mirror of
https://github.com/darlinghq/darling-gdb.git
synced 2024-11-25 21:19:54 +00:00
779 lines
19 KiB
C
779 lines
19 KiB
C
/****************************************************************************
|
|
|
|
THIS SOFTWARE IS NOT COPYRIGHTED
|
|
|
|
HP offers the following for use in the public domain. HP makes no
|
|
warranty with regard to the software or it's performance and the
|
|
user accepts the software "AS IS" with all faults.
|
|
|
|
HP DISCLAIMS ANY WARRANTIES, EXPRESS OR IMPLIED, WITH REGARD
|
|
TO THIS SOFTWARE INCLUDING BUT NOT LIMITED TO THE WARRANTIES
|
|
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
|
|
|
|
****************************************************************************/
|
|
|
|
/****************************************************************************
|
|
* Header: remcom.c,v 1.34 91/03/09 12:29:49 glenne Exp $
|
|
*
|
|
* Module name: remcom.c $
|
|
* Revision: 1.34 $
|
|
* Date: 91/03/09 12:29:49 $
|
|
* Contributor: Lake Stevens Instrument Division$
|
|
*
|
|
* Description: low level support for gdb debugger. $
|
|
*
|
|
* Considerations: only works on target hardware $
|
|
*
|
|
* Written by: Glenn Engel $
|
|
* ModuleState: Experimental $
|
|
*
|
|
* NOTES: See Below $
|
|
*
|
|
* Modified for SPARC by Stu Grossman, Cygnus Support.
|
|
*
|
|
* This code has been extensively tested on the Fujitsu SPARClite demo board.
|
|
*
|
|
* To enable debugger support, two things need to happen. One, a
|
|
* call to set_debug_traps() is necessary in order to allow any breakpoints
|
|
* or error conditions to be properly intercepted and reported to gdb.
|
|
* Two, a breakpoint needs to be generated to begin communication. This
|
|
* is most easily accomplished by a call to breakpoint(). Breakpoint()
|
|
* simulates a breakpoint by executing a trap #1.
|
|
*
|
|
*************
|
|
*
|
|
* The following gdb commands are supported:
|
|
*
|
|
* command function Return value
|
|
*
|
|
* g return the value of the CPU registers hex data or ENN
|
|
* G set the value of the CPU registers OK or ENN
|
|
*
|
|
* mAA..AA,LLLL Read LLLL bytes at address AA..AA hex data or ENN
|
|
* MAA..AA,LLLL: Write LLLL bytes at address AA.AA OK or ENN
|
|
*
|
|
* c Resume at current address SNN ( signal NN)
|
|
* cAA..AA Continue at address AA..AA SNN
|
|
*
|
|
* s Step one instruction SNN
|
|
* sAA..AA Step one instruction from AA..AA SNN
|
|
*
|
|
* k kill
|
|
*
|
|
* ? What was the last sigval ? SNN (signal NN)
|
|
*
|
|
* All commands and responses are sent with a packet which includes a
|
|
* checksum. A packet consists of
|
|
*
|
|
* $<packet info>#<checksum>.
|
|
*
|
|
* where
|
|
* <packet info> :: <characters representing the command or response>
|
|
* <checksum> :: < two hex digits computed as modulo 256 sum of <packetinfo>>
|
|
*
|
|
* When a packet is received, it is first acknowledged with either '+' or '-'.
|
|
* '+' indicates a successful transfer. '-' indicates a failed transfer.
