputs_filtered ("*>", stream);
|
||
else
|
||
fputs_filtered (">", stream);
|
||
|
||
do_cleanups (cleanup_chain);
|
||
}
|
||
|
||
/* Given an address ADDR return all the elements needed to print the
|
||
address in a symbolic form. NAME can be mangled or not depending
|
||
on DO_DEMANGLE (and also on the asm_demangle global variable,
|
||
manipulated via ''set print asm-demangle''). Return 0 in case of
|
||
success, when all the info in the OUT paramters is valid. Return 1
|
||
otherwise. */
|
||
int
|
||
build_address_symbolic (CORE_ADDR addr, /* IN */
|
||
int do_demangle, /* IN */
|
||
char **name, /* OUT */
|
||
int *offset, /* OUT */
|
||
char **filename, /* OUT */
|
||
int *line, /* OUT */
|
||
int *unmapped) /* OUT */
|
||
{
|
||
struct minimal_symbol *msymbol;
|
||
struct symbol *symbol;
|
||
struct symtab *symtab = 0;
|
||
CORE_ADDR name_location = 0;
|
||
asection *section = 0;
|
||
char *name_temp = "";
|
||
|
||
/* Let's say it is unmapped. */
|
||
*unmapped = 0;
|
||
|
||
/* Determine if the address is in an overlay, and whether it is
|
||
mapped. */
|
||
if (overlay_debugging)
|
||
{
|
||
section = find_pc_overlay (addr);
|
||
if (pc_in_unmapped_range (addr, section))
|
||
{
|
||
*unmapped = 1;
|
||
addr = overlay_mapped_address (addr, section);
|
||
}
|
||
}
|
||
|
||
/* On some targets, add in extra "flag" bits to PC for
|
||
disassembly. This should ensure that "rounding errors" in
|
||
symbol addresses that are masked for disassembly favour the
|
||
the correct symbol. */
|
||
|
||
#ifdef GDB_TARGET_UNMASK_DISAS_PC
|
||
addr = GDB_TARGET_UNMASK_DISAS_PC (addr);
|
||
#endif
|
||
|
||
/* First try to find the address in the symbol table, then
|
||
in the minsyms. Take the closest one. */
|
||
|
||
/* This is defective in the sense that it only finds text symbols. So
|
||
really this is kind of pointless--we should make sure that the
|
||
minimal symbols have everything we need (by changing that we could
|
||
save some memory, but for many debug format--ELF/DWARF or
|
||
anything/stabs--it would be inconvenient to eliminate those minimal
|
||
symbols anyway). */
|
||
msymbol = lookup_minimal_symbol_by_pc_section (addr, section);
|
||
symbol = find_pc_sect_function (addr, section);
|
||
|
||
if (symbol)
|
||
{
|
||
name_location = BLOCK_START (SYMBOL_BLOCK_VALUE (symbol));
|
||
if (do_demangle)
|
||
name_temp = SYMBOL_SOURCE_NAME (symbol);
|
||
else
|
||
name_temp = SYMBOL_LINKAGE_NAME (symbol);
|
||
}
|
||
|
||
if (msymbol != NULL)
|
||
{
|
||
if (SYMBOL_VALUE_ADDRESS (msymbol) > name_location || symbol == NULL)
|
||
{
|
||
/* The msymbol is closer to the address than the symbol;
|
||
use the msymbol instead. */
|
||
symbol = 0;
|
||
symtab = 0;
|
||
name_location = SYMBOL_VALUE_ADDRESS (msymbol);
|
||
if (do_demangle)
|
||
name_temp = SYMBOL_SOURCE_NAME (msymbol);
|
||
else
|
||
name_temp = SYMBOL_LINKAGE_NAME (msymbol);
|
||
}
|
||
}
|
||
if (symbol == NULL && msymbol == NULL)
|
||
return 1;
|
||
|
||
/* On some targets, mask out extra "flag" bits from PC for handsome
|
||
disassembly. */
|
||
|
||
#ifdef GDB_TARGET_MASK_DISAS_PC
|
||
name_location = GDB_TARGET_MASK_DISAS_PC (name_location);
|
||
addr = GDB_TARGET_MASK_DISAS_PC (addr);
|
||
#endif
|
||
|
||
/* If the nearest symbol is too far away, don't print anything symbolic. */
|
||
|
||
/* For when CORE_ADDR is larger than unsigned int, we do math in
|
||
CORE_ADDR. But when we detect unsigned wraparound in the
|
||
CORE_ADDR math, we ignore this test and print the offset,
|
||
because addr+max_symbolic_offset has wrapped through the end
|
||
of the address space back to the beginning, giving bogus comparison. */
|
||
if (addr > name_location + max_symbolic_offset
|
||
&& name_location + max_symbolic_offset > name_location)
|
||
return 1;
|
||
|
||
*offset = addr - name_location;
|
||
|
||
*name = xstrdup (name_temp);
|
||
|
||
if (print_symbol_filename)
|
||
{
|
||
struct symtab_and_line sal;
|
||
|
||
sal = find_pc_sect_line (addr, section, 0);
|
||
|
||
if (sal.symtab)
|
||
{
|
||
*filename = xstrdup (sal.symtab->filename);
|
||
*line = sal.line;
|
||
}
|
||
else if (symtab && symbol && symbol->line)
|
||
{
|
||
*filename = xstrdup (symtab->filename);
|
||
*line = symbol->line;
|
||
}
|
||
else if (symtab)
|
||
{
|
||
*filename = xstrdup (symtab->filename);
|
||
*line = -1;
|
||
}
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* Print address ADDR on STREAM. USE_LOCAL means the same thing as for
|
||
print_longest. */
|
||
void
|
||
print_address_numeric (addr, use_local, stream)
|
||
CORE_ADDR addr;
|
||
int use_local;
|
||
struct ui_file *stream;
|
||
{
|
||
/* This assumes a CORE_ADDR can fit in a LONGEST. Probably a safe
|
||
assumption. */
|
||
print_longest (stream, 'x', use_local, (ULONGEST) addr);
|
||
}
|
||
|
||
/* Print address ADDR symbolically on STREAM.
|
||
First print it as a number. Then perhaps print
|
||
<SYMBOL + OFFSET> after the number. */
|
||
|
||
void
|
||
print_address (addr, stream)
|
||
CORE_ADDR addr;
|
||
struct ui_file *stream;
|
||
{
|
||
print_address_numeric (addr, 1, stream);
|
||
print_address_symbolic (addr, stream, asm_demangle, " ");
|
||
}
|
||
|
||
/* Print address ADDR symbolically on STREAM. Parameter DEMANGLE
|
||
controls whether to print the symbolic name "raw" or demangled.
|
||
Global setting "addressprint" controls whether to print hex address
|
||
or not. */
|
||
|
||
void
|
||
print_address_demangle (addr, stream, do_demangle)
|
||
CORE_ADDR addr;
|
||
struct ui_file *stream;
|
||
int do_demangle;
|
||
{
|
||
if (addr == 0)
|
||
{
|
||
fprintf_filtered (stream, "0");
|
||
}
|
||
else if (addressprint)
|
||
{
|
||
print_address_numeric (addr, 1, stream);
|
||
print_address_symbolic (addr, stream, do_demangle, " ");
|
||
}
|
||
else
|
||
{
|
||
print_address_symbolic (addr, stream, do_demangle, "");
|
||
}
|
||
}
|
||
|
||
|
||
/* These are the types that $__ will get after an examine command of one
|
||
of these sizes. */
|
||
|
||
static struct type *examine_i_type;
|
||
|
||
static struct type *examine_b_type;
|
||
static struct type *examine_h_type;
|
||
static struct type *examine_w_type;
|
||
static struct type *examine_g_type;
|
||
|
||
/* Examine data at address ADDR in format FMT.
|
||
Fetch it from memory and print on gdb_stdout. */
|
||
|
||
static void
|
||
do_examine (fmt, addr, sect)
|
||
struct format_data fmt;
|
||
CORE_ADDR addr;
|
||
asection *sect;
|
||
{
|
||
register char format = 0;
|
||
register char size;
|
||
register int count = 1;
|
||
struct type *val_type = NULL;
|
||
register int i;
|
||
register int maxelts;
|
||
|
||
format = fmt.format;
|
||
size = fmt.size;
|
||
count = fmt.count;
|
||
next_address = addr;
|
||
next_section = sect;
|
||
|
||
/* String or instruction format implies fetch single bytes
|
||
regardless of the specified size. */
|
||
if (format == 's' || format == 'i')
|
||
size = 'b';
|
||
|
||
if (format == 'i')
|
||
val_type = examine_i_type;
|
||
else if (size == 'b')
|
||
val_type = examine_b_type;
|
||
else if (size == 'h')
|
||
val_type = examine_h_type;
|
||
else if (size == 'w')
|
||
val_type = examine_w_type;
|
||
else if (size == 'g')
|
||
val_type = examine_g_type;
|
||
|
||
maxelts = 8;
|
||
if (size == 'w')
|
||
maxelts = 4;
|
||
if (size == 'g')
|
||
maxelts = 2;
|
||
if (format == 's' || format == 'i')
|
||
maxelts = 1;
|
||
|
||
/* Print as many objects as specified in COUNT, at most maxelts per line,
|
||
with the address of the next one at the start of each line. */
|
||
|
||
while (count > 0)
|
||
{
|
||
QUIT;
|
||
print_address (next_address, gdb_stdout);
|
||
printf_filtered (":");
|
||
for (i = maxelts;
|
||
i > 0 && count > 0;
|
||
i--, count--)
|
||
{
|
||
printf_filtered ("\t");
|
||
/* Note that print_formatted sets next_address for the next
|
||
object. */
|
||
last_examine_address = next_address;
|
||
|
||
if (last_examine_value)
|
||
value_free (last_examine_value);
|
||
|
||
/* The value to be displayed is not fetched greedily.
