mirror of
https://github.com/darlinghq/darling-gdb.git
synced 2025-01-10 06:00:59 +00:00
872761f485
* amd64-tdep.c: Add a frame unwinder for function epilogues. (amd64_in_function_epilogue_p): New function. (amd64_epilogue_frame_sniffer): New function. (amd64_epilogue_frame_cache): New function. (amd64_epilogue_frame_this_id): New function. (amd64_epilogue_frame_unwind): New struct frame_unwind. (amd64_init_abi): Hook the new unwinder. * amd64-linux-tdep.c (amd64_linux_init_abi): Set gdbarch to use SVR4 method for skip_trampoline_code.
2225 lines
64 KiB
C
2225 lines
64 KiB
C
/* Target-dependent code for AMD64.
|
||
|
||
Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
|
||
Free Software Foundation, Inc.
|
||
|
||
Contributed by Jiri Smid, SuSE Labs.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||
|
||
#include "defs.h"
|
||
#include "opcode/i386.h"
|
||
#include "dis-asm.h"
|
||
#include "arch-utils.h"
|
||
#include "block.h"
|
||
#include "dummy-frame.h"
|
||
#include "frame.h"
|
||
#include "frame-base.h"
|
||
#include "frame-unwind.h"
|
||
#include "inferior.h"
|
||
#include "gdbcmd.h"
|
||
#include "gdbcore.h"
|
||
#include "objfiles.h"
|
||
#include "regcache.h"
|
||
#include "regset.h"
|
||
#include "symfile.h"
|
||
|
||
#include "gdb_assert.h"
|
||
|
||
#include "amd64-tdep.h"
|
||
#include "i387-tdep.h"
|
||
|
||
/* Note that the AMD64 architecture was previously known as x86-64.
|
||
The latter is (forever) engraved into the canonical system name as
|
||
returned by config.guess, and used as the name for the AMD64 port
|
||
of GNU/Linux. The BSD's have renamed their ports to amd64; they
|
||
don't like to shout. For GDB we prefer the amd64_-prefix over the
|
||
x86_64_-prefix since it's so much easier to type. */
|
||
|
||
/* Register information. */
|
||
|
||
static const char *amd64_register_names[] =
|
||
{
|
||
"rax", "rbx", "rcx", "rdx", "rsi", "rdi", "rbp", "rsp",
|
||
|
||
/* %r8 is indeed register number 8. */
|
||
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
|
||
"rip", "eflags", "cs", "ss", "ds", "es", "fs", "gs",
|
||
|
||
/* %st0 is register number 24. */
|
||
"st0", "st1", "st2", "st3", "st4", "st5", "st6", "st7",
|
||
"fctrl", "fstat", "ftag", "fiseg", "fioff", "foseg", "fooff", "fop",
|
||
|
||
/* %xmm0 is register number 40. */
|
||
"xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7",
|
||
"xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15",
|
||
"mxcsr",
|
||
};
|
||
|
||
/* Total number of registers. */
|
||
#define AMD64_NUM_REGS ARRAY_SIZE (amd64_register_names)
|
||
|
||
/* Return the name of register REGNUM. */
|
||
|
||
const char *
|
||
amd64_register_name (struct gdbarch *gdbarch, int regnum)
|
||
{
|
||
if (regnum >= 0 && regnum < AMD64_NUM_REGS)
|
||
return amd64_register_names[regnum];
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/* Return the GDB type object for the "standard" data type of data in
|
||
register REGNUM. */
|
||
|
||
struct type *
|
||
amd64_register_type (struct gdbarch *gdbarch, int regnum)
|
||
{
|
||
if (regnum >= AMD64_RAX_REGNUM && regnum <= AMD64_RDI_REGNUM)
|
||
return builtin_type (gdbarch)->builtin_int64;
|
||
if (regnum == AMD64_RBP_REGNUM || regnum == AMD64_RSP_REGNUM)
|
||
return builtin_type (gdbarch)->builtin_data_ptr;
|
||
if (regnum >= AMD64_R8_REGNUM && regnum <= AMD64_R15_REGNUM)
|
||
return builtin_type (gdbarch)->builtin_int64;
|
||
if (regnum == AMD64_RIP_REGNUM)
|
||
return builtin_type (gdbarch)->builtin_func_ptr;
|
||
if (regnum == AMD64_EFLAGS_REGNUM)
|
||
return i386_eflags_type (gdbarch);
|
||
if (regnum >= AMD64_CS_REGNUM && regnum <= AMD64_GS_REGNUM)
|
||
return builtin_type (gdbarch)->builtin_int32;
|
||
if (regnum >= AMD64_ST0_REGNUM && regnum <= AMD64_ST0_REGNUM + 7)
|
||
return i387_ext_type (gdbarch);
|
||
if (regnum >= AMD64_FCTRL_REGNUM && regnum <= AMD64_FCTRL_REGNUM + 7)
|
||
return builtin_type (gdbarch)->builtin_int32;
|
||
if (regnum >= AMD64_XMM0_REGNUM && regnum <= AMD64_XMM0_REGNUM + 15)
|
||
return i386_sse_type (gdbarch);
|
||
if (regnum == AMD64_MXCSR_REGNUM)
|
||
return i386_mxcsr_type (gdbarch);
|
||
|
||
internal_error (__FILE__, __LINE__, _("invalid regnum"));
|
||
}
|
||
|
||
/* DWARF Register Number Mapping as defined in the System V psABI,
|
||
section 3.6. */
|
||
|
||
static int amd64_dwarf_regmap[] =
|
||
{
|
||
/* General Purpose Registers RAX, RDX, RCX, RBX, RSI, RDI. */
|
||
AMD64_RAX_REGNUM, AMD64_RDX_REGNUM,
|
||
AMD64_RCX_REGNUM, AMD64_RBX_REGNUM,
|
||
AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
|
||
|
||
/* Frame Pointer Register RBP. */
|
||
AMD64_RBP_REGNUM,
|
||
|
||
/* Stack Pointer Register RSP. */
|
||
AMD64_RSP_REGNUM,
|
||
|
||
/* Extended Integer Registers 8 - 15. */
|
||
8, 9, 10, 11, 12, 13, 14, 15,
|
||
|
||
/* Return Address RA. Mapped to RIP. */
|
||
AMD64_RIP_REGNUM,
|
||
|
||
/* SSE Registers 0 - 7. */
|
||
AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
|
||
AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
|
||
AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
|
||
AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
|
||
|
||
/* Extended SSE Registers 8 - 15. */
|
||
AMD64_XMM0_REGNUM + 8, AMD64_XMM0_REGNUM + 9,
|
||
AMD64_XMM0_REGNUM + 10, AMD64_XMM0_REGNUM + 11,
|
||
AMD64_XMM0_REGNUM + 12, AMD64_XMM0_REGNUM + 13,
|
||
AMD64_XMM0_REGNUM + 14, AMD64_XMM0_REGNUM + 15,
|
||
|
||
/* Floating Point Registers 0-7. */
|
||
AMD64_ST0_REGNUM + 0, AMD64_ST0_REGNUM + 1,
|
||
AMD64_ST0_REGNUM + 2, AMD64_ST0_REGNUM + 3,
|
||
AMD64_ST0_REGNUM + 4, AMD64_ST0_REGNUM + 5,
|
||
AMD64_ST0_REGNUM + 6, AMD64_ST0_REGNUM + 7,
|
||
|
||
/* Control and Status Flags Register. */
|
||
AMD64_EFLAGS_REGNUM,
|
||
|
||
/* Selector Registers. */
|
||
AMD64_ES_REGNUM,
|
||
AMD64_CS_REGNUM,
|
||
AMD64_SS_REGNUM,
|
||
AMD64_DS_REGNUM,
|
||
AMD64_FS_REGNUM,
|
||
AMD64_GS_REGNUM,
|
||
-1,
|
||
-1,
|
||
|
||
/* Segment Base Address Registers. */
|
||
-1,
|
||
-1,
|
||
-1,
|
||
-1,
|
||
|
||
/* Special Selector Registers. */
|
||
-1,
|
||
-1,
|
||
|
||
/* Floating Point Control Registers. */
|
||
AMD64_MXCSR_REGNUM,
|
||
AMD64_FCTRL_REGNUM,
|
||
AMD64_FSTAT_REGNUM
|
||
};
|
||
|
||
static const int amd64_dwarf_regmap_len =
|
||
(sizeof (amd64_dwarf_regmap) / sizeof (amd64_dwarf_regmap[0]));
|
||
|
||
/* Convert DWARF register number REG to the appropriate register
|
||
number used by GDB. */
|
||
|
||
static int
|
||
amd64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
|
||
{
|
||
int regnum = -1;
|
||
|
||
if (reg >= 0 && reg < amd64_dwarf_regmap_len)
|
||
regnum = amd64_dwarf_regmap[reg];
|
||
|
||
if (regnum == -1)
|
||
warning (_("Unmapped DWARF Register #%d encountered."), reg);
|
||
|
||
return regnum;
|
||
}
|
||
|
||
/* Map architectural register numbers to gdb register numbers. */
|
||
|
||
static const int amd64_arch_regmap[16] =
|
||
{
|
||
AMD64_RAX_REGNUM, /* %rax */
|
||
AMD64_RCX_REGNUM, /* %rcx */
|
||
AMD64_RDX_REGNUM, /* %rdx */
|
||
AMD64_RBX_REGNUM, /* %rbx */
|
||
AMD64_RSP_REGNUM, /* %rsp */
|
||
AMD64_RBP_REGNUM, /* %rbp */
|
||
AMD64_RSI_REGNUM, /* %rsi */
|
||
AMD64_RDI_REGNUM, /* %rdi */
|
||
AMD64_R8_REGNUM, /* %r8 */
|
||
AMD64_R9_REGNUM, /* %r9 */
|
||
AMD64_R10_REGNUM, /* %r10 */
|
||
AMD64_R11_REGNUM, /* %r11 */
|
||
AMD64_R12_REGNUM, /* %r12 */
|
||
AMD64_R13_REGNUM, /* %r13 */
|
||
AMD64_R14_REGNUM, /* %r14 */
|
||
AMD64_R15_REGNUM /* %r15 */
|
||
};
|
||
|
||
static const int amd64_arch_regmap_len =
|
||
(sizeof (amd64_arch_regmap) / sizeof (amd64_arch_regmap[0]));
|
||
|
||
/* Convert architectural register number REG to the appropriate register