|
|
*
|
|
* Example:
|
|
*
|
|
* Host: Reply:
|
|
* $m0,10#2a +$00010203040506070809101112131415#42
|
|
*
|
|
****************************************************************************/
|
|
|
|
#include <string.h>
|
|
#include <signal.h>
|
|
|
|
/************************************************************************
|
|
*
|
|
* external low-level support routines
|
|
*/
|
|
|
|
extern void putDebugChar(); /* write a single character */
|
|
extern int getDebugChar(); /* read and return a single char */
|
|
|
|
/************************************************************************/
|
|
/* BUFMAX defines the maximum number of characters in inbound/outbound buffers*/
|
|
/* at least NUMREGBYTES*2 are needed for register packets */
|
|
#define BUFMAX 2048
|
|
|
|
static int initialized = 0; /* !0 means we've been initialized */
|
|
|
|
static void set_mem_fault_trap();
|
|
|
|
static const char hexchars[]="0123456789abcdef";
|
|
|
|
#define NUMREGS 72
|
|
|
|
/* Number of bytes of registers. */
|
|
#define NUMREGBYTES (NUMREGS * 4)
|
|
enum regnames {G0, G1, G2, G3, G4, G5, G6, G7,
|
|
O0, O1, O2, O3, O4, O5, SP, O7,
|
|
L0, L1, L2, L3, L4, L5, L6, L7,
|
|
I0, I1, I2, I3, I4, I5, FP, I7,
|
|
|
|
F0, F1, F2, F3, F4, F5, F6, F7,
|
|
F8, F9, F10, F11, F12, F13, F14, F15,
|
|
F16, F17, F18, F19, F20, F21, F22, F23,
|
|
F24, F25, F26, F27, F28, F29, F30, F31,
|
|
Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR };
|
|
|
|
/*************************** ASSEMBLY CODE MACROS *************************/
|
|
/* */
|
|
|
|
extern void trap_low();
|
|
|
|
asm("
|
|
.reserve trapstack, 1000 * 4, \"bss\", 8
|
|
|
|
.data
|
|
.align 4
|
|
|
|
in_trap_handler:
|
|
.word 0
|
|
|
|
.text
|
|
.align 4
|
|
|
|
! This function is called when any SPARC trap (except window overflow or
|
|
! underflow) occurs. It makes sure that the invalid register window is still
|
|
! available before jumping into C code. It will also restore the world if you
|
|
! return from handle_exception.
|
|
|
|
.globl _trap_low
|
|
_trap_low:
|
|
mov %psr, %l0
|
|
mov %wim, %l3
|
|
|
|
srl %l3, %l0, %l4 ! wim >> cwp
|
|
cmp %l4, 1
|
|
bne window_fine ! Branch if not in the invalid window
|
|
nop
|
|
|
|
! Handle window overflow
|
|
|
|
mov %g1, %l4 ! Save g1, we use it to hold the wim
|
|
srl %l3, 1, %g1 ! Rotate wim right
|
|
tst %g1
|
|
bg good_wim ! Branch if new wim is non-zero
|
|
nop
|
|
|
|
! At this point, we need to bring a 1 into the high order bit of the wim.
|
|
! Since we don't want to make any assumptions about the number of register
|
|
! windows, we figure it out dynamically so as to setup the wim correctly.
|
|
|
|
not %g1 ! Fill g1 with ones
|
|
mov %g1, %wim ! Fill the wim with ones
|
|
nop
|
|
nop
|
|
nop
|
|
mov %wim, %g1 ! Read back the wim
|
|
inc %g1 ! Now g1 has 1 just to left of wim
|
|
srl %g1, 1, %g1 ! Now put 1 at top of wim
|
|
mov %g0, %wim ! Clear wim so that subsequent save
|
|
nop ! won't trap
|
|
nop
|
|
nop
|
|
|
|
good_wim:
|
|
save %g0, %g0, %g0 ! Slip into next window
|
|
mov %g1, %wim ! Install the new wim
|
|
|
|
std %l0, [%sp + 0 * 4] ! save L & I registers
|
|
std %l2, [%sp + 2 * 4]
|
|
std %l4, [%sp + 4 * 4]
|
|
std %l6, [%sp + 6 * 4]
|
|
|
|
std %i0, [%sp + 8 * 4]
|
|
std %i2, [%sp + 10 * 4]
|
|
std %i4, [%sp + 12 * 4]
|
|
std %i6, [%sp + 14 * 4]
|
|
|
|
restore ! Go back to trap window.
