darling-gdb/gdb/sparc-nat.c
Richard Henderson b5453b9508 * sparc-linux-nat.c (_initialize_sparc_linux_nat): Fix prototype.
* sparc-nat.c (sparc_xfer_wcookie): Make static.
2012-03-22 20:36:34 +00:00

369 lines
11 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Native-dependent code for SPARC.
Copyright (C) 2003-2005, 2007-2012 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "defs.h"
#include "inferior.h"
#include "regcache.h"
#include "target.h"
#include "gdb_assert.h"
#include <signal.h>
#include "gdb_string.h"
#include <sys/ptrace.h>
#include "gdb_wait.h"
#ifdef HAVE_MACHINE_REG_H
#include <machine/reg.h>
#endif
#include "sparc-tdep.h"
#include "sparc-nat.h"
#include "inf-ptrace.h"
/* With some trickery we can use the code in this file for most (if
not all) ptrace(2) based SPARC systems, which includes SunOS 4,
GNU/Linux and the various SPARC BSD's.
First, we need a data structure for use with ptrace(2). SunOS has
`struct regs' and `struct fp_status' in <machine/reg.h>. BSD's
have `struct reg' and `struct fpreg' in <machine/reg.h>. GNU/Linux
has the same structures as SunOS 4, but they're in <asm/reg.h>,
which is a kernel header. As a general rule we avoid including
GNU/Linux kernel headers. Fortunately GNU/Linux has a `gregset_t'
and a `fpregset_t' that are equivalent to `struct regs' and `struct
fp_status' in <sys/ucontext.h>, which is automatically included by
<signal.h>. Settling on using the `gregset_t' and `fpregset_t'
typedefs, providing them for the other systems, therefore solves
the puzzle. */
#ifdef HAVE_MACHINE_REG_H
#ifdef HAVE_STRUCT_REG
typedef struct reg gregset_t;
typedef struct fpreg fpregset_t;
#else
typedef struct regs gregset_t;
typedef struct fp_status fpregset_t;
#endif
#endif
/* Second, we need to remap the BSD ptrace(2) requests to their SunOS
equivalents. GNU/Linux already follows SunOS here. */
#ifndef PTRACE_GETREGS
#define PTRACE_GETREGS PT_GETREGS
#endif
#ifndef PTRACE_SETREGS
#define PTRACE_SETREGS PT_SETREGS
#endif
#ifndef PTRACE_GETFPREGS
#define PTRACE_GETFPREGS PT_GETFPREGS
#endif
#ifndef PTRACE_SETFPREGS
#define PTRACE_SETFPREGS PT_SETFPREGS
#endif
/* Register set description. */
const struct sparc_gregset *sparc_gregset;
void (*sparc_supply_gregset) (const struct sparc_gregset *,
struct regcache *, int , const void *);
void (*sparc_collect_gregset) (const struct sparc_gregset *,
const struct regcache *, int, void *);
void (*sparc_supply_fpregset) (struct regcache *, int , const void *);
void (*sparc_collect_fpregset) (const struct regcache *, int , void *);
int (*sparc_gregset_supplies_p) (struct gdbarch *, int);
int (*sparc_fpregset_supplies_p) (struct gdbarch *, int);
/* Determine whether `gregset_t' contains register REGNUM. */
int
sparc32_gregset_supplies_p (struct gdbarch *gdbarch, int regnum)
{
/* Integer registers. */
if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_G7_REGNUM)
|| (regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O7_REGNUM)
|| (regnum >= SPARC_L0_REGNUM && regnum <= SPARC_L7_REGNUM)
|| (regnum >= SPARC_I0_REGNUM && regnum <= SPARC_I7_REGNUM))
return 1;
/* Control registers. */
if (regnum == SPARC32_PC_REGNUM
|| regnum == SPARC32_NPC_REGNUM
|| regnum == SPARC32_PSR_REGNUM
|| regnum == SPARC32_Y_REGNUM)
return 1;
return 0;
}
/* Determine whether `fpregset_t' contains register REGNUM. */
int
sparc32_fpregset_supplies_p (struct gdbarch *gdbarch, int regnum)
{
/* Floating-point registers. */
if (regnum >= SPARC_F0_REGNUM && regnum <= SPARC_F31_REGNUM)
return 1;
/* Control registers. */
if (regnum == SPARC32_FSR_REGNUM)
return 1;
return 0;
}
/* Fetch register REGNUM from the inferior. If REGNUM is -1, do this
for all registers (including the floating-point registers). */
void
sparc_fetch_inferior_registers (struct target_ops *ops,
struct regcache *regcache, int regnum)
{
struct gdbarch *gdbarch = get_regcache_arch (regcache);
int pid;
/* NOTE: cagney/2002-12-03: This code assumes that the currently
selected light weight processes' registers can be written
directly into the selected thread's register cache. This works
fine when given an 1:1 LWP:thread model (such as found on
GNU/Linux) but will, likely, have problems when used on an N:1
(userland threads) or N:M (userland multiple LWP) model. In the
case of the latter two, the LWP's registers do not necessarily
belong to the selected thread (the LWP could be in the middle of
executing the thread switch code).