|
||
number used by GDB. */
|
||
|
||
static int
|
||
amd64_arch_reg_to_regnum (int reg)
|
||
{
|
||
gdb_assert (reg >= 0 && reg < amd64_arch_regmap_len);
|
||
|
||
return amd64_arch_regmap[reg];
|
||
}
|
||
|
||
|
||
|
||
/* Register classes as defined in the psABI. */
|
||
|
||
enum amd64_reg_class
|
||
{
|
||
AMD64_INTEGER,
|
||
AMD64_SSE,
|
||
AMD64_SSEUP,
|
||
AMD64_X87,
|
||
AMD64_X87UP,
|
||
AMD64_COMPLEX_X87,
|
||
AMD64_NO_CLASS,
|
||
AMD64_MEMORY
|
||
};
|
||
|
||
/* Return the union class of CLASS1 and CLASS2. See the psABI for
|
||
details. */
|
||
|
||
static enum amd64_reg_class
|
||
amd64_merge_classes (enum amd64_reg_class class1, enum amd64_reg_class class2)
|
||
{
|
||
/* Rule (a): If both classes are equal, this is the resulting class. */
|
||
if (class1 == class2)
|
||
return class1;
|
||
|
||
/* Rule (b): If one of the classes is NO_CLASS, the resulting class
|
||
is the other class. */
|
||
if (class1 == AMD64_NO_CLASS)
|
||
return class2;
|
||
if (class2 == AMD64_NO_CLASS)
|
||
return class1;
|
||
|
||
/* Rule (c): If one of the classes is MEMORY, the result is MEMORY. */
|
||
if (class1 == AMD64_MEMORY || class2 == AMD64_MEMORY)
|
||
return AMD64_MEMORY;
|
||
|
||
/* Rule (d): If one of the classes is INTEGER, the result is INTEGER. */
|
||
if (class1 == AMD64_INTEGER || class2 == AMD64_INTEGER)
|
||
return AMD64_INTEGER;
|
||
|
||
/* Rule (e): If one of the classes is X87, X87UP, COMPLEX_X87 class,
|
||
MEMORY is used as class. */
|
||
if (class1 == AMD64_X87 || class1 == AMD64_X87UP
|
||
|| class1 == AMD64_COMPLEX_X87 || class2 == AMD64_X87
|
||
|| class2 == AMD64_X87UP || class2 == AMD64_COMPLEX_X87)
|
||
return AMD64_MEMORY;
|
||
|
||
/* Rule (f): Otherwise class SSE is used. */
|
||
return AMD64_SSE;
|
||
}
|
||
|
||
static void amd64_classify (struct type *type, enum amd64_reg_class class[2]);
|
||
|
||
/* Return non-zero if TYPE is a non-POD structure or union type. */
|
||
|
||
static int
|
||
amd64_non_pod_p (struct type *type)
|
||
{
|
||
/* ??? A class with a base class certainly isn't POD, but does this
|
||
catch all non-POD structure types? */
|
||
if (TYPE_CODE (type) == TYPE_CODE_STRUCT && TYPE_N_BASECLASSES (type) > 0)
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Classify TYPE according to the rules for aggregate (structures and
|
||
arrays) and union types, and store the result in CLASS. */
|
||
|
||
static void
|
||
amd64_classify_aggregate (struct type *type, enum amd64_reg_class class[2])
|
||
{
|
||
int len = TYPE_LENGTH (type);
|
||
|
||
/* 1. If the size of an object is larger than two eightbytes, or in
|
||
C++, is a non-POD structure or union type, or contains
|
||
unaligned fields, it has class memory. */
|
||
if (len > 16 || amd64_non_pod_p (type))
|
||
{
|
||
class[0] = class[1] = AMD64_MEMORY;
|
||
return;
|
||
}
|
||
|
||
/* 2. Both eightbytes get initialized to class NO_CLASS. */
|
||
class[0] = class[1] = AMD64_NO_CLASS;
|
||
|
||
/* 3. Each field of an object is classified recursively so that
|
||
always two fields are considered. The resulting class is
|
||
calculated according to the classes of the fields in the
|
||
eightbyte: */
|
||
|
||
if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
|
||
{
|
||
struct type *subtype = check_typedef (TYPE_TARGET_TYPE (type));
|
||
|
||
/* All fields in an array have the same type. */
|
||
amd64_classify (subtype, class);
|
||
if (len > 8 && class[1] == AMD64_NO_CLASS)
|
||
class[1] = class[0];
|
||
}
|
||
else
|
||
{
|
||
int i;
|
||
|
||
/* Structure or union. */
|
||
gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
|
||
|| TYPE_CODE (type) == TYPE_CODE_UNION);
|
||
|
||
for (i = 0; i < TYPE_NFIELDS (type); i++)
|
||
{
|
||
struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
|
||
int pos = TYPE_FIELD_BITPOS (type, i) / 64;
|
||
enum amd64_reg_class subclass[2];
|
||
|
||
/* Ignore static fields. */
|
||
if (field_is_static (&TYPE_FIELD (type, i)))
|
||
continue;
|
||
|
||
gdb_assert (pos == 0 || pos == 1);
|
||
|
||
amd64_classify (subtype, subclass);
|
||
class[pos] = amd64_merge_classes (class[pos], subclass[0]);
|
||
if (pos == 0)
|
||
class[1] = amd64_merge_classes (class[1], subclass[1]);
|
||
}
|
||
}
|
||
|
||
/* 4. Then a post merger cleanup is done: */
|
||
|
||
/* Rule (a): If one of the classes is MEMORY, the whole argument is
|
||
passed in memory. */
|
||
if (class[0] == AMD64_MEMORY || class[1] == AMD64_MEMORY)
|
||
class[0] = class[1] = AMD64_MEMORY;
|
||
|
||
/* Rule (b): If SSEUP is not preceeded by SSE, it is converted to
|
||
SSE. */
|
||
if (class[0] == AMD64_SSEUP)
|
||
class[0] = AMD64_SSE;
|
||
if (class[1] == AMD64_SSEUP && class[0] != AMD64_SSE)
|
||
class[1] = AMD64_SSE;
|
||
}
|
||
|
||
/* Classify TYPE, and store the result in CLASS. */
|
||
|
||
static void
|
||
amd64_classify (struct type *type, enum amd64_reg_class class[2])
|
||
{
|
||
enum type_code code = TYPE_CODE (type);
|
||
int len = TYPE_LENGTH (type);
|
||
|
||
class[0] = class[1] = AMD64_NO_CLASS;
|
||
|
||
/* Arguments of types (signed and unsigned) _Bool, char, short, int,
|
||
long, long long, and pointers are in the INTEGER class. Similarly,
|
||
range types, used by languages such as Ada, are also in the INTEGER
|
||
class. */
|
||
if ((code == TYPE_CODE_INT || code == TYPE_CODE_ENUM
|
||
|| code == TYPE_CODE_BOOL || code == TYPE_CODE_RANGE
|
||
|| code == TYPE_CODE_CHAR
|
||
|| code == TYPE_CODE_PTR || code == TYPE_CODE_REF)
|
||
&& (len == 1 || len == 2 || len == 4 || len == 8))
|
||
class[0] = AMD64_INTEGER;
|
||
|
||
/* Arguments of types float, double, _Decimal32, _Decimal64 and __m64
|
||
are in class SSE. */
|
||
else if ((code == TYPE_CODE_FLT || code == TYPE_CODE_DECFLOAT)
|
||
&& (len == 4 || len == 8))
|
||
/* FIXME: __m64 . */
|
||
class[0] = AMD64_SSE;
|
||
|
||
/* Arguments of types __float128, _Decimal128 and __m128 are split into
|
||
two halves. The least significant ones belong to class SSE, the most
|
||
significant one to class SSEUP. */
|
||
else if (code == TYPE_CODE_DECFLOAT && len == 16)
|
||
/* FIXME: __float128, __m128. */
|
||
class[0] = AMD64_SSE, class[1] = AMD64_SSEUP;
|
||
|
||
/* The 64-bit mantissa of arguments of type long double belongs to
|
||
class X87, the 16-bit exponent plus 6 bytes of padding belongs to
|
||
class X87UP. */
|
||
else if (code == TYPE_CODE_FLT && len == 16)
|
||
/* Class X87 and X87UP. */
|
||
class[0] = AMD64_X87, class[1] = AMD64_X87UP;
|
||
|
||
/* Aggregates. */
|
||
else if (code == TYPE_CODE_ARRAY || code == TYPE_CODE_STRUCT
|
||
|| code == TYPE_CODE_UNION)
|
||
amd64_classify_aggregate (type, class);
|
||
}
|
||
|
||
static enum return_value_convention
|
||
amd64_return_value (struct gdbarch *gdbarch, struct type *func_type,
|
||
struct type *type, struct regcache *regcache,
|
||
gdb_byte *readbuf, const gdb_byte *writebuf)
|
||
{
|
||
enum amd64_reg_class class[2];
|
||
int len = TYPE_LENGTH (type);
|
||
static int integer_regnum[] = { AMD64_RAX_REGNUM, AMD64_RDX_REGNUM };
|
||
static int sse_regnum[] = { AMD64_XMM0_REGNUM, AMD64_XMM1_REGNUM };
|
||
int integer_reg = 0;
|
||
int sse_reg = 0;
|
||
int i;
|
||
|
||
gdb_assert (!(readbuf && writebuf));
|
||
|
||
/* 1. Classify the return type with the classification algorithm. */
|
||
amd64_classify (type, class);
|
||
|
||
/* 2. If the type has class MEMORY, then the caller provides space
|
||
for the return value and passes the address of this storage in
|
||
%rdi as if it were the first argument to the function. In effect,
|
||
this address becomes a hidden first argument.