|
|
mov %l4, %g1 ! Restore %g1
|
|
|
|
window_fine:
|
|
sethi %hi(in_trap_handler), %l4
|
|
ld [%lo(in_trap_handler) + %l4], %l5
|
|
tst %l5
|
|
bg recursive_trap
|
|
inc %l5
|
|
|
|
set trapstack+1000*4, %sp ! Switch to trap stack
|
|
|
|
recursive_trap:
|
|
st %l5, [%lo(in_trap_handler) + %l4]
|
|
sub %sp,(16+1+6+1+72)*4,%sp ! Make room for input & locals
|
|
! + hidden arg + arg spill
|
|
! + doubleword alignment
|
|
! + registers[72] local var
|
|
|
|
std %g0, [%sp + (24 + 0) * 4] ! registers[Gx]
|
|
std %g2, [%sp + (24 + 2) * 4]
|
|
std %g4, [%sp + (24 + 4) * 4]
|
|
std %g6, [%sp + (24 + 6) * 4]
|
|
|
|
std %i0, [%sp + (24 + 8) * 4] ! registers[Ox]
|
|
std %i2, [%sp + (24 + 10) * 4]
|
|
std %i4, [%sp + (24 + 12) * 4]
|
|
std %i6, [%sp + (24 + 14) * 4]
|
|
! F0->F31 not implemented
|
|
mov %y, %l4
|
|
mov %tbr, %l5
|
|
st %l4, [%sp + (24 + 64) * 4] ! Y
|
|
st %l0, [%sp + (24 + 65) * 4] ! PSR
|
|
st %l3, [%sp + (24 + 66) * 4] ! WIM
|
|
st %l5, [%sp + (24 + 67) * 4] ! TBR
|
|
st %l1, [%sp + (24 + 68) * 4] ! PC
|
|
st %l2, [%sp + (24 + 69) * 4] ! NPC
|
|
|
|
! CPSR and FPSR not impl
|
|
|
|
or %l0, 0xf20, %l4
|
|
mov %l4, %psr ! Turn on traps, disable interrupts
|
|
|
|
call _handle_exception
|
|
add %sp, 24 * 4, %o0 ! Pass address of registers
|
|
|
|
! Reload all of the registers that aren't on the stack
|
|
|
|
ld [%sp + (24 + 1) * 4], %g1 ! registers[Gx]
|
|
ldd [%sp + (24 + 2) * 4], %g2
|
|
ldd [%sp + (24 + 4) * 4], %g4
|
|
ldd [%sp + (24 + 6) * 4], %g6
|
|
|
|
ldd [%sp + (24 + 8) * 4], %i0 ! registers[Ox]
|
|
ldd [%sp + (24 + 10) * 4], %i2
|
|
ldd [%sp + (24 + 12) * 4], %i4
|
|
ldd [%sp + (24 + 14) * 4], %i6
|
|
|
|
ldd [%sp + (24 + 64) * 4], %l0 ! Y & PSR
|
|
ldd [%sp + (24 + 68) * 4], %l2 ! PC & NPC
|
|
|
|
restore ! Ensure that previous window is valid
|
|
save %g0, %g0, %g0 ! by causing a window_underflow trap
|
|
|
|
mov %l0, %y
|
|
mov %l1, %psr ! Make sure that traps are disabled
|
|
! for rett
|
|
|
|
sethi %hi(in_trap_handler), %l4
|
|
ld [%lo(in_trap_handler) + %l4], %l5
|
|
dec %l5
|
|
st %l5, [%lo(in_trap_handler) + %l4]
|
|
|
|
jmpl %l2, %g0 ! Restore old PC
|
|
rett %l3 ! Restore old nPC
|
|
");
|
|
|
|
/* Convert ch from a hex digit to an int */
|
|
|
|
static int
|
|
hex (unsigned char ch)
|
|
{
|
|
if (ch >= 'a' && ch <= 'f')
|
|
return ch-'a'+10;
|
|
if (ch >= '0' && ch <= '9')
|
|
return ch-'0';
|
|
if (ch >= 'A' && ch <= 'F')
|
|
return ch-'A'+10;
|
|
return -1;
|
|
}
|
|
|
|
static char remcomInBuffer[BUFMAX];
|
|
static char remcomOutBuffer[BUFMAX];
|
|
|
|
/* scan for the sequence $<data>#<checksum> */
|
|
|
|
unsigned char *
|
|
getpacket (void)
|
|
{
|
|
unsigned char *buffer = &remcomInBuffer[0];
|
|
unsigned char checksum;
|
|
unsigned char xmitcsum;
|
|
int count;
|
|
char ch;
|
|
|
|
while (1)
|
|
{
|
|
/* wait around for the start character, ignore all other characters */
