mirror of
https://github.com/darlinghq/darling-gdb.git
synced 2024-12-05 02:47:05 +00:00
2579 lines
54 KiB
C
2579 lines
54 KiB
C
/* This is a software floating point library which can be used instead
|
|
of the floating point routines in libgcc1.c for targets without
|
|
hardware floating point. */
|
|
|
|
/* Copyright (C) 1994,1997-1998 Free Software Foundation, Inc.
|
|
|
|
This file is free software; you can redistribute it and/or modify it
|
|
under the terms of the GNU General Public License as published by the
|
|
Free Software Foundation; either version 2, or (at your option) any
|
|
later version.
|
|
|
|
In addition to the permissions in the GNU General Public License, the
|
|
Free Software Foundation gives you unlimited permission to link the
|
|
compiled version of this file with other programs, and to distribute
|
|
those programs without any restriction coming from the use of this
|
|
file. (The General Public License restrictions do apply in other
|
|
respects; for example, they cover modification of the file, and
|
|
distribution when not linked into another program.)
|
|
|
|
This file is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; see the file COPYING. If not, write to
|
|
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
|
|
|
|
/* As a special exception, if you link this library with other files,
|
|
some of which are compiled with GCC, to produce an executable,
|
|
this library does not by itself cause the resulting executable
|
|
to be covered by the GNU General Public License.
|
|
This exception does not however invalidate any other reasons why
|
|
the executable file might be covered by the GNU General Public License. */
|
|
|
|
/* This implements IEEE 754 format arithmetic, but does not provide a
|
|
mechanism for setting the rounding mode, or for generating or handling
|
|
exceptions.
|
|
|
|
The original code by Steve Chamberlain, hacked by Mark Eichin and Jim
|
|
Wilson, all of Cygnus Support. */
|
|
|
|
|
|
#ifndef SIM_FPU_C
|
|
#define SIM_FPU_C
|
|
|
|
#include "sim-basics.h"
|
|
#include "sim-fpu.h"
|
|
|
|
#include "sim-io.h"
|
|
#include "sim-assert.h"
|
|
|
|
|
|
/* Debugging support. */
|
|
|
|
static void
|
|
print_bits (unsigned64 x,
|
|
int msbit,
|
|
sim_fpu_print_func print,
|
|
void *arg)
|
|
{
|
|
unsigned64 bit = LSBIT64 (msbit);
|
|
int i = 4;
|
|
while (bit)
|
|
{
|
|
if (i == 0)
|
|
print (arg, ",");
|
|
if ((x & bit))
|
|
print (arg, "1");
|
|
else
|
|
print (arg, "0");
|
|
bit >>= 1;
|
|
i = (i + 1) % 4;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
/* Quick and dirty conversion between a host double and host 64bit int */
|
|
|
|
typedef union {
|
|
double d;
|
|
unsigned64 i;
|
|
} sim_fpu_map;
|
|
|
|
|
|
/* A packed IEEE floating point number.
|
|
|
|
Form is <SIGN:1><BIASEDEXP:NR_EXPBITS><FRAC:NR_FRACBITS> for both
|
|
32 and 64 bit numbers. This number is interpreted as:
|
|
|
|
Normalized (0 < BIASEDEXP && BIASEDEXP < EXPMAX):
|
|
(sign ? '-' : '+') 1.<FRAC> x 2 ^ (BIASEDEXP - EXPBIAS)
|
|
|
|
Denormalized (0 == BIASEDEXP && FRAC != 0):
|
|
(sign ? "-" : "+") 0.<FRAC> x 2 ^ (- EXPBIAS)
|
|
|
|
Zero (0 == BIASEDEXP && FRAC == 0):
|
|
(sign ? "-" : "+") 0.0
|
|
|
|
Infinity (BIASEDEXP == EXPMAX && FRAC == 0):
|
|
(sign ? "-" : "+") "infinity"
|
|
|
|
SignalingNaN (BIASEDEXP == EXPMAX && FRAC > 0 && FRAC < QUIET_NAN):
|
|
SNaN.FRAC
|
|
|
|
QuietNaN (BIASEDEXP == EXPMAX && FRAC > 0 && FRAC > QUIET_NAN):
|
|
QNaN.FRAC
|
|
|
|
*/
|
|
|
|
#define NR_EXPBITS (is_double ? 11 : 8)
|
|
#define NR_FRACBITS (is_double ? 52 : 23)
|
|
#define SIGNBIT (is_double ? MSBIT64 (0) : MSBIT64 (32))
|
|
|
|
#define EXPMAX32 (255)
|
|
#define EXMPAX64 (2047)
|
|
#define EXPMAX ((unsigned) (is_double ? EXMPAX64 : EXPMAX32))
|
|
|
|
#define EXPBIAS32 (127)
|
|
#define EXPBIAS64 (1023)
|
|
#define EXPBIAS (is_double ? EXPBIAS64 : EXPBIAS32)
|
|
|
|
#define QUIET_NAN LSBIT64 (NR_FRACBITS - 1)
|
|
|
|
|
|
|
|
/* An unpacked floating point number.