|
||
|
||
On return %rax will contain the address that has been passed in
|
||
by the caller in %rdi. */
|
||
if (class[0] == AMD64_MEMORY)
|
||
{
|
||
/* As indicated by the comment above, the ABI guarantees that we
|
||
can always find the return value just after the function has
|
||
returned. */
|
||
|
||
if (readbuf)
|
||
{
|
||
ULONGEST addr;
|
||
|
||
regcache_raw_read_unsigned (regcache, AMD64_RAX_REGNUM, &addr);
|
||
read_memory (addr, readbuf, TYPE_LENGTH (type));
|
||
}
|
||
|
||
return RETURN_VALUE_ABI_RETURNS_ADDRESS;
|
||
}
|
||
|
||
gdb_assert (class[1] != AMD64_MEMORY);
|
||
gdb_assert (len <= 16);
|
||
|
||
for (i = 0; len > 0; i++, len -= 8)
|
||
{
|
||
int regnum = -1;
|
||
int offset = 0;
|
||
|
||
switch (class[i])
|
||
{
|
||
case AMD64_INTEGER:
|
||
/* 3. If the class is INTEGER, the next available register
|
||
of the sequence %rax, %rdx is used. */
|
||
regnum = integer_regnum[integer_reg++];
|
||
break;
|
||
|
||
case AMD64_SSE:
|
||
/* 4. If the class is SSE, the next available SSE register
|
||
of the sequence %xmm0, %xmm1 is used. */
|
||
regnum = sse_regnum[sse_reg++];
|
||
break;
|
||
|
||
case AMD64_SSEUP:
|
||
/* 5. If the class is SSEUP, the eightbyte is passed in the
|
||
upper half of the last used SSE register. */
|
||
gdb_assert (sse_reg > 0);
|
||
regnum = sse_regnum[sse_reg - 1];
|
||
offset = 8;
|
||
break;
|
||
|
||
case AMD64_X87:
|
||
/* 6. If the class is X87, the value is returned on the X87
|
||
stack in %st0 as 80-bit x87 number. */
|
||
regnum = AMD64_ST0_REGNUM;
|
||
if (writebuf)
|
||
i387_return_value (gdbarch, regcache);
|
||
break;
|
||
|
||
case AMD64_X87UP:
|
||
/* 7. If the class is X87UP, the value is returned together
|
||
with the previous X87 value in %st0. */
|
||
gdb_assert (i > 0 && class[0] == AMD64_X87);
|
||
regnum = AMD64_ST0_REGNUM;
|
||
offset = 8;
|
||
len = 2;
|
||
break;
|
||
|
||
case AMD64_NO_CLASS:
|
||
continue;
|
||
|
||
default:
|
||
gdb_assert (!"Unexpected register class.");
|
||
}
|
||
|
||
gdb_assert (regnum != -1);
|
||
|
||
if (readbuf)
|
||
regcache_raw_read_part (regcache, regnum, offset, min (len, 8),
|
||
readbuf + i * 8);
|
||
if (writebuf)
|
||
regcache_raw_write_part (regcache, regnum, offset, min (len, 8),
|
||
writebuf + i * 8);
|
||
}
|
||
|
||
return RETURN_VALUE_REGISTER_CONVENTION;
|
||
}
|
||
|
||
|
||
static CORE_ADDR
|
||
amd64_push_arguments (struct regcache *regcache, int nargs,
|
||
struct value **args, CORE_ADDR sp, int struct_return)
|
||
{
|
||
static int integer_regnum[] =
|
||
{
|
||
AMD64_RDI_REGNUM, /* %rdi */
|
||
AMD64_RSI_REGNUM, /* %rsi */
|
||
AMD64_RDX_REGNUM, /* %rdx */
|
||
AMD64_RCX_REGNUM, /* %rcx */
|
||
8, /* %r8 */
|
||
9 /* %r9 */
|
||
};
|
||
static int sse_regnum[] =
|
||
{
|
||
/* %xmm0 ... %xmm7 */
|
||
AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
|
||
AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
|
||
AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
|
||
AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
|
||
};
|
||
struct value **stack_args = alloca (nargs * sizeof (struct value *));
|
||
int num_stack_args = 0;
|
||
int num_elements = 0;
|
||
int element = 0;
|
||
int integer_reg = 0;
|
||
int sse_reg = 0;
|
||
int i;
|
||
|
||
/* Reserve a register for the "hidden" argument. */
|
||
if (struct_return)
|
||
integer_reg++;
|
||
|
||
for (i = 0; i < nargs; i++)
|
||
{
|
||
struct type *type = value_type (args[i]);
|
||
int len = TYPE_LENGTH (type);
|
||
enum amd64_reg_class class[2];
|
||
int needed_integer_regs = 0;
|
||
int needed_sse_regs = 0;
|
||
int j;
|
||
|
||
/* Classify argument. */
|
||
amd64_classify (type, class);
|
||
|
||
/* Calculate the number of integer and SSE registers needed for
|
||
this argument. */
|
||
for (j = 0; j < 2; j++)
|
||
{
|
||
if (class[j] == AMD64_INTEGER)
|
||
needed_integer_regs++;
|
||
else if (class[j] == AMD64_SSE)
|
||
needed_sse_regs++;
|
||
}
|
||
|
||
/* Check whether enough registers are available, and if the
|
||
argument should be passed in registers at all. */
|
||
if (integer_reg + needed_integer_regs > ARRAY_SIZE (integer_regnum)
|
||
|| sse_reg + needed_sse_regs > ARRAY_SIZE (sse_regnum)
|
||
|| (needed_integer_regs == 0 && needed_sse_regs == 0))
|
||
{
|
||
/* The argument will be passed on the stack. */
|
||
num_elements += ((len + 7) / 8);
|
||
stack_args[num_stack_args++] = args[i];
|
||
}
|
||
else
|
||
{
|
||
/* The argument will be passed in registers. */
|
||
const gdb_byte *valbuf = value_contents (args[i]);
|
||
gdb_byte buf[8];
|
||
|
||
gdb_assert (len <= 16);
|
||
|
||
for (j = 0; len > 0; j++, len -= 8)
|
||
{
|
||
int regnum = -1;
|
||
int offset = 0;
|
||
|
||
switch (class[j])
|
||
{
|
||
case AMD64_INTEGER:
|
||
regnum = integer_regnum[integer_reg++];
|
||
break;
|
||
|
||
case AMD64_SSE:
|
||
regnum = sse_regnum[sse_reg++];
|
||
break;
|
||
|
||
case AMD64_SSEUP:
|
||
gdb_assert (sse_reg > 0);
|
||
regnum = sse_regnum[sse_reg - 1];
|
||
offset = 8;
|
||
break;
|
||
|
||
default:
|
||
gdb_assert (!"Unexpected register class.");
|
||
}
|
||
|
||
gdb_assert (regnum != -1);
|
||
memset (buf, 0, sizeof buf);
|
||
memcpy (buf, valbuf + j * 8, min (len, 8));
|
||
regcache_raw_write_part (regcache, regnum, offset, 8, buf);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Allocate space for the arguments on the stack. */
|
||
sp -= num_elements * 8;
|
||
|
||
/* The psABI says that "The end of the input argument area shall be
|
||
aligned on a 16 byte boundary." */
|
||
sp &= ~0xf;
|
||
|
||
/* Write out the arguments to the stack. */
|
||
for (i = 0; i < num_stack_args; i++)
|
||
{
|
||
struct type *type = value_type (stack_args[i]);
|
||
const gdb_byte *valbuf = value_contents (stack_args[i]);
|
||
int len = TYPE_LENGTH (type);
|
||
|
||
write_memory (sp + element * 8, valbuf, len);
|
||
element += ((len + 7) / 8);
|
||
}
|
||
|
||
/* The psABI says that "For calls that may call functions that use
|
||
varargs or stdargs (prototype-less calls or calls to functions
|
||
containing ellipsis (...) in the declaration) %al is used as
|
||
hidden argument to specify the number of SSE registers used. */
|
||
regcache_raw_write_unsigned (regcache, AMD64_RAX_REGNUM, sse_reg);
|
||
return sp;
|
||
}
|
||
|
||
static CORE_ADDR
|
||
amd64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
|
||
struct regcache *regcache, CORE_ADDR bp_addr,
|
||
int nargs, struct value **args, CORE_ADDR sp,
|
||
int struct_return, CORE_ADDR struct_addr)
|
||
{
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
gdb_byte buf[8];
|
||
|
||
/* Pass arguments. */
|
||
sp = amd64_push_arguments (regcache, nargs, args, sp, struct_return);
|
||
|
||
/* Pass "hidden" argument". */
|
||
if (struct_return)
|
||
{
|
||
store_unsigned_integer (buf, 8, byte_order, struct_addr);
|
||
regcache_cooked_write (regcache, AMD64_RDI_REGNUM, buf);
|
||
}
|
||
|
||
/* Store return address. */
|
||
sp -= 8;
|
||
store_unsigned_integer (buf, 8, byte_order, bp_addr);
|
||
write_memory (sp, buf, 8);
|
||
|
||
/* Finally, update the stack pointer... */
|
||
store_unsigned_integer (buf, 8, byte_order, sp);
|
||
regcache_cooked_write (regcache, AMD64_RSP_REGNUM, buf);
|
||
|
||
/* ...and fake a frame pointer. */
|
||
regcache_cooked_write (regcache, AMD64_RBP_REGNUM, buf);
|
||
|
||
return sp + 16;
|
||
}
|
||
|
||
/* Displaced instruction handling. */
|
||
|
||
/* A partially decoded instruction.
|
||
This contains enough details for displaced stepping purposes. */
|
||
|
||
struct amd64_insn
|
||
{
|
||
/* The number of opcode bytes. */
|
||
int opcode_len;
|
||
/* The offset of the rex prefix or -1 if not present. */
|
||
int rex_offset;
|
||
/* The offset to the first opcode byte. */
|
||
int opcode_offset;
|
||
/* The offset to the modrm byte or -1 if not present. */
|
||
int modrm_offset;
|
||
|
||
/* The raw instruction. */
|
||
gdb_byte *raw_insn;
|
||
};
|
||
|
||
struct displaced_step_closure
|
||
{
|
||
/* For rip-relative insns, saved copy of the reg we use instead of %rip. */
|
||
int tmp_used;
|
||
int tmp_regno;
|
||
ULONGEST tmp_save;
|
||
|
||
/* Details of the instruction. */
|
||
struct amd64_insn insn_details;
|
||
|
||
/* Amount of space allocated to insn_buf. */
|
||
int max_len;
|
||
|
||
/* The possibly modified insn.
|
||
This is a variable-length field. */
|
||
gdb_byte insn_buf[1];
|
||
};
|
||
|
||
/* WARNING: Keep onebyte_has_modrm, twobyte_has_modrm in sync with
|
||
../opcodes/i386-dis.c (until libopcodes exports them, or an alternative,
|
||
at which point delete these in favor of libopcodes' versions). */
|
||
|
||
static const unsigned char onebyte_has_modrm[256] = {
|
||
/* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
|
||
/* ------------------------------- */
|
||
/* 00 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 00 */
|
||
/* 10 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 10 */
|
||
/* 20 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 20 */
|
||
/* 30 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 30 */
|
||
/* 40 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 40 */
|
||
/* 50 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 50 */
|
||
/* 60 */ 0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0, /* 60 */
|
||
/* 70 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 70 */
|
||
/* 80 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 80 */
|
||
/* 90 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 90 */
|
||
/* a0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* a0 */
|
||
/* b0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* b0 */
|
||
/* c0 */ 1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0, /* c0 */
|
||
/* d0 */ 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1, /* d0 */
|
||
/* e0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* e0 */
|
||
/* f0 */ 0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1 /* f0 */
|
||
/* ------------------------------- */
|
||
/* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
|
||
};
|
||
|
||
static const unsigned char twobyte_has_modrm[256] = {
|
||
/* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
|
||
/* ------------------------------- */
|
||
/* 00 */ 1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1, /* 0f */
|
||
/* 10 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 1f */
|
||
/* 20 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 2f */
|
||
/* 30 */ 0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0, /* 3f */
|
||
/* 40 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 4f */
|
||
/* 50 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 5f */
|
||
/* 60 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 6f */
|
||
/* 70 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 7f */
|
||
/* 80 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 8f */
|
||
/* 90 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 9f */
|
||
/* a0 */ 0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,1, /* af */
|
||
/* b0 */ 1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1, /* bf */
|
||
/* c0 */ 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0, /* cf */
|
||
/* d0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* df */
|
||
/* e0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* ef */
|
||
/* f0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0 /* ff */
|
||
/* ------------------------------- */
|
||
/* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
|
||
};
|
||
|
||
static int amd64_syscall_p (const struct amd64_insn *insn, int *lengthp);
|
||
|
||
static int
|
||
rex_prefix_p (gdb_byte pfx)
|
||
{
|
||
return REX_PREFIX_P (pfx);
|
||
}
|
||
|
||
/* Skip the legacy instruction prefixes in INSN.