|
|
while ((ch = getDebugChar ()) != '$')
|
|
;
|
|
|
|
retry:
|
|
checksum = 0;
|
|
xmitcsum = -1;
|
|
count = 0;
|
|
|
|
/* now, read until a # or end of buffer is found */
|
|
while (count < BUFMAX)
|
|
{
|
|
ch = getDebugChar ();
|
|
if (ch == '$')
|
|
goto retry;
|
|
if (ch == '#')
|
|
break;
|
|
checksum = checksum + ch;
|
|
buffer[count] = ch;
|
|
count = count + 1;
|
|
}
|
|
buffer[count] = 0;
|
|
|
|
if (ch == '#')
|
|
{
|
|
ch = getDebugChar ();
|
|
xmitcsum = hex (ch) << 4;
|
|
ch = getDebugChar ();
|
|
xmitcsum += hex (ch);
|
|
|
|
if (checksum != xmitcsum)
|
|
{
|
|
putDebugChar ('-'); /* failed checksum */
|
|
}
|
|
else
|
|
{
|
|
putDebugChar ('+'); /* successful transfer */
|
|
|
|
/* if a sequence char is present, reply the sequence ID */
|
|
if (buffer[2] == ':')
|
|
{
|
|
putDebugChar (buffer[0]);
|
|
putDebugChar (buffer[1]);
|
|
|
|
return &buffer[3];
|
|
}
|
|
|
|
return &buffer[0];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* send the packet in buffer. */
|
|
|
|
static void
|
|
putpacket (unsigned char *buffer)
|
|
{
|
|
unsigned char checksum;
|
|
int count;
|
|
unsigned char ch;
|
|
|
|
/* $<packet info>#<checksum>. */
|
|
do
|
|
{
|
|
putDebugChar('$');
|
|
checksum = 0;
|
|
count = 0;
|
|
|
|
while (ch = buffer[count])
|
|
{
|
|
putDebugChar(ch);
|
|
checksum += ch;
|
|
count += 1;
|
|
}
|
|
|
|
putDebugChar('#');
|
|
putDebugChar(hexchars[checksum >> 4]);
|
|
putDebugChar(hexchars[checksum & 0xf]);
|
|
|
|
}
|
|
while (getDebugChar() != '+');
|
|
}
|
|
|
|
/* Indicate to caller of mem2hex or hex2mem that there has been an
|
|
error. */
|
|
static volatile int mem_err = 0;
|
|
|
|
/* Convert the memory pointed to by mem into hex, placing result in buf.
|
|
* Return a pointer to the last char put in buf (null), in case of mem fault,
|
|
* return 0.
|
|
* If MAY_FAULT is non-zero, then we will handle memory faults by returning
|
|
* a 0, else treat a fault like any other fault in the stub.
|
|
*/
|
|
|
|
static unsigned char *
|
|
mem2hex (unsigned char *mem, unsigned char *buf, int count, int may_fault)
|
|
{
|
|
unsigned char ch;
|
|
|
|
set_mem_fault_trap(may_fault);
|
|
|
|
while (count-- > 0)
|
|
{
|
|
ch = *mem++;
|
|
if (mem_err)
|
|
return 0;
|
|
*buf++ = hexchars[ch >> 4];
|
|
*buf++ = hexchars[ch & 0xf];
|
|
}
|
|
|
|
*buf = 0;
|
|
|
|
set_mem_fault_trap(0);
|
|
|
|
return buf;
|
|
}
|
|
|
|
/* convert the hex array pointed to by buf into binary to be placed in mem
|
|
* return a pointer to the character AFTER the last byte written */
|
|
|
|
static char *
|
|
hex2mem (unsigned char *buf, unsigned char *mem, int count, int may_fault)
|
|
{
|
|
int i;
|
|
unsigned char ch;
|
|
|
|
set_mem_fault_trap(may_fault);
|
|
|
|
for (i=0; i<count; i++)
|
|
{
|
|
ch = hex(*buf++) << 4;
|
|
ch |= hex(*buf++);
|
|
*mem++ = ch;
|
|
if (mem_err)
|
|
return 0;
|
|
}
|
|
|