|
|
|
|
When unpacked, the fraction of both a 32 and 64 bit floating point
|
|
number is stored using the same format:
|
|
|
|
64 bit - <IMPLICIT_1:1><FRACBITS:52><GUARDS:8><PAD:00>
|
|
32 bit - <IMPLICIT_1:1><FRACBITS:23><GUARDS:7><PAD:30> */
|
|
|
|
#define NR_PAD32 (30)
|
|
#define NR_PAD64 (0)
|
|
#define NR_PAD (is_double ? NR_PAD64 : NR_PAD32)
|
|
#define PADMASK (is_double ? 0 : LSMASK64 (NR_PAD32 - 1, 0))
|
|
|
|
#define NR_GUARDS32 (7 + NR_PAD32)
|
|
#define NR_GUARDS64 (8 + NR_PAD64)
|
|
#define NR_GUARDS (is_double ? NR_GUARDS64 : NR_GUARDS32)
|
|
#define GUARDMASK LSMASK64 (NR_GUARDS - 1, 0)
|
|
|
|
#define GUARDMSB LSBIT64 (NR_GUARDS - 1)
|
|
#define GUARDLSB LSBIT64 (NR_PAD)
|
|
#define GUARDROUND LSMASK64 (NR_GUARDS - 2, 0)
|
|
|
|
#define NR_FRAC_GUARD (60)
|
|
#define IMPLICIT_1 LSBIT64 (NR_FRAC_GUARD)
|
|
#define IMPLICIT_2 LSBIT64 (NR_FRAC_GUARD + 1)
|
|
#define IMPLICIT_4 LSBIT64 (NR_FRAC_GUARD + 2)
|
|
#define NR_SPARE 2
|
|
|
|
#define FRAC32MASK LSMASK64 (63, NR_FRAC_GUARD - 32 + 1)
|
|
|
|
#define NORMAL_EXPMIN (-(EXPBIAS)+1)
|
|
|
|
#define NORMAL_EXPMAX32 (EXPBIAS32)
|
|
#define NORMAL_EXPMAX64 (EXPBIAS64)
|
|
#define NORMAL_EXPMAX (EXPBIAS)
|
|
|
|
|
|
/* Integer constants */
|
|
|
|
#define MAX_INT32 ((signed64) LSMASK64 (30, 0))
|
|
#define MAX_UINT32 LSMASK64 (31, 0)
|
|
#define MIN_INT32 ((signed64) LSMASK64 (63, 31))
|
|
|
|
#define MAX_INT64 ((signed64) LSMASK64 (62, 0))
|
|
#define MAX_UINT64 LSMASK64 (63, 0)
|
|
#define MIN_INT64 ((signed64) LSMASK64 (63, 63))
|
|
|
|
#define MAX_INT (is_64bit ? MAX_INT64 : MAX_INT32)
|
|
#define MIN_INT (is_64bit ? MIN_INT64 : MIN_INT32)
|
|
#define MAX_UINT (is_64bit ? MAX_UINT64 : MAX_UINT32)
|
|
#define NR_INTBITS (is_64bit ? 64 : 32)
|
|
|
|
/* Squeese an unpacked sim_fpu struct into a 32/64 bit integer */
|
|
STATIC_INLINE_SIM_FPU (unsigned64)
|
|
pack_fpu (const sim_fpu *src,
|
|
int is_double)
|
|
{
|
|
int sign;
|
|
unsigned64 exp;
|
|
unsigned64 fraction;
|
|
unsigned64 packed;
|
|
|
|
switch (src->class)
|
|
{
|
|
/* create a NaN */
|
|
case sim_fpu_class_qnan:
|
|
sign = src->sign;
|
|
exp = EXPMAX;
|
|
/* force fraction to correct class */
|
|
fraction = src->fraction;
|
|
fraction >>= NR_GUARDS;
|
|
fraction |= QUIET_NAN;
|
|
break;
|
|
case sim_fpu_class_snan:
|
|
sign = src->sign;
|
|
exp = EXPMAX;
|
|
/* force fraction to correct class */
|
|
fraction = src->fraction;
|
|
fraction >>= NR_GUARDS;
|
|
fraction &= ~QUIET_NAN;
|
|
break;
|
|
case sim_fpu_class_infinity:
|