|
||
Instead, to avoid the posibility of a fetched value not
|
||
being used, its retreval is delayed until the print code
|
||
uses it. When examining an instruction stream, the
|
||
disassembler will perform its own memory fetch using just
|
||
the address stored in LAST_EXAMINE_VALUE. FIXME: Should
|
||
the disassembler be modified so that LAST_EXAMINE_VALUE
|
||
is left with the byte sequence from the last complete
|
||
instruction fetched from memory? */
|
||
last_examine_value = value_at_lazy (val_type, next_address, sect);
|
||
|
||
if (last_examine_value)
|
||
release_value (last_examine_value);
|
||
|
||
print_formatted (last_examine_value, format, size, gdb_stdout);
|
||
}
|
||
printf_filtered ("\n");
|
||
gdb_flush (gdb_stdout);
|
||
}
|
||
}
|
||
|
||
static void
|
||
validate_format (fmt, cmdname)
|
||
struct format_data fmt;
|
||
char *cmdname;
|
||
{
|
||
if (fmt.size != 0)
|
||
error ("Size letters are meaningless in \"%s\" command.", cmdname);
|
||
if (fmt.count != 1)
|
||
error ("Item count other than 1 is meaningless in \"%s\" command.",
|
||
cmdname);
|
||
if (fmt.format == 'i' || fmt.format == 's')
|
||
error ("Format letter \"%c\" is meaningless in \"%s\" command.",
|
||
fmt.format, cmdname);
|
||
}
|
||
|
||
/* Evaluate string EXP as an expression in the current language and
|
||
print the resulting value. EXP may contain a format specifier as the
|
||
first argument ("/x myvar" for example, to print myvar in hex).
|
||
*/
|
||
|
||
static void
|
||
print_command_1 (exp, inspect, voidprint)
|
||
char *exp;
|
||
int inspect;
|
||
int voidprint;
|
||
{
|
||
struct expression *expr;
|
||
register struct cleanup *old_chain = 0;
|
||
register char format = 0;
|
||
register value_ptr val;
|
||
struct format_data fmt;
|
||
int cleanup = 0;
|
||
|
||
/* Pass inspect flag to the rest of the print routines in a global (sigh). */
|
||
inspect_it = inspect;
|
||
|
||
if (exp && *exp == '/')
|
||
{
|
||
exp++;
|
||
fmt = decode_format (&exp, last_format, 0);
|
||
validate_format (fmt, "print");
|
||
last_format = format = fmt.format;
|
||
}
|
||
else
|
||
{
|
||
fmt.count = 1;
|
||
fmt.format = 0;
|
||
fmt.size = 0;
|
||
}
|
||
|
||
if (exp && *exp)
|
||
{
|
||
struct type *type;
|
||
expr = parse_expression (exp);
|
||
old_chain = make_cleanup ((make_cleanup_func) free_current_contents,
|
||
&expr);
|
||
cleanup = 1;
|
||
val = evaluate_expression (expr);
|
||
|
||
/* C++: figure out what type we actually want to print it as. */
|
||
type = VALUE_TYPE (val);
|
||
|
||
if (objectprint
|
||
&& (TYPE_CODE (type) == TYPE_CODE_PTR
|
||
|| TYPE_CODE (type) == TYPE_CODE_REF)
|
||
&& (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_STRUCT
|
||
|| TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_UNION))
|
||
{
|
||
value_ptr v;
|
||
|
||
v = value_from_vtable_info (val, TYPE_TARGET_TYPE (type));
|
||
if (v != 0)
|
||
{
|
||
val = v;
|
||
type = VALUE_TYPE (val);
|
||
}
|
||
}
|
||
}
|
||
else
|
||
val = access_value_history (0);
|
||
|
||
if (voidprint || (val && VALUE_TYPE (val) &&
|
||
TYPE_CODE (VALUE_TYPE (val)) != TYPE_CODE_VOID))
|
||
{
|
||
int histindex = record_latest_value (val);
|
||
|
||
if (histindex >= 0)
|
||
annotate_value_history_begin (histindex, VALUE_TYPE (val));
|
||
else
|
||
annotate_value_begin (VALUE_TYPE (val));
|
||
|
||
if (inspect)
|
||
printf_unfiltered ("\031(gdb-makebuffer \"%s\" %d '(\"", exp, histindex);
|
||
else if (histindex >= 0)
|
||
printf_filtered ("$%d = ", histindex);
|
||
|
||
if (histindex >= 0)
|
||
annotate_value_history_value ();
|
||
|
||
print_formatted (val, format, fmt.size, gdb_stdout);
|
||
printf_filtered ("\n");
|
||
|
||
if (histindex >= 0)
|
||
annotate_value_history_end ();
|
||
else
|
||
annotate_value_end ();
|
||
|
||
if (inspect)
|
||
printf_unfiltered ("\") )\030");
|
||
}
|
||
|
||
if (cleanup)
|
||
do_cleanups (old_chain);
|
||
inspect_it = 0; /* Reset print routines to normal */
|
||
}
|
||
|
||
/* ARGSUSED */
|
||
static void
|
||
print_command (exp, from_tty)
|
||
char *exp;
|
||
int from_tty;
|
||
{
|
||
print_command_1 (exp, 0, 1);
|
||
}
|
||
|
||
/* Same as print, except in epoch, it gets its own window */
|
||
/* ARGSUSED */
|
||
static void
|
||
inspect_command (exp, from_tty)
|
||
char *exp;
|
||
int from_tty;
|
||
{
|
||
extern int epoch_interface;
|
||
|
||
print_command_1 (exp, epoch_interface, 1);
|
||
}
|
||
|
||
/* Same as print, except it doesn't print void results. */
|
||
/* ARGSUSED */
|
||
static void
|
||
call_command (exp, from_tty)
|
||
char *exp;
|
||
int from_tty;
|
||
{
|
||
print_command_1 (exp, 0, 0);
|
||
}
|
||
|
||
/* ARGSUSED */
|
||
void
|
||
output_command (exp, from_tty)
|
||
char *exp;
|
||
int from_tty;
|
||
{
|
||
struct expression *expr;
|
||
register struct cleanup *old_chain;
|
||
register char format = 0;
|
||
register value_ptr val;
|
||
struct format_data fmt;
|
||
|
||
if (exp && *exp == '/')
|
||
{
|
||
exp++;
|
||
fmt = decode_format (&exp, 0, 0);
|
||
validate_format (fmt, "output");
|
||
format = fmt.format;
|
||
}
|
||
|
||
expr = parse_expression (exp);
|
||
old_chain = make_cleanup ((make_cleanup_func) free_current_contents, &expr);
|
||
|
||
val = evaluate_expression (expr);
|
||
|
||
annotate_value_begin (VALUE_TYPE (val));
|
||
|
||
print_formatted (val, format, fmt.size, gdb_stdout);
|
||
|
||
annotate_value_end ();
|
||
|
||
wrap_here ("");
|
||
gdb_flush (gdb_stdout);
|
||
|
||
do_cleanups (old_chain);
|
||
}
|
||
|
||
/* ARGSUSED */
|
||
static void
|
||
set_command (exp, from_tty)
|
||
char *exp;
|
||
int from_tty;
|
||
{
|
||
struct expression *expr = parse_expression (exp);
|
||
register struct cleanup *old_chain
|
||
= make_cleanup ((make_cleanup_func) free_current_contents, &expr);
|
||
evaluate_expression (expr);
|
||
do_cleanups (old_chain);
|
||
}
|
||
|
||
/* ARGSUSED */
|
||
static void
|
||
sym_info (arg, from_tty)
|
||
char *arg;
|
||
int from_tty;
|
||
{
|
||
struct minimal_symbol *msymbol;
|
||
struct objfile *objfile;
|
||
struct obj_section *osect;
|
||
asection *sect;
|
||
CORE_ADDR addr, sect_addr;
|
||
int matches = 0;
|
||
unsigned int offset;
|
||
|
||
if (!arg)
|
||
error_no_arg ("address");
|
||
|
||
addr = parse_and_eval_address (arg);
|
||
ALL_OBJSECTIONS (objfile, osect)
|
||
{
|
||
sect = osect->the_bfd_section;
|
||
sect_addr = overlay_mapped_address (addr, sect);
|
||
|
||
if (osect->addr <= sect_addr && sect_addr < osect->endaddr &&
|
||
(msymbol = lookup_minimal_symbol_by_pc_section (sect_addr, sect)))
|
||
{
|
||
matches = 1;
|
||
offset = sect_addr - SYMBOL_VALUE_ADDRESS (msymbol);
|
||
if (offset)
|
||
printf_filtered ("%s + %u in ",
|
||
SYMBOL_SOURCE_NAME (msymbol), offset);
|
||
else
|
||
printf_filtered ("%s in ",
|
||
SYMBOL_SOURCE_NAME (msymbol));
|
||
if (pc_in_unmapped_range (addr, sect))
|
||
printf_filtered ("load address range of ");
|
||
if (section_is_overlay (sect))
|
||
printf_filtered ("%s overlay ",
|
||
section_is_mapped (sect) ? "mapped" : "unmapped");
|
||
printf_filtered ("section %s", sect->name);
|
||
printf_filtered ("\n");
|
||
}
|
||
}
|
||
if (matches == 0)
|
||
printf_filtered ("No symbol matches %s.\n", arg);
|
||
}
|
||
|
||
/* ARGSUSED */
|
||