|
set_mem_fault_trap(0);
|
|
|
|
return mem;
|
|
}
|
|
|
|
/* This table contains the mapping between SPARC hardware trap types, and
|
|
signals, which are primarily what GDB understands. It also indicates
|
|
which hardware traps we need to commandeer when initializing the stub. */
|
|
|
|
static struct hard_trap_info
|
|
{
|
|
unsigned char tt; /* Trap type code for SPARClite */
|
|
unsigned char signo; /* Signal that we map this trap into */
|
|
} hard_trap_info[] = {
|
|
{1, SIGSEGV}, /* instruction access error */
|
|
{2, SIGILL}, /* privileged instruction */
|
|
{3, SIGILL}, /* illegal instruction */
|
|
{4, SIGEMT}, /* fp disabled */
|
|
{36, SIGEMT}, /* cp disabled */
|
|
{7, SIGBUS}, /* mem address not aligned */
|
|
{9, SIGSEGV}, /* data access exception */
|
|
{10, SIGEMT}, /* tag overflow */
|
|
{128+1, SIGTRAP}, /* ta 1 - normal breakpoint instruction */
|
|
{0, 0} /* Must be last */
|
|
};
|
|
|
|
/* Set up exception handlers for tracing and breakpoints */
|
|
|
|
void
|
|
set_debug_traps (void)
|
|
{
|
|
struct hard_trap_info *ht;
|
|
|
|
for (ht = hard_trap_info; ht->tt && ht->signo; ht++)
|
|
exceptionHandler(ht->tt, trap_low);
|
|
|
|
initialized = 1;
|
|
}
|
|
|
|
asm ("
|
|
! Trap handler for memory errors. This just sets mem_err to be non-zero. It
|
|
! assumes that %l1 is non-zero. This should be safe, as it is doubtful that
|
|
! 0 would ever contain code that could mem fault. This routine will skip
|
|
! past the faulting instruction after setting mem_err.
|
|
|
|
.text
|
|
.align 4
|
|
|
|
_fltr_set_mem_err:
|
|
sethi %hi(_mem_err), %l0
|
|
st %l1, [%l0 + %lo(_mem_err)]
|
|
jmpl %l2, %g0
|
|
rett %l2+4
|
|
");
|
|
|
|
static void
|
|
set_mem_fault_trap (int enable)
|
|
{
|
|
extern void fltr_set_mem_err();
|
|
mem_err = 0;
|
|
|
|
if (enable)
|
|
exceptionHandler(9, fltr_set_mem_err);
|
|
else
|
|
exceptionHandler(9, trap_low);
|
|
}
|
|
|
|
/* Convert the SPARC hardware trap type code to a unix signal number. */
|
|
|
|
static int
|
|
computeSignal (int tt)
|
|
{
|
|
struct hard_trap_info *ht;
|
|
|
|
for (ht = hard_trap_info; ht->tt && ht->signo; ht++)
|
|
if (ht->tt == tt)
|
|
return ht->signo;
|
|
|
|
return SIGHUP; /* default for things we don't know about */
|
|
}
|
|
|
|
/*
|
|
* While we find nice hex chars, build an int.
|
|
* Return number of chars processed.
|
|
*/
|
|
|
|
static int
|
|
hexToInt(char **ptr, int *intValue)
|
|
{
|
|
int numChars = 0;
|
|
int hexValue;
|
|
|
|
*intValue = 0;
|
|
|
|
while (**ptr)
|
|
{
|
|
hexValue = hex(**ptr);
|
|
if (hexValue < 0)
|
|
break;
|
|
|
|
*intValue = (*intValue << 4) | hexValue;
|
|
numChars ++;
|
|
|
|
(*ptr)++;
|
|
}
|
|
|
|
return (numChars);
|
|
}
|
|
|
|
/*
|
|
* This function does all command procesing for interfacing to gdb. It
|
|
* returns 1 if you should skip the instruction at the trap address, 0
|
|
* otherwise.