|
sign = src->sign;
|
|
exp = EXPMAX;
|
|
fraction = 0;
|
|
break;
|
|
case sim_fpu_class_zero:
|
|
sign = src->sign;
|
|
exp = 0;
|
|
fraction = 0;
|
|
break;
|
|
case sim_fpu_class_number:
|
|
case sim_fpu_class_denorm:
|
|
ASSERT (src->fraction >= IMPLICIT_1);
|
|
ASSERT (src->fraction < IMPLICIT_2);
|
|
if (src->normal_exp < NORMAL_EXPMIN)
|
|
{
|
|
/* This number's exponent is too low to fit into the bits
|
|
available in the number We'll denormalize the number by
|
|
storing zero in the exponent and shift the fraction to
|
|
the right to make up for it. */
|
|
int nr_shift = NORMAL_EXPMIN - src->normal_exp;
|
|
if (nr_shift > NR_FRACBITS)
|
|
{
|
|
/* underflow, just make the number zero */
|
|
sign = src->sign;
|
|
exp = 0;
|
|
fraction = 0;
|
|
}
|
|
else
|
|
{
|
|
sign = src->sign;
|
|
exp = 0;
|
|
/* Shift by the value */
|
|
fraction = src->fraction;
|
|
fraction >>= NR_GUARDS;
|
|
fraction >>= nr_shift;
|
|
}
|
|
}
|
|
else if (src->normal_exp > NORMAL_EXPMAX)
|
|
{
|
|
/* Infinity */
|
|
sign = src->sign;
|
|
exp = EXPMAX;
|
|
fraction = 0;
|
|
}
|
|
else
|
|
{
|
|
exp = (src->normal_exp + EXPBIAS);
|
|
sign = src->sign;
|
|
fraction = src->fraction;
|
|
/* FIXME: Need to round according to WITH_SIM_FPU_ROUNDING
|
|
or some such */
|
|
/* Round to nearest: If the guard bits are the all zero, but
|
|
the first, then we're half way between two numbers,
|
|
choose the one which makes the lsb of the answer 0. */
|
|
if ((fraction & GUARDMASK) == GUARDMSB)
|
|
{
|
|
if ((fraction & (GUARDMSB << 1)))
|
|
fraction += (GUARDMSB << 1);
|
|
}
|
|
else
|
|
{
|
|
/* Add a one to the guards to force round to nearest */
|
|
fraction += GUARDROUND;
|
|
}
|
|
if ((fraction & IMPLICIT_2)) /* rounding resulted in carry */
|
|
{
|
|
exp += 1;
|
|
fraction >>= 1;
|
|
}
|
|
fraction >>= NR_GUARDS;
|
|
/* When exp == EXPMAX (overflow from carry) fraction must
|
|
have been made zero */
|
|
ASSERT ((exp == EXPMAX) <= ((fraction & ~IMPLICIT_1) == 0));
|
|
}
|
|
break;
|
|
default:
|
|
abort ();
|
|
}
|
|
|
|
packed = ((sign ? SIGNBIT : 0)
|
|
| (exp << NR_FRACBITS)
|
|
| LSMASKED64 (fraction, NR_FRACBITS - 1, 0));
|
|
|
|
/* trace operation */
|
|
#if 0
|
|
if (is_double)
|
|
{
|
|
}
|
|
else
|
|
{
|
|
printf ("pack_fpu: ");
|
|
printf ("-> %c%0lX.%06lX\n",
|
|
LSMASKED32 (packed, 31, 31) ? '8' : '0',
|
|
(long) LSEXTRACTED32 (packed, 30, 23),
|
|
(long) LSEXTRACTED32 (packed, 23 - 1, 0));
|
|
}
|
|
#endif
|
|
|
|
return packed;
|
|
}
|
|
|
|
|
|