|
||
We assume INSN is properly sentineled so we don't have to worry
|
||
about falling off the end of the buffer. */
|
||
|
||
static gdb_byte *
|
||
amd64_skip_prefixes (gdb_byte *insn)
|
||
{
|
||
while (1)
|
||
{
|
||
switch (*insn)
|
||
{
|
||
case DATA_PREFIX_OPCODE:
|
||
case ADDR_PREFIX_OPCODE:
|
||
case CS_PREFIX_OPCODE:
|
||
case DS_PREFIX_OPCODE:
|
||
case ES_PREFIX_OPCODE:
|
||
case FS_PREFIX_OPCODE:
|
||
case GS_PREFIX_OPCODE:
|
||
case SS_PREFIX_OPCODE:
|
||
case LOCK_PREFIX_OPCODE:
|
||
case REPE_PREFIX_OPCODE:
|
||
case REPNE_PREFIX_OPCODE:
|
||
++insn;
|
||
continue;
|
||
default:
|
||
break;
|
||
}
|
||
break;
|
||
}
|
||
|
||
return insn;
|
||
}
|
||
|
||
/* fprintf-function for amd64_insn_length.
|
||
This function is a nop, we don't want to print anything, we just want to
|
||
compute the length of the insn. */
|
||
|
||
static int ATTR_FORMAT (printf, 2, 3)
|
||
amd64_insn_length_fprintf (void *stream, const char *format, ...)
|
||
{
|
||
return 0;
|
||
}
|
||
|
||
/* Initialize a struct disassemble_info for amd64_insn_length. */
|
||
|
||
static void
|
||
amd64_insn_length_init_dis (struct gdbarch *gdbarch,
|
||
struct disassemble_info *di,
|
||
const gdb_byte *insn, int max_len,
|
||
CORE_ADDR addr)
|
||
{
|
||
init_disassemble_info (di, NULL, amd64_insn_length_fprintf);
|
||
|
||
/* init_disassemble_info installs buffer_read_memory, etc.
|
||
so we don't need to do that here.
|
||
The cast is necessary until disassemble_info is const-ified. */
|
||
di->buffer = (gdb_byte *) insn;
|
||
di->buffer_length = max_len;
|
||
di->buffer_vma = addr;
|
||
|
||
di->arch = gdbarch_bfd_arch_info (gdbarch)->arch;
|
||
di->mach = gdbarch_bfd_arch_info (gdbarch)->mach;
|
||
di->endian = gdbarch_byte_order (gdbarch);
|
||
di->endian_code = gdbarch_byte_order_for_code (gdbarch);
|
||
|
||
disassemble_init_for_target (di);
|
||
}
|
||
|
||
/* Return the length in bytes of INSN.
|
||
MAX_LEN is the size of the buffer containing INSN.
|
||
libopcodes currently doesn't export a utility to compute the
|
||
instruction length, so use the disassembler until then. */
|
||
|
||
static int
|
||
amd64_insn_length (struct gdbarch *gdbarch,
|
||
const gdb_byte *insn, int max_len, CORE_ADDR addr)
|
||
{
|
||
struct disassemble_info di;
|
||
|
||
amd64_insn_length_init_dis (gdbarch, &di, insn, max_len, addr);
|
||
|
||
return gdbarch_print_insn (gdbarch, addr, &di);
|
||
}
|
||
|
||
/* Return an integer register (other than RSP) that is unused as an input
|
||
operand in INSN.
|
||
In order to not require adding a rex prefix if the insn doesn't already
|
||
have one, the result is restricted to RAX ... RDI, sans RSP.
|
||
The register numbering of the result follows architecture ordering,
|
||
e.g. RDI = 7. */
|
||
|
||
static int
|
||
amd64_get_unused_input_int_reg (const struct amd64_insn *details)
|
||
{
|
||
/* 1 bit for each reg */
|
||
int used_regs_mask = 0;
|
||
|
||
/* There can be at most 3 int regs used as inputs in an insn, and we have
|
||
7 to choose from (RAX ... RDI, sans RSP).
|
||
This allows us to take a conservative approach and keep things simple.
|
||
E.g. By avoiding RAX, we don't have to specifically watch for opcodes
|
||
that implicitly specify RAX. */
|
||
|
||
/* Avoid RAX. */
|
||
used_regs_mask |= 1 << EAX_REG_NUM;
|
||
/* Similarily avoid RDX, implicit operand in divides. */
|
||
used_regs_mask |= 1 << EDX_REG_NUM;
|
||
/* Avoid RSP. */
|
||
used_regs_mask |= 1 << ESP_REG_NUM;
|
||
|
||
/* If the opcode is one byte long and there's no ModRM byte,
|
||
assume the opcode specifies a register. */
|
||
if (details->opcode_len == 1 && details->modrm_offset == -1)
|
||
used_regs_mask |= 1 << (details->raw_insn[details->opcode_offset] & 7);
|
||
|
||
/* Mark used regs in the modrm/sib bytes. */
|
||
if (details->modrm_offset != -1)
|
||
{
|
||
int modrm = details->raw_insn[details->modrm_offset];
|
||
int mod = MODRM_MOD_FIELD (modrm);
|
||
int reg = MODRM_REG_FIELD (modrm);
|
||
int rm = MODRM_RM_FIELD (modrm);
|
||
int have_sib = mod != 3 && rm == 4;
|
||
|
||
/* Assume the reg field of the modrm byte specifies a register. */
|
||
used_regs_mask |= 1 << reg;
|
||
|
||
if (have_sib)
|
||
{
|
||
int base = SIB_BASE_FIELD (details->raw_insn[details->modrm_offset + 1]);
|
||
int index = SIB_INDEX_FIELD (details->raw_insn[details->modrm_offset + 1]);
|
||
used_regs_mask |= 1 << base;
|
||
used_regs_mask |= 1 << index;
|
||
}
|
||
else
|
||
{
|
||
used_regs_mask |= 1 << rm;
|
||
}
|
||
}
|
||
|
||
gdb_assert (used_regs_mask < 256);
|
||
gdb_assert (used_regs_mask != 255);
|
||
|
||
/* Finally, find a free reg. */
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < 8; ++i)
|
||
{
|
||
if (! (used_regs_mask & (1 << i)))
|
||
return i;
|
||
}
|
||
|
||
/* We shouldn't get here. */
|
||
internal_error (__FILE__, __LINE__, _("unable to find free reg"));
|
||
}
|
||
}
|
||
|
||
/* Extract the details of INSN that we need. */
|
||
|
||
static void
|
||
amd64_get_insn_details (gdb_byte *insn, struct amd64_insn *details)
|
||
{
|
||
gdb_byte *start = insn;
|
||
int need_modrm;
|
||
|
||
details->raw_insn = insn;
|
||
|
||
details->opcode_len = -1;
|
||
details->rex_offset = -1;
|
||
details->opcode_offset = -1;
|
||
details->modrm_offset = -1;
|
||
|
||
/* Skip legacy instruction prefixes. */
|
||
insn = amd64_skip_prefixes (insn);
|
||
|
||
/* Skip REX instruction prefix. */
|
||
if (rex_prefix_p (*insn))
|
||
{
|
||
details->rex_offset = insn - start;
|
||
++insn;
|
||
}
|
||
|
||
details->opcode_offset = insn - start;
|
||
|
||
if (*insn == TWO_BYTE_OPCODE_ESCAPE)
|
||
{
|
||
/* Two or three-byte opcode. */
|
||
++insn;
|
||
need_modrm = twobyte_has_modrm[*insn];
|
||
|
||
/* Check for three-byte opcode. */
|
||
switch (*insn)
|
||
{
|
||
case 0x24:
|
||
case 0x25:
|
||
case 0x38:
|
||
case 0x3a:
|
||
case 0x7a:
|
||
case 0x7b:
|
||
++insn;
|
||
details->opcode_len = 3;
|
||
break;
|
||
default:
|
||
details->opcode_len = 2;
|
||
break;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* One-byte opcode. */
|
||
need_modrm = onebyte_has_modrm[*insn];
|
||
details->opcode_len = 1;
|
||
}
|
||
|
||
if (need_modrm)
|
||
{
|
||
++insn;
|
||
details->modrm_offset = insn - start;
|
||
}
|
||
}
|
||
|
||
/* Update %rip-relative addressing in INSN.
|
||
|
||
%rip-relative addressing only uses a 32-bit displacement.
|
||
32 bits is not enough to be guaranteed to cover the distance between where
|
||
the real instruction is and where its copy is.
|
||
Convert the insn to use base+disp addressing.
|
||
We set base = pc + insn_length so we can leave disp unchanged. */
|
||
|
||
static void
|
||
fixup_riprel (struct gdbarch *gdbarch, struct displaced_step_closure *dsc,
|
||
CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
|
||
{
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
const struct amd64_insn *insn_details = &dsc->insn_details;
|
||
int modrm_offset = insn_details->modrm_offset;
|
||
gdb_byte *insn = insn_details->raw_insn + modrm_offset;
|
||
CORE_ADDR rip_base;
|
||
int32_t disp;
|
||
int insn_length;
|
||
int arch_tmp_regno, tmp_regno;
|
||
ULONGEST orig_value;
|
||
|
||
/* %rip+disp32 addressing mode, displacement follows ModRM byte. */
|
||
++insn;
|
||
|
||
/* Compute the rip-relative address. */
|
||
disp = extract_signed_integer (insn, sizeof (int32_t), byte_order);
|
||
insn_length = amd64_insn_length (gdbarch, dsc->insn_buf, dsc->max_len, from);
|
||
rip_base = from + insn_length;
|
||
|
||
/* We need a register to hold the address.
|
||
Pick one not used in the insn.