static void
|
||
address_info (exp, from_tty)
|
||
char *exp;
|
||
int from_tty;
|
||
{
|
||
register struct symbol *sym;
|
||
register struct minimal_symbol *msymbol;
|
||
register long val;
|
||
register long basereg;
|
||
asection *section;
|
||
CORE_ADDR load_addr;
|
||
int is_a_field_of_this; /* C++: lookup_symbol sets this to nonzero
|
||
if exp is a field of `this'. */
|
||
|
||
if (exp == 0)
|
||
error ("Argument required.");
|
||
|
||
sym = lookup_symbol (exp, get_selected_block (), VAR_NAMESPACE,
|
||
&is_a_field_of_this, (struct symtab **) NULL);
|
||
if (sym == NULL)
|
||
{
|
||
if (is_a_field_of_this)
|
||
{
|
||
printf_filtered ("Symbol \"");
|
||
fprintf_symbol_filtered (gdb_stdout, exp,
|
||
current_language->la_language, DMGL_ANSI);
|
||
printf_filtered ("\" is a field of the local class variable `this'\n");
|
||
return;
|
||
}
|
||
|
||
msymbol = lookup_minimal_symbol (exp, NULL, NULL);
|
||
|
||
if (msymbol != NULL)
|
||
{
|
||
load_addr = SYMBOL_VALUE_ADDRESS (msymbol);
|
||
|
||
printf_filtered ("Symbol \"");
|
||
fprintf_symbol_filtered (gdb_stdout, exp,
|
||
current_language->la_language, DMGL_ANSI);
|
||
printf_filtered ("\" is at ");
|
||
print_address_numeric (load_addr, 1, gdb_stdout);
|
||
printf_filtered (" in a file compiled without debugging");
|
||
section = SYMBOL_BFD_SECTION (msymbol);
|
||
if (section_is_overlay (section))
|
||
{
|
||
load_addr = overlay_unmapped_address (load_addr, section);
|
||
printf_filtered (",\n -- loaded at ");
|
||
print_address_numeric (load_addr, 1, gdb_stdout);
|
||
printf_filtered (" in overlay section %s", section->name);
|
||
}
|
||
printf_filtered (".\n");
|
||
}
|
||
else
|
||
error ("No symbol \"%s\" in current context.", exp);
|
||
return;
|
||
}
|
||
|
||
printf_filtered ("Symbol \"");
|
||
fprintf_symbol_filtered (gdb_stdout, SYMBOL_NAME (sym),
|
||
current_language->la_language, DMGL_ANSI);
|
||
printf_filtered ("\" is ");
|
||
val = SYMBOL_VALUE (sym);
|
||
basereg = SYMBOL_BASEREG (sym);
|
||
section = SYMBOL_BFD_SECTION (sym);
|
||
|
||
switch (SYMBOL_CLASS (sym))
|
||
{
|
||
case LOC_CONST:
|
||
case LOC_CONST_BYTES:
|
||
printf_filtered ("constant");
|
||
break;
|
||
|
||
case LOC_LABEL:
|
||
printf_filtered ("a label at address ");
|
||
print_address_numeric (load_addr = SYMBOL_VALUE_ADDRESS (sym),
|
||
1, gdb_stdout);
|
||
if (section_is_overlay (section))
|
||
{
|
||
load_addr = overlay_unmapped_address (load_addr, section);
|
||
printf_filtered (",\n -- loaded at ");
|
||
print_address_numeric (load_addr, 1, gdb_stdout);
|
||
printf_filtered (" in overlay section %s", section->name);
|
||
}
|
||
break;
|
||
|
||
case LOC_REGISTER:
|
||
printf_filtered ("a variable in register %s", REGISTER_NAME (val));
|
||
break;
|
||
|
||
case LOC_STATIC:
|
||
printf_filtered ("static storage at address ");
|
||
print_address_numeric (load_addr = SYMBOL_VALUE_ADDRESS (sym),
|
||
1, gdb_stdout);
|
||
if (section_is_overlay (section))
|
||
{
|
||
load_addr = overlay_unmapped_address (load_addr, section);
|
||
printf_filtered (",\n -- loaded at ");
|
||
print_address_numeric (load_addr, 1, gdb_stdout);
|
||
printf_filtered (" in overlay section %s", section->name);
|
||
}
|
||
break;
|
||
|
||
case LOC_INDIRECT:
|
||
printf_filtered ("external global (indirect addressing), at address *(");
|
||
print_address_numeric (load_addr = SYMBOL_VALUE_ADDRESS (sym),
|
||
1, gdb_stdout);
|
||
printf_filtered (")");
|
||
if (section_is_overlay (section))
|
||
{
|
||
load_addr = overlay_unmapped_address (load_addr, section);
|
||
printf_filtered (",\n -- loaded at ");
|
||
print_address_numeric (load_addr, 1, gdb_stdout);
|
||
printf_filtered (" in overlay section %s", section->name);
|
||
}
|
||
break;
|
||
|
||
case LOC_REGPARM:
|
||
printf_filtered ("an argument in register %s", REGISTER_NAME (val));
|
||
break;
|
||
|
||
case LOC_REGPARM_ADDR:
|
||
printf_filtered ("address of an argument in register %s", REGISTER_NAME (val));
|
||
break;
|
||
|
||
case LOC_ARG:
|
||
printf_filtered ("an argument at offset %ld", val);
|
||
break;
|
||
|
||
case LOC_LOCAL_ARG:
|
||
printf_filtered ("an argument at frame offset %ld", val);
|
||
break;
|
||
|
||
case LOC_LOCAL:
|
||
printf_filtered ("a local variable at frame offset %ld", val);
|
||
break;
|
||
|
||
case LOC_REF_ARG:
|
||
printf_filtered ("a reference argument at offset %ld", val);
|
||
break;
|
||
|
||
case LOC_BASEREG:
|
||
printf_filtered ("a variable at offset %ld from register %s",
|
||
val, REGISTER_NAME (basereg));
|
||
break;
|
||
|
||
case LOC_BASEREG_ARG:
|
||
printf_filtered ("an argument at offset %ld from register %s",
|
||
val, REGISTER_NAME (basereg));
|
||
break;
|
||
|
||
case LOC_TYPEDEF:
|
||
printf_filtered ("a typedef");
|
||
break;
|
||
|
||
case LOC_BLOCK:
|
||
printf_filtered ("a function at address ");
|
||
#ifdef GDB_TARGET_MASK_DISAS_PC
|
||
print_address_numeric
|
||
(load_addr = GDB_TARGET_MASK_DISAS_PC (BLOCK_START (SYMBOL_BLOCK_VALUE (sym))),
|
||
1, gdb_stdout);
|
||
#else
|
||
print_address_numeric (load_addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
|
||
1, gdb_stdout);
|
||
#endif
|
||
if (section_is_overlay (section))
|
||
{
|
||
load_addr = overlay_unmapped_address (load_addr, section);
|
||
printf_filtered (",\n -- loaded at ");
|
||
print_address_numeric (load_addr, 1, gdb_stdout);
|
||
printf_filtered (" in overlay section %s", section->name);
|
||
}
|
||
break;
|
||
|
||
case LOC_UNRESOLVED:
|
||
{
|
||
struct minimal_symbol *msym;
|
||
|
||
msym = lookup_minimal_symbol (SYMBOL_NAME (sym), NULL, NULL);
|
||
if (msym == NULL)
|
||
printf_filtered ("unresolved");
|
||
else
|
||
{
|
||
section = SYMBOL_BFD_SECTION (msym);
|
||
printf_filtered ("static storage at address ");
|
||
print_address_numeric (load_addr = SYMBOL_VALUE_ADDRESS (msym),
|
||
1, gdb_stdout);
|
||
if (section_is_overlay (section))
|
||
{
|
||
load_addr = overlay_unmapped_address (load_addr, section);
|
||
printf_filtered (",\n -- loaded at ");
|
||
print_address_numeric (load_addr, 1, gdb_stdout);
|
||
printf_filtered (" in overlay section %s", section->name);
|
||
}
|
||
}
|
||
}
|
||
break;
|
||
|
||
case LOC_THREAD_LOCAL_STATIC:
|
||
printf_filtered (
|
||
"a thread-local variable at offset %ld from the thread base register %s",
|
||
val, REGISTER_NAME (basereg));
|
||
break;
|
||
|
||
case LOC_OPTIMIZED_OUT:
|
||
printf_filtered ("optimized out");
|
||
break;
|
||
|
||
default:
|
||
printf_filtered ("of unknown (botched) type");
|
||
break;
|
||
}
|
||
printf_filtered (".\n");
|
||
}
|
||
|
||
void
|
||
x_command (exp, from_tty)
|
||
char *exp;
|
||
int from_tty;
|
||
{
|
||
struct expression *expr;
|
||
struct format_data fmt;
|
||
struct cleanup *old_chain;
|
||
struct value *val;
|
||
|
||
fmt.format = last_format;
|
||
fmt.size = last_size;
|
||
fmt.count = 1;
|
||
|
||
if (exp && *exp == '/')
|
||
{
|
||
exp++;
|
||
fmt = decode_format (&exp, last_format, last_size);
|
||
}
|
||
|
||
/* If we have an expression, evaluate it and use it as the address. */
|
||
|
||
if (exp != 0 && *exp != 0)
|
||
{
|
||
expr = parse_expression (exp);
|
||
/* Cause expression not to be there any more
|
||
if this command is repeated with Newline.