These functions should instead be paramaterized with an explicit
object (struct regcache, struct thread_info?) into which the LWPs
registers can be written. */
pid = TIDGET (inferior_ptid);
if (pid == 0)
pid = PIDGET (inferior_ptid);
if (regnum == SPARC_G0_REGNUM)
{
gdb_byte zero[8] = { 0 };
regcache_raw_supply (regcache, SPARC_G0_REGNUM, &zero);
return;
}
if (regnum == -1 || sparc_gregset_supplies_p (gdbarch, regnum))
{
gregset_t regs;
if (ptrace (PTRACE_GETREGS, pid, (PTRACE_TYPE_ARG3) &regs, 0) == -1)
perror_with_name (_("Couldn't get registers"));
sparc_supply_gregset (sparc_gregset, regcache, -1, &regs);
if (regnum != -1)
return;
}
if (regnum == -1 || sparc_fpregset_supplies_p (gdbarch, regnum))
{
fpregset_t fpregs;
if (ptrace (PTRACE_GETFPREGS, pid, (PTRACE_TYPE_ARG3) &fpregs, 0) == -1)
perror_with_name (_("Couldn't get floating point status"));
sparc_supply_fpregset (regcache, -1, &fpregs);
}
}
void
sparc_store_inferior_registers (struct target_ops *ops,
struct regcache *regcache, int regnum)
{
struct gdbarch *gdbarch = get_regcache_arch (regcache);
int pid;
/* NOTE: cagney/2002-12-02: See comment in fetch_inferior_registers
about threaded assumptions. */
pid = TIDGET (inferior_ptid);
if (pid == 0)
pid = PIDGET (inferior_ptid);
if (regnum == -1 || sparc_gregset_supplies_p (gdbarch, regnum))
{
gregset_t regs;
if (ptrace (PTRACE_GETREGS, pid, (PTRACE_TYPE_ARG3) &regs, 0) == -1)
perror_with_name (_("Couldn't get registers"));
sparc_collect_gregset (sparc_gregset, regcache, regnum, &regs);
if (ptrace (PTRACE_SETREGS, pid, (PTRACE_TYPE_ARG3) &regs, 0) == -1)
perror_with_name (_("Couldn't write registers"));
/* Deal with the stack regs. */
if (regnum == -1 || regnum == SPARC_SP_REGNUM
|| (regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM))
{
ULONGEST sp;
regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
sparc_collect_rwindow (regcache, sp, regnum);
}
if (regnum != -1)
return;
}
if (regnum == -1 || sparc_fpregset_supplies_p (gdbarch, regnum))
{
fpregset_t fpregs, saved_fpregs;
if (ptrace (PTRACE_GETFPREGS, pid, (PTRACE_TYPE_ARG3) &fpregs, 0) == -1)
perror_with_name (_("Couldn't get floating-point registers"));
memcpy (&saved_fpregs, &fpregs, sizeof (fpregs));
sparc_collect_fpregset (regcache, regnum, &fpregs);
/* Writing the floating-point registers will fail on NetBSD with
EINVAL if the inferior process doesn't have an FPU state
(i.e. if it didn't use the FPU yet). Therefore we don't try
to write the registers if nothing changed. */
if (memcmp (&saved_fpregs, &fpregs, sizeof (fpregs)) != 0)
{
if (ptrace (PTRACE_SETFPREGS, pid,
(PTRACE_TYPE_ARG3) &fpregs, 0) == -1)
perror_with_name (_("Couldn't write floating-point registers"));
}
if (regnum != -1)
return;
}
}
/* Fetch StackGhost Per-Process XOR cookie. */
static LONGEST
sparc_xfer_wcookie (struct target_ops *ops, enum target_object object,
const char *annex, gdb_byte *readbuf,
const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
{
unsigned long wcookie = 0;
char *buf = (char *)&wcookie;