|
||
NOTE: arch_tmp_regno uses architecture ordering, e.g. RDI = 7. */
|
||
arch_tmp_regno = amd64_get_unused_input_int_reg (insn_details);
|
||
tmp_regno = amd64_arch_reg_to_regnum (arch_tmp_regno);
|
||
|
||
/* REX.B should be unset as we were using rip-relative addressing,
|
||
but ensure it's unset anyway, tmp_regno is not r8-r15. */
|
||
if (insn_details->rex_offset != -1)
|
||
dsc->insn_buf[insn_details->rex_offset] &= ~REX_B;
|
||
|
||
regcache_cooked_read_unsigned (regs, tmp_regno, &orig_value);
|
||
dsc->tmp_regno = tmp_regno;
|
||
dsc->tmp_save = orig_value;
|
||
dsc->tmp_used = 1;
|
||
|
||
/* Convert the ModRM field to be base+disp. */
|
||
dsc->insn_buf[modrm_offset] &= ~0xc7;
|
||
dsc->insn_buf[modrm_offset] |= 0x80 + arch_tmp_regno;
|
||
|
||
regcache_cooked_write_unsigned (regs, tmp_regno, rip_base);
|
||
|
||
if (debug_displaced)
|
||
fprintf_unfiltered (gdb_stdlog, "displaced: %%rip-relative addressing used.\n"
|
||
"displaced: using temp reg %d, old value %s, new value %s\n",
|
||
dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save),
|
||
paddress (gdbarch, rip_base));
|
||
}
|
||
|
||
static void
|
||
fixup_displaced_copy (struct gdbarch *gdbarch,
|
||
struct displaced_step_closure *dsc,
|
||
CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
|
||
{
|
||
const struct amd64_insn *details = &dsc->insn_details;
|
||
|
||
if (details->modrm_offset != -1)
|
||
{
|
||
gdb_byte modrm = details->raw_insn[details->modrm_offset];
|
||
|
||
if ((modrm & 0xc7) == 0x05)
|
||
{
|
||
/* The insn uses rip-relative addressing.
|
||
Deal with it. */
|
||
fixup_riprel (gdbarch, dsc, from, to, regs);
|
||
}
|
||
}
|
||
}
|
||
|
||
struct displaced_step_closure *
|
||
amd64_displaced_step_copy_insn (struct gdbarch *gdbarch,
|
||
CORE_ADDR from, CORE_ADDR to,
|
||
struct regcache *regs)
|
||
{
|
||
int len = gdbarch_max_insn_length (gdbarch);
|
||
/* Extra space for sentinels so fixup_{riprel,displaced_copy don't have to
|
||
continually watch for running off the end of the buffer. */
|
||
int fixup_sentinel_space = len;
|
||
struct displaced_step_closure *dsc =
|
||
xmalloc (sizeof (*dsc) + len + fixup_sentinel_space);
|
||
gdb_byte *buf = &dsc->insn_buf[0];
|
||
struct amd64_insn *details = &dsc->insn_details;
|
||
|
||
dsc->tmp_used = 0;
|
||
dsc->max_len = len + fixup_sentinel_space;
|
||
|
||
read_memory (from, buf, len);
|
||
|
||
/* Set up the sentinel space so we don't have to worry about running
|
||
off the end of the buffer. An excessive number of leading prefixes
|
||
could otherwise cause this. */
|
||
memset (buf + len, 0, fixup_sentinel_space);
|
||
|
||
amd64_get_insn_details (buf, details);
|
||
|
||
/* GDB may get control back after the insn after the syscall.
|
||
Presumably this is a kernel bug.
|
||
If this is a syscall, make sure there's a nop afterwards. */
|
||
{
|
||
int syscall_length;
|
||
|
||
if (amd64_syscall_p (details, &syscall_length))
|
||
buf[details->opcode_offset + syscall_length] = NOP_OPCODE;
|
||
}
|
||
|
||
/* Modify the insn to cope with the address where it will be executed from.
|
||
In particular, handle any rip-relative addressing. */
|
||
fixup_displaced_copy (gdbarch, dsc, from, to, regs);
|
||
|
||
write_memory (to, buf, len);
|
||
|
||
if (debug_displaced)
|
||
{
|
||
fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
|
||
paddress (gdbarch, from), paddress (gdbarch, to));
|
||
displaced_step_dump_bytes (gdb_stdlog, buf, len);
|
||
}
|
||
|
||
return dsc;
|
||
}
|
||
|
||
static int
|
||
amd64_absolute_jmp_p (const struct amd64_insn *details)
|
||
{
|
||
const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
|
||
|
||
if (insn[0] == 0xff)
|
||
{
|
||
/* jump near, absolute indirect (/4) */
|
||
if ((insn[1] & 0x38) == 0x20)
|
||
return 1;
|
||
|
||
/* jump far, absolute indirect (/5) */
|
||
if ((insn[1] & 0x38) == 0x28)
|
||
return 1;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
static int
|
||
amd64_absolute_call_p (const struct amd64_insn *details)
|
||
{
|
||
const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
|
||
|
||
if (insn[0] == 0xff)
|
||
{
|
||
/* Call near, absolute indirect (/2) */
|
||
if ((insn[1] & 0x38) == 0x10)
|
||
return 1;
|
||
|
||
/* Call far, absolute indirect (/3) */
|
||
if ((insn[1] & 0x38) == 0x18)
|
||
return 1;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
static int
|
||
amd64_ret_p (const struct amd64_insn *details)
|
||
{
|
||
/* NOTE: gcc can emit "repz ; ret". */
|
||
const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
|
||
|
||
switch (insn[0])
|
||
{
|
||
case 0xc2: /* ret near, pop N bytes */
|
||
case 0xc3: /* ret near */
|
||
case 0xca: /* ret far, pop N bytes */
|
||
case 0xcb: /* ret far */
|
||
case 0xcf: /* iret */
|
||
return 1;
|
||
|
||
default:
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
static int
|
||
amd64_call_p (const struct amd64_insn *details)
|
||
{
|
||
const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
|
||
|
||
if (amd64_absolute_call_p (details))
|
||
return 1;
|
||
|
||
/* call near, relative */
|
||
if (insn[0] == 0xe8)
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Return non-zero if INSN is a system call, and set *LENGTHP to its
|
||
length in bytes. Otherwise, return zero. */
|
||
|
||
static int
|
||
amd64_syscall_p (const struct amd64_insn *details, int *lengthp)
|
||
{
|
||
const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
|
||
|
||
if (insn[0] == 0x0f && insn[1] == 0x05)
|
||
{
|
||
*lengthp = 2;
|
||
return 1;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Fix up the state of registers and memory after having single-stepped
|
||
a displaced instruction. */
|
||
|
||
void
|
||
amd64_displaced_step_fixup (struct gdbarch *gdbarch,
|
||
struct displaced_step_closure *dsc,
|
||
CORE_ADDR from, CORE_ADDR to,
|
||
struct regcache *regs)
|
||
{
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
/* The offset we applied to the instruction's address. */
|
||
ULONGEST insn_offset = to - from;
|
||
gdb_byte *insn = dsc->insn_buf;
|
||
const struct amd64_insn *insn_details = &dsc->insn_details;
|
||
|
||
if (debug_displaced)
|
||
fprintf_unfiltered (gdb_stdlog,
|
||
"displaced: fixup (%s, %s), "
|
||
"insn = 0x%02x 0x%02x ...\n",
|
||
paddress (gdbarch, from), paddress (gdbarch, to),
|
||
insn[0], insn[1]);
|
||
|
||
/* If we used a tmp reg, restore it. */
|
||
|
||
if (dsc->tmp_used)
|
||
{
|
||
if (debug_displaced)
|
||
fprintf_unfiltered (gdb_stdlog, "displaced: restoring reg %d to %s\n",
|
||
dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save));
|
||
regcache_cooked_write_unsigned (regs, dsc->tmp_regno, dsc->tmp_save);
|
||
}
|
||
|
||
/* The list of issues to contend with here is taken from
|
||
resume_execution in arch/x86/kernel/kprobes.c, Linux 2.6.28.
|
||
Yay for Free Software! */
|
||
|
||
/* Relocate the %rip back to the program's instruction stream,
|
||
if necessary. */
|
||
|
||
/* Except in the case of absolute or indirect jump or call
|
||
instructions, or a return instruction, the new rip is relative to
|
||
the displaced instruction; make it relative to the original insn.
|
||
Well, signal handler returns don't need relocation either, but we use the
|
||
value of %rip to recognize those; see below. */
|
||
if (! amd64_absolute_jmp_p (insn_details)
|
||
&& ! amd64_absolute_call_p (insn_details)
|
||
&& ! amd64_ret_p (insn_details))
|
||
{
|
||
ULONGEST orig_rip;
|
||
int insn_len;
|
||
|
||
regcache_cooked_read_unsigned (regs, AMD64_RIP_REGNUM, &orig_rip);
|
||
|
||
/* A signal trampoline system call changes the %rip, resuming
|
||
execution of the main program after the signal handler has
|
||
returned. That makes them like 'return' instructions; we
|
||
shouldn't relocate %rip.
|
||
|
||
But most system calls don't, and we do need to relocate %rip.
|
||
|
||
Our heuristic for distinguishing these cases: if stepping
|
||
over the system call instruction left control directly after
|
||
the instruction, the we relocate --- control almost certainly
|
||
doesn't belong in the displaced copy. Otherwise, we assume
|
||
the instruction has put control where it belongs, and leave
|
||
it unrelocated. Goodness help us if there are PC-relative
|
||
system calls. */
|
||
if (amd64_syscall_p (insn_details, &insn_len)
|
||
&& orig_rip != to + insn_len
|
||
/* GDB can get control back after the insn after the syscall.
|
||
Presumably this is a kernel bug.