|
||
But don't clobber a user-defined command's definition. */
|
||
if (from_tty)
|
||
*exp = 0;
|
||
old_chain = make_cleanup ((make_cleanup_func) free_current_contents,
|
||
&expr);
|
||
val = evaluate_expression (expr);
|
||
if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_REF)
|
||
val = value_ind (val);
|
||
/* In rvalue contexts, such as this, functions are coerced into
|
||
pointers to functions. This makes "x/i main" work. */
|
||
if ( /* last_format == 'i'
|
||
&& */ TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC
|
||
&& VALUE_LVAL (val) == lval_memory)
|
||
next_address = VALUE_ADDRESS (val);
|
||
else
|
||
next_address = value_as_pointer (val);
|
||
if (VALUE_BFD_SECTION (val))
|
||
next_section = VALUE_BFD_SECTION (val);
|
||
do_cleanups (old_chain);
|
||
}
|
||
|
||
do_examine (fmt, next_address, next_section);
|
||
|
||
/* If the examine succeeds, we remember its size and format for next time. */
|
||
last_size = fmt.size;
|
||
last_format = fmt.format;
|
||
|
||
/* Set a couple of internal variables if appropriate. */
|
||
if (last_examine_value)
|
||
{
|
||
/* Make last address examined available to the user as $_. Use
|
||
the correct pointer type. */
|
||
struct type *pointer_type
|
||
= lookup_pointer_type (VALUE_TYPE (last_examine_value));
|
||
set_internalvar (lookup_internalvar ("_"),
|
||
value_from_pointer (pointer_type,
|
||
last_examine_address));
|
||
|
||
/* Make contents of last address examined available to the user as $__. */
|
||
/* If the last value has not been fetched from memory then don't
|
||
fetch it now - instead mark it by voiding the $__ variable. */
|
||
if (VALUE_LAZY (last_examine_value))
|
||
set_internalvar (lookup_internalvar ("__"),
|
||
allocate_value (builtin_type_void));
|
||
else
|
||
set_internalvar (lookup_internalvar ("__"), last_examine_value);
|
||
}
|
||
}
|
||
|
||
|
||
/* Add an expression to the auto-display chain.
|
||
Specify the expression. */
|
||
|
||
static void
|
||
display_command (exp, from_tty)
|
||
char *exp;
|
||
int from_tty;
|
||
{
|
||
struct format_data fmt;
|
||
register struct expression *expr;
|
||
register struct display *new;
|
||
int display_it = 1;
|
||
|
||
#if defined(TUI)
|
||
if (tui_version && *exp == '$')
|
||
display_it = ((TuiStatus) tuiDo (
|
||
(TuiOpaqueFuncPtr) tui_vSetLayoutTo, exp) == TUI_FAILURE);
|
||
#endif
|
||
|
||
if (display_it)
|
||
{
|
||
if (exp == 0)
|
||
{
|
||
do_displays ();
|
||
return;
|
||
}
|
||
|
||
if (*exp == '/')
|
||
{
|
||
exp++;
|
||
fmt = decode_format (&exp, 0, 0);
|
||
if (fmt.size && fmt.format == 0)
|
||
fmt.format = 'x';
|
||
if (fmt.format == 'i' || fmt.format == 's')
|
||
fmt.size = 'b';
|
||
}
|
||
else
|
||
{
|
||
fmt.format = 0;
|
||
fmt.size = 0;
|
||
fmt.count = 0;
|
||
}
|
||
|
||
innermost_block = 0;
|
||
expr = parse_expression (exp);
|
||
|
||
new = (struct display *) xmalloc (sizeof (struct display));
|
||
|
||
new->exp = expr;
|
||
new->block = innermost_block;
|
||
new->next = display_chain;
|
||
new->number = ++display_number;
|
||
new->format = fmt;
|
||
new->status = enabled;
|
||
display_chain = new;
|
||
|
||
if (from_tty && target_has_execution)
|
||
do_one_display (new);
|
||
|
||
dont_repeat ();
|
||
}
|
||
}
|
||
|
||
static void
|
||
free_display (d)
|
||
struct display *d;
|
||
{
|
||
free ((PTR) d->exp);
|
||
free ((PTR) d);
|
||
}
|
||
|
||
/* Clear out the display_chain.
|
||
Done when new symtabs are loaded, since this invalidates
|
||
the types stored in many expressions. */
|
||
|
||
void
|
||
clear_displays ()
|
||
{
|
||
register struct display *d;
|
||
|
||
while ((d = display_chain) != NULL)
|
||
{
|
||
free ((PTR) d->exp);
|
||
display_chain = d->next;
|
||
free ((PTR) d);
|
||
}
|
||
}
|
||
|
||
/* Delete the auto-display number NUM. */
|
||
|
||
static void
|
||
delete_display (num)
|
||
int num;
|
||
{
|
||
register struct display *d1, *d;
|
||
|
||
if (!display_chain)
|
||
error ("No display number %d.", num);
|
||
|
||
if (display_chain->number == num)
|
||
{
|
||
d1 = display_chain;
|
||
display_chain = d1->next;
|
||
free_display (d1);
|
||
}
|
||
else
|
||
for (d = display_chain;; d = d->next)
|
||
{
|
||
if (d->next == 0)
|
||
error ("No display number %d.", num);
|
||
if (d->next->number == num)
|
||
{
|
||
d1 = d->next;
|
||
d->next = d1->next;
|
||
free_display (d1);
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Delete some values from the auto-display chain.
|
||
Specify the element numbers. */
|
||
|
||
static void
|
||
undisplay_command (args, from_tty)
|
||
char *args;
|
||
int from_tty;
|
||
{
|
||
register char *p = args;
|
||
register char *p1;
|
||
register int num;
|
||
|
||
if (args == 0)
|
||
{
|
||
if (query ("Delete all auto-display expressions? "))
|
||
clear_displays ();
|
||
dont_repeat ();
|
||
return;
|
||
}
|
||
|
||
while (*p)
|
||
{
|
||
p1 = p;
|
||
while (*p1 >= '0' && *p1 <= '9')
|
||
p1++;
|
||
if (*p1 && *p1 != ' ' && *p1 != '\t')
|
||
error ("Arguments must be display numbers.");
|
||
|
||
num = atoi (p);
|
||
|
||
delete_display (num);
|
||
|
||
p = p1;
|
||
while (*p == ' ' || *p == '\t')
|
||
p++;
|
||
}
|
||
dont_repeat ();
|
||
}
|
||
|
||
/* Display a single auto-display.
|
||
Do nothing if the display cannot be printed in the current context,
|
||
or if the display is disabled. */
|
||
|
||
static void
|
||
do_one_display (d)
|
||
struct display *d;
|
||
{
|
||
int within_current_scope;
|
||
|
||
if (d->status == disabled)
|
||
return;
|
||
|
||
if (d->block)
|
||
within_current_scope = contained_in (get_selected_block (), d->block);
|
||
else
|
||
within_current_scope = 1;
|
||
if (!within_current_scope)
|
||
return;
|
||
|
||
current_display_number = d->number;
|
||
|
||
annotate_display_begin ();
|
||
printf_filtered ("%d", d->number);
|
||
annotate_display_number_end ();
|
||
printf_filtered (": ");
|
||
if (d->format.size)
|
||
{
|
||
CORE_ADDR addr;
|
||
value_ptr val;
|
||
|
||
annotate_display_format ();
|
||
|
||
printf_filtered ("x/");
|
||
if (d->format.count != 1)
|
||
printf_filtered ("%d", d->format.count);
|
||
printf_filtered ("%c", d->format.format);
|
||
if (d->format.format != 'i' && d->format.format != 's')
|
||
printf_filtered ("%c", d->format.size);
|
||
printf_filtered (" ");
|
||
|
||
annotate_display_expression ();
|
||
|
||
print_expression (d->exp, gdb_stdout);
|
||
annotate_display_expression_end ();
|
||
|
||
if (d->format.count != 1)
|
||
printf_filtered ("\n");
|
||
else
|
||
printf_filtered (" ");
|
||
|
||
val = evaluate_expression (d->exp);
|
||
addr = value_as_pointer (val);
|
||
if (d->format.format == 'i')
|
||
addr = ADDR_BITS_REMOVE (addr);
|
||
|
||
annotate_display_value ();
|
||
|
||
do_examine (d->format, addr, VALUE_BFD_SECTION (val));
|
||
}
|
||
else
|
||
{
|
||
annotate_display_format ();
|
||
|
||
if (d->format.format)
|
||
printf_filtered ("/%c ", d->format.format);
|
||
|
||
annotate_display_expression ();
|
||
|
||
print_expression (d->exp, gdb_stdout);
|
||
annotate_display_expression_end ();
|
||
|
||
printf_filtered (" = ");
|
||
|
||
annotate_display_expression ();
|
||
|
||
print_formatted (evaluate_expression (d->exp),
|
||
d->format.format, d->format.size, gdb_stdout);
|
||
printf_filtered ("\n");
|
||
}
|
||
|
||
annotate_display_end ();
|
||
|
||
gdb_flush (gdb_stdout);
|
||
current_display_number = -1;
|
||
}
|
||
|
||
/* Display all of the values on the auto-display chain which can be
|
||
evaluated in the current scope. */
|
||
|
||
void
|
||
do_displays ()
|
||
{
|
||
register struct display *d;
|
||
|
||
for (d = display_chain; d; d = d->next)
|
||
do_one_display (d);
|
||
}
|
||
|
||
/* Delete the auto-display which we were in the process of displaying.