|
|
*/
|
|
|
|
extern void breakinst();
|
|
|
|
static void
|
|
handle_exception (unsigned long *registers)
|
|
{
|
|
int tt; /* Trap type */
|
|
int sigval;
|
|
int addr;
|
|
int length;
|
|
char *ptr;
|
|
unsigned long *sp;
|
|
|
|
/* First, we must force all of the windows to be spilled out */
|
|
|
|
asm(" save %sp, -64, %sp
|
|
save %sp, -64, %sp
|
|
save %sp, -64, %sp
|
|
save %sp, -64, %sp
|
|
save %sp, -64, %sp
|
|
save %sp, -64, %sp
|
|
save %sp, -64, %sp
|
|
save %sp, -64, %sp
|
|
restore
|
|
restore
|
|
restore
|
|
restore
|
|
restore
|
|
restore
|
|
restore
|
|
restore
|
|
");
|
|
|
|
if (registers[PC] == (unsigned long)breakinst)
|
|
{
|
|
registers[PC] = registers[NPC];
|
|
registers[NPC] += 4;
|
|
}
|
|
|
|
sp = (unsigned long *)registers[SP];
|
|
|
|
tt = (registers[TBR] >> 4) & 0xff;
|
|
|
|
/* reply to host that an exception has occurred */
|
|
sigval = computeSignal(tt);
|
|
ptr = remcomOutBuffer;
|
|
|
|
*ptr++ = 'T';
|
|
*ptr++ = hexchars[sigval >> 4];
|
|
*ptr++ = hexchars[sigval & 0xf];
|
|
|
|
*ptr++ = hexchars[PC >> 4];
|
|
*ptr++ = hexchars[PC & 0xf];
|
|
*ptr++ = ':';
|
|
ptr = mem2hex((char *)®isters[PC], ptr, 4, 0);
|
|
*ptr++ = ';';
|
|
|
|
*ptr++ = hexchars[FP >> 4];
|
|
*ptr++ = hexchars[FP & 0xf];
|
|
*ptr++ = ':';
|
|
ptr = mem2hex(sp + 8 + 6, ptr, 4, 0); /* FP */
|
|
*ptr++ = ';';
|
|
|
|
*ptr++ = hexchars[SP >> 4];
|
|
*ptr++ = hexchars[SP & 0xf];
|
|
*ptr++ = ':';
|
|
ptr = mem2hex((char *)&sp, ptr, 4, 0);
|
|
*ptr++ = ';';
|
|
|
|
*ptr++ = hexchars[NPC >> 4];
|
|
*ptr++ = hexchars[NPC & 0xf];
|
|
*ptr++ = ':';
|
|
ptr = mem2hex((char *)®isters[NPC], ptr, 4, 0);
|
|
*ptr++ = ';';
|
|
|
|
*ptr++ = hexchars[O7 >> 4];
|
|
*ptr++ = hexchars[O7 & 0xf];
|
|
*ptr++ = ':';
|
|
ptr = mem2hex((char *)®isters[O7], ptr, 4, 0);
|
|
*ptr++ = ';';
|
|
|
|
*ptr++ = 0;
|
|
|
|
putpacket(remcomOutBuffer);
|
|
|
|
while (1)
|
|
{
|
|
remcomOutBuffer[0] = 0;
|
|
|
|
ptr = getpacket();
|
|
switch (*ptr++)
|
|
{
|
|
case '?':
|
|
remcomOutBuffer[0] = 'S';
|
|
remcomOutBuffer[1] = hexchars[sigval >> 4];
|
|
remcomOutBuffer[2] = hexchars[sigval & 0xf];
|
|
remcomOutBuffer[3] = 0;
|
|
break;
|
|
|
|
case 'd': /* toggle debug flag */
|
|
break;
|
|
|
|
case 'g': /* return the value of the CPU registers */
|
|
{
|
|
ptr = remcomOutBuffer;
|
|
ptr = mem2hex((char *)registers, ptr, 16 * 4, 0); /* G & O regs */
|
|
ptr = mem2hex(sp + 0, ptr, 16 * 4, 0); /* L & I regs */
|
|
memset(ptr, '0', 32 * 8); /* Floating point */
|
|
mem2hex((char *)®isters[Y],
|
|
ptr + 32 * 4 * 2,
|
|
8 * 4,
|
|
0); /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
|
|
}
|
|
break;
|
|
|
|
case 'G': /* set the value of the CPU registers - return OK */
|
|
{
|
|
unsigned long *newsp, psr;
|
|
|
|
psr = registers[PSR];
|
|
|
|