|
||
Fixup ensures its a nop, we add one to the length for it. */
|
||
&& orig_rip != to + insn_len + 1)
|
||
{
|
||
if (debug_displaced)
|
||
fprintf_unfiltered (gdb_stdlog,
|
||
"displaced: syscall changed %%rip; "
|
||
"not relocating\n");
|
||
}
|
||
else
|
||
{
|
||
ULONGEST rip = orig_rip - insn_offset;
|
||
|
||
/* If we just stepped over a breakpoint insn, we don't backup
|
||
the pc on purpose; this is to match behaviour without
|
||
stepping. */
|
||
|
||
regcache_cooked_write_unsigned (regs, AMD64_RIP_REGNUM, rip);
|
||
|
||
if (debug_displaced)
|
||
fprintf_unfiltered (gdb_stdlog,
|
||
"displaced: "
|
||
"relocated %%rip from %s to %s\n",
|
||
paddress (gdbarch, orig_rip),
|
||
paddress (gdbarch, rip));
|
||
}
|
||
}
|
||
|
||
/* If the instruction was PUSHFL, then the TF bit will be set in the
|
||
pushed value, and should be cleared. We'll leave this for later,
|
||
since GDB already messes up the TF flag when stepping over a
|
||
pushfl. */
|
||
|
||
/* If the instruction was a call, the return address now atop the
|
||
stack is the address following the copied instruction. We need
|
||
to make it the address following the original instruction. */
|
||
if (amd64_call_p (insn_details))
|
||
{
|
||
ULONGEST rsp;
|
||
ULONGEST retaddr;
|
||
const ULONGEST retaddr_len = 8;
|
||
|
||
regcache_cooked_read_unsigned (regs, AMD64_RSP_REGNUM, &rsp);
|
||
retaddr = read_memory_unsigned_integer (rsp, retaddr_len, byte_order);
|
||
retaddr = (retaddr - insn_offset) & 0xffffffffUL;
|
||
write_memory_unsigned_integer (rsp, retaddr_len, byte_order, retaddr);
|
||
|
||
if (debug_displaced)
|
||
fprintf_unfiltered (gdb_stdlog,
|
||
"displaced: relocated return addr at %s "
|
||
"to %s\n",
|
||
paddress (gdbarch, rsp),
|
||
paddress (gdbarch, retaddr));
|
||
}
|
||
}
|
||
|
||
/* The maximum number of saved registers. This should include %rip. */
|
||
#define AMD64_NUM_SAVED_REGS AMD64_NUM_GREGS
|
||
|
||
struct amd64_frame_cache
|
||
{
|
||
/* Base address. */
|
||
CORE_ADDR base;
|
||
CORE_ADDR sp_offset;
|
||
CORE_ADDR pc;
|
||
|
||
/* Saved registers. */
|
||
CORE_ADDR saved_regs[AMD64_NUM_SAVED_REGS];
|
||
CORE_ADDR saved_sp;
|
||
int saved_sp_reg;
|
||
|
||
/* Do we have a frame? */
|
||
int frameless_p;
|
||
};
|
||
|
||
/* Initialize a frame cache. */
|
||
|
||
static void
|
||
amd64_init_frame_cache (struct amd64_frame_cache *cache)
|
||
{
|
||
int i;
|
||
|
||
/* Base address. */
|
||
cache->base = 0;
|
||
cache->sp_offset = -8;
|
||
cache->pc = 0;
|
||
|
||
/* Saved registers. We initialize these to -1 since zero is a valid
|
||
offset (that's where %rbp is supposed to be stored). */
|
||
for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
|
||
cache->saved_regs[i] = -1;
|
||
cache->saved_sp = 0;
|
||
cache->saved_sp_reg = -1;
|
||
|
||
/* Frameless until proven otherwise. */
|
||
cache->frameless_p = 1;
|
||
}
|
||
|
||
/* Allocate and initialize a frame cache. */
|
||
|
||
static struct amd64_frame_cache *
|
||
amd64_alloc_frame_cache (void)
|
||
{
|
||
struct amd64_frame_cache *cache;
|
||
|
||
cache = FRAME_OBSTACK_ZALLOC (struct amd64_frame_cache);
|
||
amd64_init_frame_cache (cache);
|
||
return cache;
|
||
}
|
||
|
||
/* GCC 4.4 and later, can put code in the prologue to realign the
|
||
stack pointer. Check whether PC points to such code, and update
|
||
CACHE accordingly. Return the first instruction after the code
|
||
sequence or CURRENT_PC, whichever is smaller. If we don't
|
||
recognize the code, return PC. */
|
||
|
||
static CORE_ADDR
|
||
amd64_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
|
||
struct amd64_frame_cache *cache)
|
||
{
|
||
/* There are 2 code sequences to re-align stack before the frame
|
||
gets set up:
|
||
|
||
1. Use a caller-saved saved register:
|
||
|
||
leaq 8(%rsp), %reg
|
||
andq $-XXX, %rsp
|
||
pushq -8(%reg)
|
||
|
||
2. Use a callee-saved saved register:
|
||
|
||
pushq %reg
|
||
leaq 16(%rsp), %reg
|
||
andq $-XXX, %rsp
|
||
pushq -8(%reg)
|
||
|
||
"andq $-XXX, %rsp" can be either 4 bytes or 7 bytes:
|
||
|
||
0x48 0x83 0xe4 0xf0 andq $-16, %rsp
|
||
0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp
|
||
*/
|
||
|
||
gdb_byte buf[18];
|
||
int reg, r;
|
||
int offset, offset_and;
|
||
|
||
if (target_read_memory (pc, buf, sizeof buf))
|
||
return pc;
|
||
|
||
/* Check caller-saved saved register. The first instruction has
|
||
to be "leaq 8(%rsp), %reg". */
|
||
if ((buf[0] & 0xfb) == 0x48
|
||
&& buf[1] == 0x8d
|
||
&& buf[3] == 0x24
|
||
&& buf[4] == 0x8)
|
||
{
|
||
/* MOD must be binary 10 and R/M must be binary 100. */
|
||
if ((buf[2] & 0xc7) != 0x44)
|
||
return pc;
|
||
|
||
/* REG has register number. */
|
||
reg = (buf[2] >> 3) & 7;
|
||
|
||
/* Check the REX.R bit. */
|
||
if (buf[0] == 0x4c)
|
||
reg += 8;
|
||
|
||
offset = 5;
|
||
}
|
||
else
|
||
{
|
||
/* Check callee-saved saved register. The first instruction
|
||
has to be "pushq %reg". */
|
||
reg = 0;
|
||
if ((buf[0] & 0xf8) == 0x50)
|
||
offset = 0;
|
||
else if ((buf[0] & 0xf6) == 0x40
|
||
&& (buf[1] & 0xf8) == 0x50)
|
||
{
|
||
/* Check the REX.B bit. */
|
||
if ((buf[0] & 1) != 0)
|
||
reg = 8;
|
||
|
||
offset = 1;
|
||
}
|
||
else
|
||
return pc;
|
||
|
||
/* Get register. */
|
||
reg += buf[offset] & 0x7;
|
||
|
||
offset++;
|
||
|
||
/* The next instruction has to be "leaq 16(%rsp), %reg". */
|
||
if ((buf[offset] & 0xfb) != 0x48
|
||
|| buf[offset + 1] != 0x8d
|
||
|| buf[offset + 3] != 0x24
|
||
|| buf[offset + 4] != 0x10)
|
||
return pc;
|
||
|
||
/* MOD must be binary 10 and R/M must be binary 100. */
|
||
if ((buf[offset + 2] & 0xc7) != 0x44)
|
||
return pc;
|
||
|
||
/* REG has register number. */
|
||
r = (buf[offset + 2] >> 3) & 7;
|
||
|
||
/* Check the REX.R bit. */
|
||
if (buf[offset] == 0x4c)
|
||
r += 8;
|
||
|
||
/* Registers in pushq and leaq have to be the same. */
|
||
if (reg != r)
|
||
return pc;
|
||
|
||
offset += 5;
|
||
}
|
||
|
||
/* Rigister can't be %rsp nor %rbp. */
|
||
if (reg == 4 || reg == 5)
|
||
return pc;
|
||
|
||
/* The next instruction has to be "andq $-XXX, %rsp". */
|
||
if (buf[offset] != 0x48
|
||
|| buf[offset + 2] != 0xe4
|
||
|| (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83))
|
||
return pc;
|
||
|
||
offset_and = offset;
|
||
offset += buf[offset + 1] == 0x81 ? 7 : 4;
|
||
|
||
/* The next instruction has to be "pushq -8(%reg)". */
|
||
r = 0;
|
||
if (buf[offset] == 0xff)
|
||
offset++;
|
||
else if ((buf[offset] & 0xf6) == 0x40
|
||
&& buf[offset + 1] == 0xff)
|
||
{
|
||
/* Check the REX.B bit. */
|
||
if ((buf[offset] & 0x1) != 0)
|
||
r = 8;
|
||
offset += 2;
|
||
}
|
||
else
|
||
return pc;
|
||
|
||
/* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary
|
||
01. */
|
||
if (buf[offset + 1] != 0xf8
|
||
|| (buf[offset] & 0xf8) != 0x70)
|
||
return pc;
|
||
|
||
/* R/M has register. */
|
||
r += buf[offset] & 7;
|
||
|
||
/* Registers in leaq and pushq have to be the same. */
|
||
if (reg != r)
|
||
return pc;
|
||
|
||
if (current_pc > pc + offset_and)
|
||
cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg);
|
||
|
||
return min (pc + offset + 2, current_pc);
|
||
}
|
||
|
||
/* Do a limited analysis of the prologue at PC and update CACHE
|
||
accordingly. Bail out early if CURRENT_PC is reached. Return the
|
||
address where the analysis stopped.