|
||
This is done when there is an error or a signal. */
|
||
|
||
void
|
||
disable_display (num)
|
||
int num;
|
||
{
|
||
register struct display *d;
|
||
|
||
for (d = display_chain; d; d = d->next)
|
||
if (d->number == num)
|
||
{
|
||
d->status = disabled;
|
||
return;
|
||
}
|
||
printf_unfiltered ("No display number %d.\n", num);
|
||
}
|
||
|
||
void
|
||
disable_current_display ()
|
||
{
|
||
if (current_display_number >= 0)
|
||
{
|
||
disable_display (current_display_number);
|
||
fprintf_unfiltered (gdb_stderr, "Disabling display %d to avoid infinite recursion.\n",
|
||
current_display_number);
|
||
}
|
||
current_display_number = -1;
|
||
}
|
||
|
||
static void
|
||
display_info (ignore, from_tty)
|
||
char *ignore;
|
||
int from_tty;
|
||
{
|
||
register struct display *d;
|
||
|
||
if (!display_chain)
|
||
printf_unfiltered ("There are no auto-display expressions now.\n");
|
||
else
|
||
printf_filtered ("Auto-display expressions now in effect:\n\
|
||
Num Enb Expression\n");
|
||
|
||
for (d = display_chain; d; d = d->next)
|
||
{
|
||
printf_filtered ("%d: %c ", d->number, "ny"[(int) d->status]);
|
||
if (d->format.size)
|
||
printf_filtered ("/%d%c%c ", d->format.count, d->format.size,
|
||
d->format.format);
|
||
else if (d->format.format)
|
||
printf_filtered ("/%c ", d->format.format);
|
||
print_expression (d->exp, gdb_stdout);
|
||
if (d->block && !contained_in (get_selected_block (), d->block))
|
||
printf_filtered (" (cannot be evaluated in the current context)");
|
||
printf_filtered ("\n");
|
||
gdb_flush (gdb_stdout);
|
||
}
|
||
}
|
||
|
||
static void
|
||
enable_display (args, from_tty)
|
||
char *args;
|
||
int from_tty;
|
||
{
|
||
register char *p = args;
|
||
register char *p1;
|
||
register int num;
|
||
register struct display *d;
|
||
|
||
if (p == 0)
|
||
{
|
||
for (d = display_chain; d; d = d->next)
|
||
d->status = enabled;
|
||
}
|
||
else
|
||
while (*p)
|
||
{
|
||
p1 = p;
|
||
while (*p1 >= '0' && *p1 <= '9')
|
||
p1++;
|
||
if (*p1 && *p1 != ' ' && *p1 != '\t')
|
||
error ("Arguments must be display numbers.");
|
||
|
||
num = atoi (p);
|
||
|
||
for (d = display_chain; d; d = d->next)
|
||
if (d->number == num)
|
||
{
|
||
d->status = enabled;
|
||
goto win;
|
||
}
|
||
printf_unfiltered ("No display number %d.\n", num);
|
||
win:
|
||
p = p1;
|
||
while (*p == ' ' || *p == '\t')
|
||
p++;
|
||
}
|
||
}
|
||
|
||
/* ARGSUSED */
|
||
static void
|
||
disable_display_command (args, from_tty)
|
||
char *args;
|
||
int from_tty;
|
||
{
|
||
register char *p = args;
|
||
register char *p1;
|
||
register struct display *d;
|
||
|
||
if (p == 0)
|
||
{
|
||
for (d = display_chain; d; d = d->next)
|
||
d->status = disabled;
|
||
}
|
||
else
|
||
while (*p)
|
||
{
|
||
p1 = p;
|
||
while (*p1 >= '0' && *p1 <= '9')
|
||
p1++;
|
||
if (*p1 && *p1 != ' ' && *p1 != '\t')
|
||
error ("Arguments must be display numbers.");
|
||
|
||
disable_display (atoi (p));
|
||
|
||
p = p1;
|
||
while (*p == ' ' || *p == '\t')
|
||
p++;
|
||
}
|
||
}
|
||
|
||
|
||
/* Print the value in stack frame FRAME of a variable
|
||
specified by a struct symbol. */
|
||
|
||
void
|
||
print_variable_value (var, frame, stream)
|
||
struct symbol *var;
|
||
struct frame_info *frame;
|
||
struct ui_file *stream;
|
||
{
|
||
value_ptr val = read_var_value (var, frame);
|
||
|
||
value_print (val, stream, 0, Val_pretty_default);
|
||
}
|
||
|
||
/* Print the arguments of a stack frame, given the function FUNC
|
||
running in that frame (as a symbol), the info on the frame,
|
||
and the number of args according to the stack frame (or -1 if unknown). */
|
||
|
||
/* References here and elsewhere to "number of args according to the
|
||
stack frame" appear in all cases to refer to "number of ints of args
|
||
according to the stack frame". At least for VAX, i386, isi. */
|
||
|
||
void
|
||
print_frame_args (func, fi, num, stream)
|
||
struct symbol *func;
|
||
struct frame_info *fi;
|
||
int num;
|
||
struct ui_file *stream;
|
||
{
|
||
struct block *b = NULL;
|
||
int nsyms = 0;
|
||
int first = 1;
|
||
register int i;
|
||
register struct symbol *sym;
|
||
register value_ptr val;
|
||
/* Offset of next stack argument beyond the one we have seen that is
|
||
at the highest offset.
|
||
-1 if we haven't come to a stack argument yet. */
|
||
long highest_offset = -1;
|
||
int arg_size;
|
||
/* Number of ints of arguments that we have printed so far. */
|
||
int args_printed = 0;
|
||
#ifdef UI_OUT
|
||
struct cleanup *old_chain;
|
||
struct ui_stream *stb;
|
||
|
||
stb = ui_out_stream_new (uiout);
|
||
old_chain = make_cleanup ((make_cleanup_func) ui_out_stream_delete, stb);
|
||
#endif /* UI_OUT */
|
||
|
||
if (func)
|
||
{
|
||
b = SYMBOL_BLOCK_VALUE (func);
|
||
nsyms = BLOCK_NSYMS (b);
|
||
}
|
||
|
||
for (i = 0; i < nsyms; i++)
|
||
{
|
||
QUIT;
|
||
sym = BLOCK_SYM (b, i);
|
||
|
||
/* Keep track of the highest stack argument offset seen, and
|
||
skip over any kinds of symbols we don't care about. */
|
||
|
||
switch (SYMBOL_CLASS (sym))
|
||
{
|
||
case LOC_ARG:
|
||
case LOC_REF_ARG:
|
||
{
|
||
long current_offset = SYMBOL_VALUE (sym);
|
||
arg_size = TYPE_LENGTH (SYMBOL_TYPE (sym));
|
||
|
||
/* Compute address of next argument by adding the size of
|
||
this argument and rounding to an int boundary. */
|
||
current_offset
|
||
= ((current_offset + arg_size + sizeof (int) - 1)
|
||
& ~(sizeof (int) - 1));
|
||
|
||
/* If this is the highest offset seen yet, set highest_offset. */
|
||
if (highest_offset == -1
|
||
|| (current_offset > highest_offset))
|
||
highest_offset = current_offset;
|
||
|
||
/* Add the number of ints we're about to print to args_printed. */
|
||
args_printed += (arg_size + sizeof (int) - 1) / sizeof (int);
|
||
}
|
||
|
||
/* We care about types of symbols, but don't need to keep track of
|
||
stack offsets in them. */
|
||
case LOC_REGPARM:
|
||
case LOC_REGPARM_ADDR:
|
||
case LOC_LOCAL_ARG:
|
||
case LOC_BASEREG_ARG:
|
||
break;
|
||
|
||
/* Other types of symbols we just skip over. */
|
||
default:
|
||
continue;
|
||
}
|
||
|
||
/* We have to look up the symbol because arguments can have
|
||
two entries (one a parameter, one a local) and the one we
|
||
want is the local, which lookup_symbol will find for us.
|
||
This includes gcc1 (not gcc2) on the sparc when passing a
|
||
small structure and gcc2 when the argument type is float
|
||
and it is passed as a double and converted to float by
|
||
the prologue (in the latter case the type of the LOC_ARG
|
||
symbol is double and the type of the LOC_LOCAL symbol is
|
||
float). */
|
||
/* But if the parameter name is null, don't try it.
|
||
Null parameter names occur on the RS/6000, for traceback tables.
|
||
FIXME, should we even print them? */
|
||
|
||
if (*SYMBOL_NAME (sym))
|
||
{
|
||
struct symbol *nsym;
|
||
nsym = lookup_symbol
|
||
(SYMBOL_NAME (sym),
|
||
b, VAR_NAMESPACE, (int *) NULL, (struct symtab **) NULL);
|
||
if (SYMBOL_CLASS (nsym) == LOC_REGISTER)
|
||
{
|
||
/* There is a LOC_ARG/LOC_REGISTER pair. This means that
|
||
it was passed on the stack and loaded into a register,
|
||
or passed in a register and stored in a stack slot.
|
||
GDB 3.x used the LOC_ARG; GDB 4.0-4.11 used the LOC_REGISTER.
|
||
|
||
Reasons for using the LOC_ARG:
|
||
(1) because find_saved_registers may be slow for remote
|
||
debugging,
|
||
(2) because registers are often re-used and stack slots
|
||
rarely (never?) are. Therefore using the stack slot is
|
||
much less likely to print garbage.
|
||
|
||
Reasons why we might want to use the LOC_REGISTER:
|
||
(1) So that the backtrace prints the same value as
|
||
"print foo". I see no compelling reason why this needs
|
||
to be the case; having the backtrace print the value which
|
||
was passed in, and "print foo" print the value as modified
|
||
within the called function, makes perfect sense to me.
|
||
|
||
Additional note: It might be nice if "info args" displayed
|
||
both values.