hex2mem(ptr, (char *)registers, 16 * 4, 0); /* G & O regs */
|
|
hex2mem(ptr + 16 * 4 * 2, sp + 0, 16 * 4, 0); /* L & I regs */
|
|
hex2mem(ptr + 64 * 4 * 2, (char *)®isters[Y],
|
|
8 * 4, 0); /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
|
|
|
|
/* See if the stack pointer has moved. If so, then copy the saved
|
|
locals and ins to the new location. This keeps the window
|
|
overflow and underflow routines happy. */
|
|
|
|
newsp = (unsigned long *)registers[SP];
|
|
if (sp != newsp)
|
|
sp = memcpy(newsp, sp, 16 * 4);
|
|
|
|
/* Don't allow CWP to be modified. */
|
|
|
|
if (psr != registers[PSR])
|
|
registers[PSR] = (psr & 0x1f) | (registers[PSR] & ~0x1f);
|
|
|
|
strcpy(remcomOutBuffer,"OK");
|
|
}
|
|
break;
|
|
|
|
case 'm': /* mAA..AA,LLLL Read LLLL bytes at address AA..AA */
|
|
/* Try to read %x,%x. */
|
|
|
|
if (hexToInt(&ptr, &addr)
|
|
&& *ptr++ == ','
|
|
&& hexToInt(&ptr, &length))
|
|
{
|
|
if (mem2hex((char *)addr, remcomOutBuffer, length, 1))
|
|
break;
|
|
|
|
strcpy (remcomOutBuffer, "E03");
|
|
}
|
|
else
|
|
strcpy(remcomOutBuffer,"E01");
|
|
break;
|
|
|
|
case 'M': /* MAA..AA,LLLL: Write LLLL bytes at address AA.AA return OK */
|
|
/* Try to read '%x,%x:'. */
|
|
|
|
if (hexToInt(&ptr, &addr)
|
|
&& *ptr++ == ','
|
|
&& hexToInt(&ptr, &length)
|
|
&& *ptr++ == ':')
|
|
{
|
|
if (hex2mem(ptr, (char *)addr, length, 1))
|
|
strcpy(remcomOutBuffer, "OK");
|
|
else
|
|
strcpy(remcomOutBuffer, "E03");
|
|
}
|
|
else
|
|
strcpy(remcomOutBuffer, "E02");
|
|
break;
|
|
|
|
case 'c': /* cAA..AA Continue at address AA..AA(optional) */
|
|
/* try to read optional parameter, pc unchanged if no parm */
|
|
|
|
if (hexToInt(&ptr, &addr))
|
|
{
|
|
registers[PC] = addr;
|
|
registers[NPC] = addr + 4;
|
|
}
|
|
|
|
/* Need to flush the instruction cache here, as we may have deposited a
|
|
breakpoint, and the icache probably has no way of knowing that a data ref to
|
|
some location may have changed something that is in the instruction cache.
|
|
*/
|
|
|
|
flush_i_cache();
|
|
return;
|
|
|
|
/* kill the program */
|
|
case 'k' : /* do nothing */
|
|
break;
|
|
#if 0
|
|
case 't': /* Test feature */
|
|
asm (" std %f30,[%sp]");
|
|
break;
|
|
#endif
|
|
case 'r': /* Reset */
|
|
asm ("call 0
|
|
nop ");
|
|
break;
|
|
} /* switch */
|
|
|
|
/* reply to the request */
|
|
putpacket(remcomOutBuffer);
|
|
}
|
|
}
|
|
|
|
/* This function will generate a breakpoint exception. It is used at the
|
|
beginning of a program to sync up with a debugger and can be used
|
|
otherwise as a quick means to stop program execution and "break" into
|
|
the debugger. */
|
|
|
|
void
|
|
breakpoint (void)
|
|
{
|
|
if (!initialized)
|
|
return;
|
|
|
|
asm(" .globl _breakinst
|
|
|
|
_breakinst: ta 1
|
|
");
|
|
}
|