|
||
|
||
We will handle only functions beginning with:
|
||
|
||
pushq %rbp 0x55
|
||
movq %rsp, %rbp 0x48 0x89 0xe5
|
||
|
||
Any function that doesn't start with this sequence will be assumed
|
||
to have no prologue and thus no valid frame pointer in %rbp. */
|
||
|
||
static CORE_ADDR
|
||
amd64_analyze_prologue (struct gdbarch *gdbarch,
|
||
CORE_ADDR pc, CORE_ADDR current_pc,
|
||
struct amd64_frame_cache *cache)
|
||
{
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
static gdb_byte proto[3] = { 0x48, 0x89, 0xe5 }; /* movq %rsp, %rbp */
|
||
gdb_byte buf[3];
|
||
gdb_byte op;
|
||
|
||
if (current_pc <= pc)
|
||
return current_pc;
|
||
|
||
pc = amd64_analyze_stack_align (pc, current_pc, cache);
|
||
|
||
op = read_memory_unsigned_integer (pc, 1, byte_order);
|
||
|
||
if (op == 0x55) /* pushq %rbp */
|
||
{
|
||
/* Take into account that we've executed the `pushq %rbp' that
|
||
starts this instruction sequence. */
|
||
cache->saved_regs[AMD64_RBP_REGNUM] = 0;
|
||
cache->sp_offset += 8;
|
||
|
||
/* If that's all, return now. */
|
||
if (current_pc <= pc + 1)
|
||
return current_pc;
|
||
|
||
/* Check for `movq %rsp, %rbp'. */
|
||
read_memory (pc + 1, buf, 3);
|
||
if (memcmp (buf, proto, 3) != 0)
|
||
return pc + 1;
|
||
|
||
/* OK, we actually have a frame. */
|
||
cache->frameless_p = 0;
|
||
return pc + 4;
|
||
}
|
||
|
||
return pc;
|
||
}
|
||
|
||
/* Return PC of first real instruction. */
|
||
|
||
static CORE_ADDR
|
||
amd64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
|
||
{
|
||
struct amd64_frame_cache cache;
|
||
CORE_ADDR pc;
|
||
|
||
amd64_init_frame_cache (&cache);
|
||
pc = amd64_analyze_prologue (gdbarch, start_pc, 0xffffffffffffffffLL,
|
||
&cache);
|
||
if (cache.frameless_p)
|
||
return start_pc;
|
||
|
||
return pc;
|
||
}
|
||
|
||
|
||
/* Normal frames. */
|
||
|
||
static struct amd64_frame_cache *
|
||
amd64_frame_cache (struct frame_info *this_frame, void **this_cache)
|
||
{
|
||
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
struct amd64_frame_cache *cache;
|
||
gdb_byte buf[8];
|
||
int i;
|
||
|
||
if (*this_cache)
|
||
return *this_cache;
|
||
|
||
cache = amd64_alloc_frame_cache ();
|
||
*this_cache = cache;
|
||
|
||
cache->pc = get_frame_func (this_frame);
|
||
if (cache->pc != 0)
|
||
amd64_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
|
||
cache);
|
||
|
||
if (cache->saved_sp_reg != -1)
|
||
{
|
||
/* Stack pointer has been saved. */
|
||
get_frame_register (this_frame, cache->saved_sp_reg, buf);
|
||
cache->saved_sp = extract_unsigned_integer(buf, 8, byte_order);
|
||
}
|
||
|
||
if (cache->frameless_p)
|
||
{
|
||
/* We didn't find a valid frame. If we're at the start of a
|
||
function, or somewhere half-way its prologue, the function's
|
||
frame probably hasn't been fully setup yet. Try to
|
||
reconstruct the base address for the stack frame by looking
|
||
at the stack pointer. For truly "frameless" functions this
|
||
might work too. */
|
||
|
||
if (cache->saved_sp_reg != -1)
|
||
{
|
||
/* We're halfway aligning the stack. */
|
||
cache->base = ((cache->saved_sp - 8) & 0xfffffffffffffff0LL) - 8;
|
||
cache->saved_regs[AMD64_RIP_REGNUM] = cache->saved_sp - 8;
|
||
|
||
/* This will be added back below. */
|
||
cache->saved_regs[AMD64_RIP_REGNUM] -= cache->base;
|
||
}
|
||
else
|
||
{
|
||
get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
|
||
cache->base = extract_unsigned_integer (buf, 8, byte_order)
|
||
+ cache->sp_offset;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
get_frame_register (this_frame, AMD64_RBP_REGNUM, buf);
|
||
cache->base = extract_unsigned_integer (buf, 8, byte_order);
|
||
}
|
||
|
||
/* Now that we have the base address for the stack frame we can
|
||
calculate the value of %rsp in the calling frame. */
|
||
cache->saved_sp = cache->base + 16;
|
||
|
||
/* For normal frames, %rip is stored at 8(%rbp). If we don't have a
|
||
frame we find it at the same offset from the reconstructed base
|
||
address. If we're halfway aligning the stack, %rip is handled
|
||
differently (see above). */
|
||
if (!cache->frameless_p || cache->saved_sp_reg == -1)
|
||
cache->saved_regs[AMD64_RIP_REGNUM] = 8;
|
||
|
||
/* Adjust all the saved registers such that they contain addresses
|
||
instead of offsets. */
|
||
for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
|
||
if (cache->saved_regs[i] != -1)
|
||
cache->saved_regs[i] += cache->base;
|
||
|
||
return cache;
|
||
}
|
||
|
||
static void
|
||
amd64_frame_this_id (struct frame_info *this_frame, void **this_cache,
|
||
struct frame_id *this_id)
|
||
{
|
||
struct amd64_frame_cache *cache =
|
||
amd64_frame_cache (this_frame, this_cache);
|
||
|
||
/* This marks the outermost frame. */
|
||
if (cache->base == 0)
|
||
return;
|
||
|
||
(*this_id) = frame_id_build (cache->base + 16, cache->pc);
|
||
}
|
||
|
||
static struct value *
|
||
amd64_frame_prev_register (struct frame_info *this_frame, void **this_cache,
|
||
int regnum)
|
||
{
|
||
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
||
struct amd64_frame_cache *cache =
|
||
amd64_frame_cache (this_frame, this_cache);
|
||
|
||
gdb_assert (regnum >= 0);
|
||
|
||
if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
|
||
return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
|
||
|
||
if (regnum < AMD64_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
|
||
return frame_unwind_got_memory (this_frame, regnum,
|
||
cache->saved_regs[regnum]);
|
||
|
||
return frame_unwind_got_register (this_frame, regnum, regnum);
|
||
}
|
||
|
||
static const struct frame_unwind amd64_frame_unwind =
|
||
{
|
||
NORMAL_FRAME,
|
||
amd64_frame_this_id,
|
||
amd64_frame_prev_register,
|
||
NULL,
|
||
default_frame_sniffer
|
||
};
|
||
|
||
|
||
/* Signal trampolines. */
|
||
|
||
/* FIXME: kettenis/20030419: Perhaps, we can unify the 32-bit and
|
||
64-bit variants. This would require using identical frame caches
|
||
on both platforms. */
|
||
|
||
static struct amd64_frame_cache *
|
||
amd64_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
|
||
{
|
||
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
struct amd64_frame_cache *cache;
|
||
CORE_ADDR addr;
|
||
gdb_byte buf[8];
|
||
int i;
|
||
|
||
if (*this_cache)
|
||
return *this_cache;
|
||
|
||
cache = amd64_alloc_frame_cache ();
|
||
|
||
get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
|
||
cache->base = extract_unsigned_integer (buf, 8, byte_order) - 8;
|
||
|
||
addr = tdep->sigcontext_addr (this_frame);
|
||
gdb_assert (tdep->sc_reg_offset);
|
||
gdb_assert (tdep->sc_num_regs <= AMD64_NUM_SAVED_REGS);
|
||
for (i = 0; i < tdep->sc_num_regs; i++)
|
||
if (tdep->sc_reg_offset[i] != -1)
|
||
cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
|
||
|
||
*this_cache = cache;
|
||
return cache;
|
||
}
|
||
|
||
static void
|
||
amd64_sigtramp_frame_this_id (struct frame_info *this_frame,
|
||
void **this_cache, struct frame_id *this_id)
|
||
{
|
||
struct amd64_frame_cache *cache =
|
||
amd64_sigtramp_frame_cache (this_frame, this_cache);
|
||
|
||
(*this_id) = frame_id_build (cache->base + 16, get_frame_pc (this_frame));
|
||
}
|
||
|
||
static struct value *
|
||
amd64_sigtramp_frame_prev_register (struct frame_info *this_frame,
|
||
void **this_cache, int regnum)
|
||
{
|
||
/* Make sure we've initialized the cache. */
|
||
amd64_sigtramp_frame_cache (this_frame, this_cache);
|
||
|
||
return amd64_frame_prev_register (this_frame, this_cache, regnum);
|
||
}
|
||
|
||
static int
|
||
amd64_sigtramp_frame_sniffer (const struct frame_unwind *self,
|
||
struct frame_info *this_frame,
|
||
void **this_cache)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
|
||
|
||
/* We shouldn't even bother if we don't have a sigcontext_addr
|
||
handler. */
|
||
if (tdep->sigcontext_addr == NULL)
|
||
return 0;
|
||
|
||
if (tdep->sigtramp_p != NULL)
|
||
{
|
||
if (tdep->sigtramp_p (this_frame))
|
||
return 1;
|
||
}
|
||
|
||
if (tdep->sigtramp_start != 0)
|
||
{
|
||
CORE_ADDR pc = get_frame_pc (this_frame);
|
||
|
||
gdb_assert (tdep->sigtramp_end != 0);
|
||
if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
|
||
return 1;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
static const struct frame_unwind amd64_sigtramp_frame_unwind =
|
||
{
|
||
SIGTRAMP_FRAME,
|
||
amd64_sigtramp_frame_this_id,
|
||
amd64_sigtramp_frame_prev_register,
|
||
NULL,
|
||
amd64_sigtramp_frame_sniffer
|
||
};
|
||
|
||
|
||
static CORE_ADDR
|
||
amd64_frame_base_address (struct frame_info *this_frame, void **this_cache)
|
||
{
|
||
struct amd64_frame_cache *cache =
|
||
amd64_frame_cache (this_frame, this_cache);
|
||
|
||
return cache->base;
|
||
}
|
||
|
||
static const struct frame_base amd64_frame_base =
|
||
{
|
||
&amd64_frame_unwind,
|
||
amd64_frame_base_address,
|
||
amd64_frame_base_address,
|
||
amd64_frame_base_address
|
||
};
|
||
|
||
/* Normal frames, but in a function epilogue. */
|
||
|
||
/* The epilogue is defined here as the 'ret' instruction, which will
|
||
follow any instruction such as 'leave' or 'pop %ebp' that destroys
|
||
the function's stack frame. */
|
||
|
||
static int
|
||
amd64_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
|
||
{
|
||
gdb_byte insn;
|
||
|
||
if (target_read_memory (pc, &insn, 1))
|
||
return 0; /* Can't read memory at pc. */
|
||
|
||
if (insn != 0xc3) /* 'ret' instruction. */
|
||
return 0;
|
||
|
||
return 1;
|
||
}
|
||
|
||
static int
|
||
amd64_epilogue_frame_sniffer (const struct frame_unwind *self,
|
||
struct frame_info *this_frame,
|
||
void **this_prologue_cache)
|
||
{
|
||
if (frame_relative_level (this_frame) == 0)
|
||
return amd64_in_function_epilogue_p (get_frame_arch (this_frame),
|
||
get_frame_pc (this_frame));
|
||
else
|
||
return 0;
|
||
}
|
||
|
||
static struct amd64_frame_cache *
|
||
amd64_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
|
||
{
|
||
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
struct amd64_frame_cache *cache;
|
||
gdb_byte buf[4];
|
||
|
||
if (*this_cache)
|
||
return *this_cache;
|
||
|
||
cache = amd64_alloc_frame_cache ();
|
||
*this_cache = cache;
|
||
|
||
/* Cache base will be %esp plus cache->sp_offset (-8). */
|
||
get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
|
||
cache->base = extract_unsigned_integer (buf, 8,
|
||
byte_order) + cache->sp_offset;
|
||
|
||
/* Cache pc will be the frame func. */
|
||
cache->pc = get_frame_pc (this_frame);