|
||
One more note: There is a case with sparc structure passing
|
||
where we need to use the LOC_REGISTER, but this is dealt with
|
||
by creating a single LOC_REGPARM in symbol reading. */
|
||
|
||
/* Leave sym (the LOC_ARG) alone. */
|
||
;
|
||
}
|
||
else
|
||
sym = nsym;
|
||
}
|
||
|
||
#ifdef UI_OUT
|
||
/* Print the current arg. */
|
||
if (!first)
|
||
ui_out_text (uiout, ", ");
|
||
ui_out_wrap_hint (uiout, " ");
|
||
|
||
annotate_arg_begin ();
|
||
|
||
ui_out_list_begin (uiout, NULL);
|
||
fprintf_symbol_filtered (stb->stream, SYMBOL_SOURCE_NAME (sym),
|
||
SYMBOL_LANGUAGE (sym), DMGL_PARAMS | DMGL_ANSI);
|
||
ui_out_field_stream (uiout, "name", stb);
|
||
annotate_arg_name_end ();
|
||
ui_out_text (uiout, "=");
|
||
#else
|
||
/* Print the current arg. */
|
||
if (!first)
|
||
fprintf_filtered (stream, ", ");
|
||
wrap_here (" ");
|
||
|
||
annotate_arg_begin ();
|
||
|
||
fprintf_symbol_filtered (stream, SYMBOL_SOURCE_NAME (sym),
|
||
SYMBOL_LANGUAGE (sym), DMGL_PARAMS | DMGL_ANSI);
|
||
annotate_arg_name_end ();
|
||
fputs_filtered ("=", stream);
|
||
#endif
|
||
|
||
/* Avoid value_print because it will deref ref parameters. We just
|
||
want to print their addresses. Print ??? for args whose address
|
||
we do not know. We pass 2 as "recurse" to val_print because our
|
||
standard indentation here is 4 spaces, and val_print indents
|
||
2 for each recurse. */
|
||
val = read_var_value (sym, fi);
|
||
|
||
annotate_arg_value (val == NULL ? NULL : VALUE_TYPE (val));
|
||
|
||
if (val)
|
||
{
|
||
if (GDB_TARGET_IS_D10V
|
||
&& SYMBOL_CLASS (sym) == LOC_REGPARM && TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_PTR)
|
||
TYPE_LENGTH (VALUE_TYPE (val)) = 2;
|
||
#ifdef UI_OUT
|
||
val_print (VALUE_TYPE (val), VALUE_CONTENTS (val), 0,
|
||
VALUE_ADDRESS (val),
|
||
stb->stream, 0, 0, 2, Val_no_prettyprint);
|
||
ui_out_field_stream (uiout, "value", stb);
|
||
}
|
||
else
|
||
ui_out_text (uiout, "???");
|
||
|
||
ui_out_list_end (uiout);
|
||
#else
|
||
val_print (VALUE_TYPE (val), VALUE_CONTENTS (val), 0,
|
||
VALUE_ADDRESS (val),
|
||
stream, 0, 0, 2, Val_no_prettyprint);
|
||
}
|
||
else
|
||
fputs_filtered ("???", stream);
|
||
#endif
|
||
|
||
annotate_arg_end ();
|
||
|
||
first = 0;
|
||
}
|
||
|
||
/* Don't print nameless args in situations where we don't know
|
||
enough about the stack to find them. */
|
||
if (num != -1)
|
||
{
|
||
long start;
|
||
|
||
if (highest_offset == -1)
|
||
start = FRAME_ARGS_SKIP;
|
||
else
|
||
start = highest_offset;
|
||
|
||
print_frame_nameless_args (fi, start, num - args_printed,
|
||
first, stream);
|
||
}
|
||
#ifdef UI_OUT
|
||
do_cleanups (old_chain);
|
||
#endif /* no UI_OUT */
|
||
}
|
||
|
||
/* Print nameless args on STREAM.
|
||
FI is the frameinfo for this frame, START is the offset
|
||
of the first nameless arg, and NUM is the number of nameless args to
|
||
print. FIRST is nonzero if this is the first argument (not just
|
||
the first nameless arg). */
|
||
|
||
static void
|
||
print_frame_nameless_args (fi, start, num, first, stream)
|
||
struct frame_info *fi;
|
||
long start;
|
||
int num;
|
||
int first;
|
||
struct ui_file *stream;
|
||
{
|
||
int i;
|
||
CORE_ADDR argsaddr;
|
||
long arg_value;
|
||
|
||
for (i = 0; i < num; i++)
|
||
{
|
||
QUIT;
|
||
#ifdef NAMELESS_ARG_VALUE
|
||
NAMELESS_ARG_VALUE (fi, start, &arg_value);
|
||
#else
|
||
argsaddr = FRAME_ARGS_ADDRESS (fi);
|
||
if (!argsaddr)
|
||
return;
|
||
|
||
arg_value = read_memory_integer (argsaddr + start, sizeof (int));
|
||
#endif
|
||
|
||
if (!first)
|
||
fprintf_filtered (stream, ", ");
|
||
|
||
#ifdef PRINT_NAMELESS_INTEGER
|
||
PRINT_NAMELESS_INTEGER (stream, arg_value);
|
||
#else
|
||
#ifdef PRINT_TYPELESS_INTEGER
|
||
PRINT_TYPELESS_INTEGER (stream, builtin_type_int, (LONGEST) arg_value);
|
||
#else
|
||
fprintf_filtered (stream, "%ld", arg_value);
|
||
#endif /* PRINT_TYPELESS_INTEGER */
|
||
#endif /* PRINT_NAMELESS_INTEGER */
|
||
first = 0;
|
||
start += sizeof (int);
|
||
}
|
||
}
|
||
|
||
/* ARGSUSED */
|
||
static void
|
||
printf_command (arg, from_tty)
|
||
char *arg;
|
||
int from_tty;
|
||
{
|
||
register char *f = NULL;
|
||
register char *s = arg;
|
||
char *string = NULL;
|
||
value_ptr *val_args;
|
||
char *substrings;
|
||
char *current_substring;
|
||
int nargs = 0;
|
||
int allocated_args = 20;
|
||
struct cleanup *old_cleanups;
|
||
|
||
val_args = (value_ptr *) xmalloc (allocated_args * sizeof (value_ptr));
|
||
old_cleanups = make_cleanup ((make_cleanup_func) free_current_contents,
|
||
&val_args);
|
||
|
||
if (s == 0)
|
||
error_no_arg ("format-control string and values to print");
|
||
|
||
/* Skip white space before format string */
|
||
while (*s == ' ' || *s == '\t')
|
||
s++;
|
||
|
||
/* A format string should follow, enveloped in double quotes */
|
||
if (*s++ != '"')
|
||
error ("Bad format string, missing '\"'.");
|
||
|
||
/* Parse the format-control string and copy it into the string STRING,
|
||
processing some kinds of escape sequence. */
|
||
|
||
f = string = (char *) alloca (strlen (s) + 1);
|
||
|
||
while (*s != '"')
|
||
{
|
||
int c = *s++;
|
||
switch (c)
|
||
{
|
||
case '\0':
|
||
error ("Bad format string, non-terminated '\"'.");
|
||
|
||
case '\\':
|
||
switch (c = *s++)
|
||
{
|
||
case '\\':
|
||
*f++ = '\\';
|
||
break;
|
||
case 'a':
|
||
#ifdef __STDC__
|
||
*f++ = '\a';
|
||
#else
|
||
*f++ = '\007'; /* Bell */
|
||
#endif
|
||
break;
|
||
case 'b':
|
||
*f++ = '\b';
|
||
break;
|
||
case 'f':
|
||
*f++ = '\f';
|
||
break;
|
||
case 'n':
|
||
*f++ = '\n';
|
||
break;
|
||
case 'r':
|
||
*f++ = '\r';
|
||
break;
|
||
case 't':
|
||
*f++ = '\t';
|
||
break;
|
||
case 'v':
|
||
*f++ = '\v';
|
||
break;
|
||
case '"':
|
||
*f++ = '"';
|
||
break;
|
||
default:
|
||
/* ??? TODO: handle other escape sequences */
|
||
error ("Unrecognized escape character \\%c in format string.",
|
||
c);
|
||
}
|
||
break;
|
||
|
||
default:
|
||
*f++ = c;
|
||
}
|
||
}
|
||
|
||
/* Skip over " and following space and comma. */
|
||
s++;
|
||
*f++ = '\0';
|
||
while (*s == ' ' || *s == '\t')
|
||
s++;
|
||
|
||
if (*s != ',' && *s != 0)
|
||
error ("Invalid argument syntax");
|
||
|
||
if (*s == ',')
|
||
s++;
|
||
while (*s == ' ' || *s == '\t')
|
||
s++;
|
||
|
||
/* Need extra space for the '\0's. Doubling the size is sufficient. */
|
||
substrings = alloca (strlen (string) * 2);
|
||
current_substring = substrings;
|
||
|
||
{
|
||
/* Now scan the string for %-specs and see what kinds of args they want.
|
||
argclass[I] classifies the %-specs so we can give printf_filtered
|
||
something of the right size. */
|
||
|
||
enum argclass
|
||
{
|
||
no_arg, int_arg, string_arg, double_arg, long_long_arg
|
||
};
|
||
enum argclass *argclass;
|
||
enum argclass this_argclass;
|
||
char *last_arg;
|
||
int nargs_wanted;
|
||
int lcount;
|
||
int i;
|
||
|
||
argclass = (enum argclass *) alloca (strlen (s) * sizeof *argclass);
|
||
nargs_wanted = 0;
|
||
f = string;
|
||
last_arg = string;
|
||
while (*f)
|
||
if (*f++ == '%')
|
||
{
|
||
lcount = 0;
|
||
while (strchr ("0123456789.hlL-+ #", *f))
|
||
{
|
||
if (*f == 'l' || *f == 'L')
|
||
lcount++;
|
||
f++;
|
||
}
|
||
switch (*f)
|
||
{
|
||
case 's':
|
||
this_argclass = string_arg;
|
||
break;
|
||
|
||
case 'e':
|
||
case 'f':
|
||
case 'g':
|
||
this_argclass = double_arg;
|
||
break;
|
||
|
||
case '*':
|
||
error ("`*' not supported for precision or width in printf");
|
||
|
||
case 'n':
|
||
error ("Format specifier `n' not supported in printf");
|
||
|
||
case '%':
|
||
this_argclass = no_arg;
|
||
break;
|
||
|
||
default:
|
||
if (lcount > 1)
|
||
this_argclass = long_long_arg;
|
||
else
|
||
this_argclass = int_arg;
|
||
break;
|
||
}
|
||
f++;
|
||
if (this_argclass != no_arg)
|
||
{
|
||
strncpy (current_substring, last_arg, f - last_arg);
|
||
current_substring += f - last_arg;
|
||
*current_substring++ = '\0';
|
||
last_arg = f;
|
||
argclass[nargs_wanted++] = this_argclass;
|
||
}
|
||
}
|
||
|
||
/* Now, parse all arguments and evaluate them.