gdb_assert (object == TARGET_OBJECT_WCOOKIE);
gdb_assert (readbuf && writebuf == NULL);
if (offset == sizeof (unsigned long))
return 0; /* Signal EOF. */
if (offset > sizeof (unsigned long))
return -1;
#ifdef PT_WCOOKIE
/* If PT_WCOOKIE is defined (by <sys/ptrace.h>), assume we're
running on an OpenBSD release that uses StackGhost (3.1 or
later). Since release 3.6, OpenBSD uses a fully randomized
cookie. */
{
int pid;
pid = TIDGET (inferior_ptid);
if (pid == 0)
pid = PIDGET (inferior_ptid);
/* Sanity check. The proper type for a cookie is register_t, but
we can't assume that this type exists on all systems supported
by the code in this file. */
gdb_assert (sizeof (wcookie) == sizeof (register_t));
/* Fetch the cookie. */
if (ptrace (PT_WCOOKIE, pid, (PTRACE_TYPE_ARG3) &wcookie, 0) == -1)
{
if (errno != EINVAL)
perror_with_name (_("Couldn't get StackGhost cookie"));
/* Although PT_WCOOKIE is defined on OpenBSD 3.1 and later,
the request wasn't implemented until after OpenBSD 3.4. If
the kernel doesn't support the PT_WCOOKIE request, assume
we're running on a kernel that uses non-randomized cookies. */
wcookie = 0x3;
}
}
#endif /* PT_WCOOKIE */
if (len > sizeof (unsigned long) - offset)
len = sizeof (unsigned long) - offset;
memcpy (readbuf, buf + offset, len);
return len;
}
LONGEST (*inf_ptrace_xfer_partial) (struct target_ops *, enum target_object,
const char *, gdb_byte *, const gdb_byte *,
ULONGEST, LONGEST);
static LONGEST
sparc_xfer_partial (struct target_ops *ops, enum target_object object,
const char *annex, gdb_byte *readbuf,
const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
{
if (object == TARGET_OBJECT_WCOOKIE)
return sparc_xfer_wcookie (ops, object, annex, readbuf, writebuf,
offset, len);
return inf_ptrace_xfer_partial (ops, object, annex, readbuf, writebuf,
offset, len);
}
/* Create a prototype generic SPARC target. The client can override
it with local methods. */
struct target_ops *
sparc_target (void)
{
struct target_ops *t;
t = inf_ptrace_target ();
t->to_fetch_registers = sparc_fetch_inferior_registers;
t->to_store_registers = sparc_store_inferior_registers;
inf_ptrace_xfer_partial = t->to_xfer_partial;
t->to_xfer_partial = sparc_xfer_partial;
return t;
}
/* Provide a prototype to silence -Wmissing-prototypes. */
void _initialize_sparc_nat (void);
void
_initialize_sparc_nat (void)
{
/* Deafult to using SunOS 4 register sets. */
if (sparc_gregset == NULL)
sparc_gregset = &sparc32_sunos4_gregset;
if (sparc_supply_gregset == NULL)
sparc_supply_gregset = sparc32_supply_gregset;
if (sparc_collect_gregset == NULL)
sparc_collect_gregset = sparc32_collect_gregset;
if (sparc_supply_fpregset == NULL)
sparc_supply_fpregset = sparc32_supply_fpregset;
if (sparc_collect_fpregset == NULL)
sparc_collect_fpregset = sparc32_collect_fpregset;
if (sparc_gregset_supplies_p == NULL)
sparc_gregset_supplies_p = sparc32_gregset_supplies_p;
if (sparc_fpregset_supplies_p == NULL)
sparc_fpregset_supplies_p = sparc32_fpregset_supplies_p;
}