|
||
|
||
/* The saved %esp will be at cache->base plus 16. */
|
||
cache->saved_sp = cache->base + 16;
|
||
|
||
/* The saved %eip will be at cache->base plus 8. */
|
||
cache->saved_regs[AMD64_RIP_REGNUM] = cache->base + 8;
|
||
|
||
return cache;
|
||
}
|
||
|
||
static void
|
||
amd64_epilogue_frame_this_id (struct frame_info *this_frame,
|
||
void **this_cache,
|
||
struct frame_id *this_id)
|
||
{
|
||
struct amd64_frame_cache *cache = amd64_epilogue_frame_cache (this_frame,
|
||
this_cache);
|
||
|
||
(*this_id) = frame_id_build (cache->base + 8, cache->pc);
|
||
}
|
||
|
||
static const struct frame_unwind amd64_epilogue_frame_unwind =
|
||
{
|
||
NORMAL_FRAME,
|
||
amd64_epilogue_frame_this_id,
|
||
amd64_frame_prev_register,
|
||
NULL,
|
||
amd64_epilogue_frame_sniffer
|
||
};
|
||
|
||
static struct frame_id
|
||
amd64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
|
||
{
|
||
CORE_ADDR fp;
|
||
|
||
fp = get_frame_register_unsigned (this_frame, AMD64_RBP_REGNUM);
|
||
|
||
return frame_id_build (fp + 16, get_frame_pc (this_frame));
|
||
}
|
||
|
||
/* 16 byte align the SP per frame requirements. */
|
||
|
||
static CORE_ADDR
|
||
amd64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
|
||
{
|
||
return sp & -(CORE_ADDR)16;
|
||
}
|
||
|
||
|
||
/* Supply register REGNUM from the buffer specified by FPREGS and LEN
|
||
in the floating-point register set REGSET to register cache
|
||
REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
|
||
|
||
static void
|
||
amd64_supply_fpregset (const struct regset *regset, struct regcache *regcache,
|
||
int regnum, const void *fpregs, size_t len)
|
||
{
|
||
const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
|
||
|
||
gdb_assert (len == tdep->sizeof_fpregset);
|
||
amd64_supply_fxsave (regcache, regnum, fpregs);
|
||
}
|
||
|
||
/* Collect register REGNUM from the register cache REGCACHE and store
|
||
it in the buffer specified by FPREGS and LEN as described by the
|
||
floating-point register set REGSET. If REGNUM is -1, do this for
|
||
all registers in REGSET. */
|
||
|
||
static void
|
||
amd64_collect_fpregset (const struct regset *regset,
|
||
const struct regcache *regcache,
|
||
int regnum, void *fpregs, size_t len)
|
||
{
|
||
const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
|
||
|
||
gdb_assert (len == tdep->sizeof_fpregset);
|
||
amd64_collect_fxsave (regcache, regnum, fpregs);
|
||
}
|
||
|
||
/* Return the appropriate register set for the core section identified
|
||
by SECT_NAME and SECT_SIZE. */
|
||
|
||
static const struct regset *
|
||
amd64_regset_from_core_section (struct gdbarch *gdbarch,
|
||
const char *sect_name, size_t sect_size)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
|
||
if (strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
|
||
{
|
||
if (tdep->fpregset == NULL)
|
||
tdep->fpregset = regset_alloc (gdbarch, amd64_supply_fpregset,
|
||
amd64_collect_fpregset);
|
||
|
||
return tdep->fpregset;
|
||
}
|
||
|
||
return i386_regset_from_core_section (gdbarch, sect_name, sect_size);
|
||
}
|
||
|
||
|
||
/* Figure out where the longjmp will land. Slurp the jmp_buf out of
|
||
%rdi. We expect its value to be a pointer to the jmp_buf structure
|
||
from which we extract the address that we will land at. This
|
||
address is copied into PC. This routine returns non-zero on
|
||
success. */
|
||
|
||
static int
|
||
amd64_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
|
||
{
|
||
gdb_byte buf[8];
|
||
CORE_ADDR jb_addr;
|
||
struct gdbarch *gdbarch = get_frame_arch (frame);
|
||
int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
|
||
int len = TYPE_LENGTH (builtin_type (gdbarch)->builtin_func_ptr);
|
||
|
||
/* If JB_PC_OFFSET is -1, we have no way to find out where the
|
||
longjmp will land. */
|
||
if (jb_pc_offset == -1)
|
||
return 0;
|
||
|
||
get_frame_register (frame, AMD64_RDI_REGNUM, buf);
|
||
jb_addr= extract_typed_address
|
||
(buf, builtin_type (gdbarch)->builtin_data_ptr);
|
||
if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
|
||
return 0;
|
||
|
||
*pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
|
||
|
||
return 1;
|
||
}
|
||
|
||
static const int amd64_record_regmap[] =
|
||
{
|
||
AMD64_RAX_REGNUM, AMD64_RCX_REGNUM, AMD64_RDX_REGNUM, AMD64_RBX_REGNUM,
|
||
AMD64_RSP_REGNUM, AMD64_RBP_REGNUM, AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
|
||
AMD64_R8_REGNUM, AMD64_R9_REGNUM, AMD64_R10_REGNUM, AMD64_R11_REGNUM,
|
||
AMD64_R12_REGNUM, AMD64_R13_REGNUM, AMD64_R14_REGNUM, AMD64_R15_REGNUM,
|
||
AMD64_RIP_REGNUM, AMD64_EFLAGS_REGNUM, AMD64_CS_REGNUM, AMD64_SS_REGNUM,
|
||
AMD64_DS_REGNUM, AMD64_ES_REGNUM, AMD64_FS_REGNUM, AMD64_GS_REGNUM
|
||
};
|
||
|
||
void
|
||
amd64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
|
||
/* AMD64 generally uses `fxsave' instead of `fsave' for saving its
|
||
floating-point registers. */
|
||
tdep->sizeof_fpregset = I387_SIZEOF_FXSAVE;
|
||
|
||
/* AMD64 has an FPU and 16 SSE registers. */
|
||
tdep->st0_regnum = AMD64_ST0_REGNUM;
|
||
tdep->num_xmm_regs = 16;
|
||
|
||
/* This is what all the fuss is about. */
|
||
set_gdbarch_long_bit (gdbarch, 64);
|
||
set_gdbarch_long_long_bit (gdbarch, 64);
|
||
set_gdbarch_ptr_bit (gdbarch, 64);
|
||
|
||
/* In contrast to the i386, on AMD64 a `long double' actually takes
|
||
up 128 bits, even though it's still based on the i387 extended
|
||
floating-point format which has only 80 significant bits. */
|
||
set_gdbarch_long_double_bit (gdbarch, 128);
|
||
|
||
set_gdbarch_num_regs (gdbarch, AMD64_NUM_REGS);
|
||
set_gdbarch_register_name (gdbarch, amd64_register_name);
|
||
set_gdbarch_register_type (gdbarch, amd64_register_type);
|
||
|
||
/* Register numbers of various important registers. */
|
||
set_gdbarch_sp_regnum (gdbarch, AMD64_RSP_REGNUM); /* %rsp */
|
||
set_gdbarch_pc_regnum (gdbarch, AMD64_RIP_REGNUM); /* %rip */
|
||
set_gdbarch_ps_regnum (gdbarch, AMD64_EFLAGS_REGNUM); /* %eflags */
|
||
set_gdbarch_fp0_regnum (gdbarch, AMD64_ST0_REGNUM); /* %st(0) */
|
||
|
||
/* The "default" register numbering scheme for AMD64 is referred to
|
||
as the "DWARF Register Number Mapping" in the System V psABI.
|
||
The preferred debugging format for all known AMD64 targets is
|
||
actually DWARF2, and GCC doesn't seem to support DWARF (that is
|
||
DWARF-1), but we provide the same mapping just in case. This
|
||
mapping is also used for stabs, which GCC does support. */
|
||
set_gdbarch_stab_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
|
||
set_gdbarch_dwarf2_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
|
||
|
||
/* We don't override SDB_REG_RO_REGNUM, since COFF doesn't seem to
|
||
be in use on any of the supported AMD64 targets. */
|
||
|
||
/* Call dummy code. */
|
||
set_gdbarch_push_dummy_call (gdbarch, amd64_push_dummy_call);
|
||
set_gdbarch_frame_align (gdbarch, amd64_frame_align);
|
||
set_gdbarch_frame_red_zone_size (gdbarch, 128);
|
||
|
||
set_gdbarch_convert_register_p (gdbarch, i387_convert_register_p);
|
||
set_gdbarch_register_to_value (gdbarch, i387_register_to_value);
|
||
set_gdbarch_value_to_register (gdbarch, i387_value_to_register);
|
||
|
||
set_gdbarch_return_value (gdbarch, amd64_return_value);
|
||
|
||
set_gdbarch_skip_prologue (gdbarch, amd64_skip_prologue);
|
||
|
||
/* Avoid wiring in the MMX registers for now. */
|
||
set_gdbarch_num_pseudo_regs (gdbarch, 0);
|
||
tdep->mm0_regnum = -1;
|
||
|
||
tdep->record_regmap = amd64_record_regmap;
|
||
|
||
set_gdbarch_dummy_id (gdbarch, amd64_dummy_id);
|
||
|
||
/* Hook the function epilogue frame unwinder. This unwinder is
|
||
appended to the list first, so that it supercedes the other
|
||
unwinders in function epilogues. */
|
||
frame_unwind_prepend_unwinder (gdbarch, &amd64_epilogue_frame_unwind);
|
||
|
||
/* Hook the prologue-based frame unwinders. */
|
||
frame_unwind_append_unwinder (gdbarch, &amd64_sigtramp_frame_unwind);
|
||
frame_unwind_append_unwinder (gdbarch, &amd64_frame_unwind);
|
||
frame_base_set_default (gdbarch, &amd64_frame_base);
|
||
|
||
/* If we have a register mapping, enable the generic core file support. */
|
||
if (tdep->gregset_reg_offset)
|
||
set_gdbarch_regset_from_core_section (gdbarch,
|
||
amd64_regset_from_core_section);
|
||
|
||
set_gdbarch_get_longjmp_target (gdbarch, amd64_get_longjmp_target);
|
||
}
|
||
|
||
|
||
/* The 64-bit FXSAVE format differs from the 32-bit format in the
|
||
sense that the instruction pointer and data pointer are simply
|
||
64-bit offsets into the code segment and the data segment instead
|
||
of a selector offset pair. The functions below store the upper 32
|
||
bits of these pointers (instead of just the 16-bits of the segment
|
||
selector). */
|
||
|
||
/* Fill register REGNUM in REGCACHE with the appropriate
|
||
floating-point or SSE register value from *FXSAVE. If REGNUM is
|
||
-1, do this for all registers. This function masks off any of the
|
||
reserved bits in *FXSAVE. */
|
||
|
||
void
|
||
amd64_supply_fxsave (struct regcache *regcache, int regnum,
|
||
const void *fxsave)
|
||
{
|
||
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
|
||
i387_supply_fxsave (regcache, regnum, fxsave);
|
||
|
||
if (fxsave && gdbarch_ptr_bit (gdbarch) == 64)
|
||
{
|
||
const gdb_byte *regs = fxsave;
|
||
|
||
if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
|
||
regcache_raw_supply (regcache, I387_FISEG_REGNUM (tdep), regs + 12);
|
||
if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
|
||
regcache_raw_supply (regcache, I387_FOSEG_REGNUM (tdep), regs + 20);
|
||
}
|
||
}
|
||
|
||
/* Fill register REGNUM (if it is a floating-point or SSE register) in
|
||
*FXSAVE with the value from REGCACHE. If REGNUM is -1, do this for
|
||
all registers. This function doesn't touch any of the reserved
|
||
bits in *FXSAVE. */
|
||
|
||
void
|
||
amd64_collect_fxsave (const struct regcache *regcache, int regnum,
|
||
void *fxsave)
|
||
{
|
||
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
gdb_byte *regs = fxsave;
|
||
|
||
i387_collect_fxsave (regcache, regnum, fxsave);
|
||
|
||
if (gdbarch_ptr_bit (gdbarch) == 64)
|
||
{
|
||
if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
|
||
regcache_raw_collect (regcache, I387_FISEG_REGNUM (tdep), regs + 12);
|
||
if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
|
||
regcache_raw_collect (regcache, I387_FOSEG_REGNUM (tdep), regs + 20);
|
||
}
|
||
}
|