|
||
Store the VALUEs in VAL_ARGS. */
|
||
|
||
while (*s != '\0')
|
||
{
|
||
char *s1;
|
||
if (nargs == allocated_args)
|
||
val_args = (value_ptr *) xrealloc ((char *) val_args,
|
||
(allocated_args *= 2)
|
||
* sizeof (value_ptr));
|
||
s1 = s;
|
||
val_args[nargs] = parse_to_comma_and_eval (&s1);
|
||
|
||
/* If format string wants a float, unchecked-convert the value to
|
||
floating point of the same size */
|
||
|
||
if (argclass[nargs] == double_arg)
|
||
{
|
||
struct type *type = VALUE_TYPE (val_args[nargs]);
|
||
if (TYPE_LENGTH (type) == sizeof (float))
|
||
VALUE_TYPE (val_args[nargs]) = builtin_type_float;
|
||
if (TYPE_LENGTH (type) == sizeof (double))
|
||
VALUE_TYPE (val_args[nargs]) = builtin_type_double;
|
||
}
|
||
nargs++;
|
||
s = s1;
|
||
if (*s == ',')
|
||
s++;
|
||
}
|
||
|
||
if (nargs != nargs_wanted)
|
||
error ("Wrong number of arguments for specified format-string");
|
||
|
||
/* Now actually print them. */
|
||
current_substring = substrings;
|
||
for (i = 0; i < nargs; i++)
|
||
{
|
||
switch (argclass[i])
|
||
{
|
||
case string_arg:
|
||
{
|
||
char *str;
|
||
CORE_ADDR tem;
|
||
int j;
|
||
tem = value_as_pointer (val_args[i]);
|
||
|
||
/* This is a %s argument. Find the length of the string. */
|
||
for (j = 0;; j++)
|
||
{
|
||
char c;
|
||
QUIT;
|
||
read_memory_section (tem + j, &c, 1,
|
||
VALUE_BFD_SECTION (val_args[i]));
|
||
if (c == 0)
|
||
break;
|
||
}
|
||
|
||
/* Copy the string contents into a string inside GDB. */
|
||
str = (char *) alloca (j + 1);
|
||
read_memory_section (tem, str, j, VALUE_BFD_SECTION (val_args[i]));
|
||
str[j] = 0;
|
||
|
||
printf_filtered (current_substring, str);
|
||
}
|
||
break;
|
||
case double_arg:
|
||
{
|
||
double val = value_as_double (val_args[i]);
|
||
printf_filtered (current_substring, val);
|
||
break;
|
||
}
|
||
case long_long_arg:
|
||
#if defined (CC_HAS_LONG_LONG) && defined (PRINTF_HAS_LONG_LONG)
|
||
{
|
||
long long val = value_as_long (val_args[i]);
|
||
printf_filtered (current_substring, val);
|
||
break;
|
||
}
|
||
#else
|
||
error ("long long not supported in printf");
|
||
#endif
|
||
case int_arg:
|
||
{
|
||
/* FIXME: there should be separate int_arg and long_arg. */
|
||
long val = value_as_long (val_args[i]);
|
||
printf_filtered (current_substring, val);
|
||
break;
|
||
}
|
||
default: /* purecov: deadcode */
|
||
error ("internal error in printf_command"); /* purecov: deadcode */
|
||
}
|
||
/* Skip to the next substring. */
|
||
current_substring += strlen (current_substring) + 1;
|
||
}
|
||
/* Print the portion of the format string after the last argument. */
|
||
printf_filtered (last_arg);
|
||
}
|
||
do_cleanups (old_cleanups);
|
||
}
|
||
|
||
/* Dump a specified section of assembly code. With no command line
|
||
arguments, this command will dump the assembly code for the
|
||
function surrounding the pc value in the selected frame. With one
|
||
argument, it will dump the assembly code surrounding that pc value.
|
||
Two arguments are interpeted as bounds within which to dump
|
||
assembly. */
|
||
|
||
/* ARGSUSED */
|
||
static void
|
||
disassemble_command (arg, from_tty)
|
||
char *arg;
|
||
int from_tty;
|
||
{
|
||
CORE_ADDR low, high;
|
||
char *name;
|
||
CORE_ADDR pc, pc_masked;
|
||
char *space_index;
|
||
#if 0
|
||
asection *section;
|
||
#endif
|
||
|
||
name = NULL;
|
||
if (!arg)
|
||
{
|
||
if (!selected_frame)
|
||
error ("No frame selected.\n");
|
||
|
||
pc = get_frame_pc (selected_frame);
|
||
if (find_pc_partial_function (pc, &name, &low, &high) == 0)
|
||
error ("No function contains program counter for selected frame.\n");
|
||
#if defined(TUI)
|
||
else if (tui_version)
|
||
low = (CORE_ADDR) tuiDo ((TuiOpaqueFuncPtr) tui_vGetLowDisassemblyAddress,
|
||
(Opaque) low,
|
||
(Opaque) pc);
|
||
#endif
|
||
low += FUNCTION_START_OFFSET;
|
||
}
|
||
else if (!(space_index = (char *) strchr (arg, ' ')))
|
||
{
|
||
/* One argument. */
|
||
pc = parse_and_eval_address (arg);
|
||
if (find_pc_partial_function (pc, &name, &low, &high) == 0)
|
||
error ("No function contains specified address.\n");
|
||
#if defined(TUI)
|
||
else if (tui_version)
|
||
low = (CORE_ADDR) tuiDo ((TuiOpaqueFuncPtr) tui_vGetLowDisassemblyAddress,
|
||
(Opaque) low,
|
||
(Opaque) pc);
|
||
#endif
|
||
#if 0
|
||
if (overlay_debugging)
|
||
{
|
||
section = find_pc_overlay (pc);
|
||
if (pc_in_unmapped_range (pc, section))
|
||
{
|
||
/* find_pc_partial_function will have returned low and high
|
||
relative to the symbolic (mapped) address range. Need to
|
||
translate them back to the unmapped range where PC is. */
|
||
low = overlay_unmapped_address (low, section);
|
||
high = overlay_unmapped_address (high, section);
|
||
}
|
||
}
|
||
#endif
|
||
low += FUNCTION_START_OFFSET;
|
||
}
|
||
else
|
||
{
|
||
/* Two arguments. */
|
||
*space_index = '\0';
|
||
low = parse_and_eval_address (arg);
|
||
high = parse_and_eval_address (space_index + 1);
|
||
}
|
||
|
||
#if defined(TUI)
|
||
if (!tui_version ||
|
||
m_winPtrIsNull (disassemWin) || !disassemWin->generic.isVisible)
|
||
#endif
|
||
{
|
||
printf_filtered ("Dump of assembler code ");
|
||
if (name != NULL)
|
||
{
|
||
printf_filtered ("for function %s:\n", name);
|
||
}
|
||
else
|
||
{
|
||
printf_filtered ("from ");
|
||
print_address_numeric (low, 1, gdb_stdout);
|
||
printf_filtered (" to ");
|
||
print_address_numeric (high, 1, gdb_stdout);
|
||
printf_filtered (":\n");
|
||
}
|
||
|
||
/* Dump the specified range. */
|
||
pc = low;
|
||
|
||
#ifdef GDB_TARGET_MASK_DISAS_PC
|
||
pc_masked = GDB_TARGET_MASK_DISAS_PC (pc);
|
||
#else
|
||
pc_masked = pc;
|
||
#endif
|
||
|
||
while (pc_masked < high)
|
||
{
|
||
QUIT;
|
||
print_address (pc_masked, gdb_stdout);
|
||
printf_filtered (":\t");
|
||
/* We often wrap here if there are long symbolic names. */
|
||
wrap_here (" ");
|
||
pc += print_insn (pc, gdb_stdout);
|
||
printf_filtered ("\n");
|
||
|
||
#ifdef GDB_TARGET_MASK_DISAS_PC
|
||
pc_masked = GDB_TARGET_MASK_DISAS_PC (pc);
|
||
#else
|
||
pc_masked = pc;
|
||
#endif
|
||
}
|
||
printf_filtered ("End of assembler dump.\n");
|
||
gdb_flush (gdb_stdout);
|
||
}
|
||
#if defined(TUI)
|
||
else
|
||
{
|
||
tuiDo ((TuiOpaqueFuncPtr) tui_vAddWinToLayout, DISASSEM_WIN);
|
||
tuiDo ((TuiOpaqueFuncPtr) tui_vUpdateSourceWindowsWithAddr, low);
|
||
}
|
||
#endif
|
||
}
|
||
|
||
/* Print the instruction at address MEMADDR in debugged memory,
|
||
on STREAM. Returns length of the instruction, in bytes. */
|
||
|
||
static int
|
||
print_insn (memaddr, stream)
|
||
CORE_ADDR memaddr;
|
||
struct ui_file *stream;
|
||
{
|
||
if (TARGET_BYTE_ORDER == BIG_ENDIAN)
|
||
TARGET_PRINT_INSN_INFO->endian = BFD_ENDIAN_BIG;
|
||
else
|
||
TARGET_PRINT_INSN_INFO->endian = BFD_ENDIAN_LITTLE;
|
||
|
||
if (TARGET_ARCHITECTURE != NULL)
|
||
TARGET_PRINT_INSN_INFO->mach = TARGET_ARCHITECTURE->mach;
|
||
/* else: should set .mach=0 but some disassemblers don't grok this */
|
||
|
||
return TARGET_PRINT_INSN (memaddr, TARGET_PRINT_INSN_INFO);
|
||
}
|
||
|
||
|
||
void
|
||
_initialize_printcmd ()
|
||
{
|
||
current_display_number = -1;
|
||
|
||
add_info ("address", address_info,
|
||
"Describe where symbol SYM is stored.");
|
||
|
||
add_info ("symbol", sym_info,
|
||
"Describe what symbol is at location ADDR.\n\
|
||
Only for symbols with fixed locations (global or static scope).");
|
||
|
||
add_com ("x", class_vars, x_command,
|
||
concat ("Examine memory: x/FMT ADDRESS.\n\
|
||
ADDRESS is an expression for the memory address to examine.\n\
|
||
FMT is a repeat count followed by a format letter and a size letter.\n\
|
||
Format letters are o(octal), x(hex), d(decimal), u(unsigned decimal),\n\
|
||
t(binary), f(float), a(address), i(instruction), c(char) and s(string).\n",
|
||
"Size letters are b(byte), h(halfword), w(word), g(giant, 8 bytes).\n\
|
||
The specified number of objects of the specified size are printed\n\
|
||
according to the format.\n\n\
|
||
Defaults for format and size letters are those previously used.\n\
|
||
Default count is 1. Default address is following last thing printed\n\
|
||
with this command or \"print\".", NULL));
|
||
|
||
add_com ("disassemble", class_vars, disassemble_command,
|
||
"Disassemble a specified section of memory.\n\
|
||
Default is the function surrounding the pc of the selected frame.\n\
|
||
With a single argument, the function surrounding that address is dumped.\n\
|
||
Two arguments are taken as a range of memory to dump.");
|
||
if (xdb_commands)
|
||
add_com_alias ("va", "disassemble", class_xdb, 0);
|
||
|
||
#if 0
|
||
add_com ("whereis", class_vars, whereis_command,
|
||
"Print line number and file of definition of variable.");
|
||
#endif
|
||
|
||
add_info ("display", display_info,
|
||
"Expressions to display when program stops, with code numbers.");
|
||
|
||
add_cmd ("undisplay", class_vars, undisplay_command,
|
||
"Cancel some expressions to be displayed when program stops.\n\
|
||
Arguments are the code numbers of the expressions to stop displaying.\n\
|
||
No argument means cancel all automatic-display expressions.\n\
|
||
\"delete display\" has the same effect as this command.\n\
|
||
Do \"info display\" to see current list of code numbers.",
|
||
&cmdlist);
|
||
|
||
add_com ("display", class_vars, display_command,
|
||
"Print value of expression EXP each time the program stops.\n\
|
||
/FMT may be used before EXP as in the \"print\" command.\n\
|
||
/FMT \"i\" or \"s\" or including a size-letter is allowed,\n\
|
||
as in the \"x\" command, and then EXP is used to get the address to examine\n\
|
||
and examining is done as in the \"x\" command.\n\n\
|
||
With no argument, display all currently requested auto-display expressions.\n\
|
||
Use \"undisplay\" to cancel display requests previously made."
|
||
);
|
||
|
||
add_cmd ("display", class_vars, enable_display,
|
||
"Enable some expressions to be displayed when program stops.\n\
|
||
Arguments are the code numbers of the expressions to resume displaying.\n\
|
||
No argument means enable all automatic-display expressions.\n\
|
||
Do \"info display\" to see current list of code numbers.", &enablelist);
|
||
|
||
add_cmd ("display", class_vars, disable_display_command,
|
||
"Disable some expressions to be displayed when program stops.\n\
|
||
Arguments are the code numbers of the expressions to stop displaying.\n\
|
||
No argument means disable all automatic-display expressions.\n\
|
||
Do \"info display\" to see current list of code numbers.", &disablelist);
|
||
|
||
add_cmd ("display", class_vars, undisplay_command,
|
||
"Cancel some expressions to be displayed when program stops.\n\
|
||
Arguments are the code numbers of the expressions to stop displaying.\n\
|
||
No argument means cancel all automatic-display expressions.\n\
|
||
Do \"info display\" to see current list of code numbers.", &deletelist);
|
||
|
||
add_com ("printf", class_vars, printf_command,
|
||
"printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
|
||
This is useful for formatted output in user-defined commands.");
|
||
|
||
add_com ("output", class_vars, output_command,
|
||
"Like \"print\" but don't put in value history and don't print newline.\n\
|
||
This is useful in user-defined commands.");
|
||
|
||
add_prefix_cmd ("set", class_vars, set_command,
|
||
concat ("Evaluate expression EXP and assign result to variable VAR, using assignment\n\
|
||
syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
|
||
example). VAR may be a debugger \"convenience\" variable (names starting\n\
|
||
with $), a register (a few standard names starting with $), or an actual\n\
|
||
variable in the program being debugged. EXP is any valid expression.\n",
|
||
"Use \"set variable\" for variables with names identical to set subcommands.\n\
|
||
\nWith a subcommand, this command modifies parts of the gdb environment.\n\
|
||
You can see these environment settings with the \"show\" command.", NULL),
|
||
&setlist, "set ", 1, &cmdlist);
|
||
if (dbx_commands)
|
||
add_com ("assign", class_vars, set_command, concat ("Evaluate expression \
|
||
EXP and assign result to variable VAR, using assignment\n\
|
||
syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
|
||
example). VAR may be a debugger \"convenience\" variable (names starting\n\
|
||
with $), a register (a few standard names starting with $), or an actual\n\
|
||
variable in the program being debugged. EXP is any valid expression.\n",
|
||
"Use \"set variable\" for variables with names identical to set subcommands.\n\
|
||
\nWith a subcommand, this command modifies parts of the gdb environment.\n\
|
||
You can see these environment settings with the \"show\" command.", NULL));
|
||
|
||
/* "call" is the same as "set", but handy for dbx users to call fns. */
|
||
add_com ("call", class_vars, call_command,
|
||
"Call a function in the program.\n\
|
||
The argument is the function name and arguments, in the notation of the\n\
|
||
current working language. The result is printed and saved in the value\n\
|
||
history, if it is not void.");
|
||
|
||
add_cmd ("variable", class_vars, set_command,
|
||
"Evaluate expression EXP and assign result to variable VAR, using assignment\n\
|
||
syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
|
||
example). VAR may be a debugger \"convenience\" variable (names starting\n\
|
||
with $), a register (a few standard names starting with $), or an actual\n\
|
||
variable in the program being debugged. EXP is any valid expression.\n\
|
||
This may usually be abbreviated to simply \"set\".",
|
||
&setlist);
|
||
|
||
add_com ("print", class_vars, print_command,
|
||
concat ("Print value of expression EXP.\n\
|
||
Variables accessible are those of the lexical environment of the selected\n\
|
||
stack frame, plus all those whose scope is global or an entire file.\n\
|
||
\n\
|
||
$NUM gets previous value number NUM. $ and $$ are the last two values.\n\
|
||
$$NUM refers to NUM'th value back from the last one.\n\
|
||
Names starting with $ refer to registers (with the values they would have\n",
|
||
"if the program were to return to the stack frame now selected, restoring\n\
|
||
all registers saved by frames farther in) or else to debugger\n\
|
||
\"convenience\" variables (any such name not a known register).\n\
|
||
Use assignment expressions to give values to convenience variables.\n",
|
||
"\n\
|
||
{TYPE}ADREXP refers to a datum of data type TYPE, located at address ADREXP.\n\
|
||
@ is a binary operator for treating consecutive data objects\n\
|
||
anywhere in memory as an array. FOO@NUM gives an array whose first\n\
|
||
element is FOO, whose second element is stored in the space following\n\
|
||
where FOO is stored, etc. FOO must be an expression whose value\n\
|
||
resides in memory.\n",
|
||
"\n\
|
||
EXP may be preceded with /FMT, where FMT is a format letter\n\
|
||
but no count or size letter (see \"x\" command).", NULL));
|
||
add_com_alias ("p", "print", class_vars, 1);
|
||
|
||
add_com ("inspect", class_vars, inspect_command,
|
||
"Same as \"print\" command, except that if you are running in the epoch\n\
|
||
environment, the value is printed in its own window.");
|
||
|
||
add_show_from_set (
|
||
add_set_cmd ("max-symbolic-offset", no_class, var_uinteger,
|
||
(char *) &max_symbolic_offset,
|
||
"Set the largest offset that will be printed in <symbol+1234> form.",
|
||
&setprintlist),
|
||
&showprintlist);
|
||
add_show_from_set (
|
||
add_set_cmd ("symbol-filename", no_class, var_boolean,
|
||
(char *) &print_symbol_filename,
|
||
"Set printing of source filename and line number with <symbol>.",
|
||
&setprintlist),
|
||
&showprintlist);
|
||
|
||
/* For examine/instruction a single byte quantity is specified as
|
||
the data. This avoids problems with value_at_lazy() requiring a
|
||
valid data type (and rejecting VOID). */
|
||
examine_i_type = init_type (TYPE_CODE_INT, 1, 0, "examine_i_type", NULL);
|
||
|
||
examine_b_type = init_type (TYPE_CODE_INT, 1, 0, "examine_b_type", NULL);
|
||
examine_h_type = init_type (TYPE_CODE_INT, 2, 0, "examine_h_type", NULL);
|
||
examine_w_type = init_type (TYPE_CODE_INT, 4, 0, "examine_w_type", NULL);
|
||
examine_g_type = init_type (TYPE_CODE_INT, 8, 0, "examine_g_type", NULL);
|
||
|
||
}
|