/* Unpack a 32/64 bit integer into a sim_fpu structure */
|
|
STATIC_INLINE_SIM_FPU (void)
|
|
unpack_fpu (sim_fpu *dst, unsigned64 packed, int is_double)
|
|
{
|
|
unsigned64 fraction = LSMASKED64 (packed, NR_FRACBITS - 1, 0);
|
|
unsigned exp = LSEXTRACTED64 (packed, NR_EXPBITS + NR_FRACBITS - 1, NR_FRACBITS);
|
|
int sign = (packed & SIGNBIT) != 0;
|
|
|
|
if (exp == 0)
|
|
{
|
|
/* Hmm. Looks like 0 */
|
|
if (fraction == 0)
|
|
{
|
|
/* tastes like zero */
|
|
dst->class = sim_fpu_class_zero;
|
|
dst->sign = sign;
|
|
}
|
|
else
|
|
{
|
|
/* Zero exponent with non zero fraction - it's denormalized,
|
|
so there isn't a leading implicit one - we'll shift it so
|
|
it gets one. */
|
|
dst->normal_exp = exp - EXPBIAS + 1;
|
|
dst->class = sim_fpu_class_denorm;
|
|
dst->sign = sign;
|
|
fraction <<= NR_GUARDS;
|
|
while (fraction < IMPLICIT_1)
|
|
{
|
|
fraction <<= 1;
|
|
dst->normal_exp--;
|
|
}
|
|
dst->fraction = fraction;
|
|
}
|
|
}
|
|
else if (exp == EXPMAX)
|
|
{
|
|
/* Huge exponent*/
|
|
if (fraction == 0)
|
|
{
|
|
/* Attached to a zero fraction - means infinity */
|
|
dst->class = sim_fpu_class_infinity;
|
|
dst->sign = sign;
|
|
/* dst->normal_exp = EXPBIAS; */
|
|
/* dst->fraction = 0; */
|
|
}
|
|
else
|
|
{
|
|
/* Non zero fraction, means NaN */
|
|
dst->sign = sign;
|
|
dst->fraction = (fraction << NR_GUARDS);
|
|
if (fraction >= QUIET_NAN)
|
|
dst->class = sim_fpu_class_qnan;
|
|
else
|
|
dst->class = sim_fpu_class_snan;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Nothing strange about this number */
|
|
dst->class = sim_fpu_class_number;
|
|
dst->sign = sign;
|
|
dst->fraction = ((fraction << NR_GUARDS) | IMPLICIT_1);
|
|
dst->normal_exp = exp - EXPBIAS;
|
|
}
|
|
|
|
/* trace operation */
|
|
#if 0
|
|
if (is_double)
|
|
{
|
|
}
|
|
else
|
|
{
|
|
printf ("unpack_fpu: %c%02lX.%06lX ->\n",
|
|
LSMASKED32 (packed, 31, 31) ? '8' : '0',
|
|
(long) LSEXTRACTED32 (packed, 30, 23),
|
|
(long) LSEXTRACTED32 (packed, 23 - 1, 0));
|
|
}
|
|
#endif
|
|
|
|
/* sanity checks */
|
|
{
|
|
sim_fpu_map val;
|
|
val.i = pack_fpu (dst, 1);
|
|
if (is_double)
|
|
{
|
|
ASSERT (val.i == packed);
|
|
}
|
|
else
|
|
{
|
|
unsigned32 val = pack_fpu (dst, 0);
|
|
unsigned32 org = packed;
|
|
ASSERT (val == org);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* Convert a floating point into an integer */
|
|
STATIC_INLINE_SIM_FPU (int)
|
|
fpu2i (signed64 *i,
|
|
const sim_fpu *s,
|
|
int is_64bit,
|
|
sim_fpu_round round)
|
|
{
|
|
unsigned64 tmp;
|
|
int shift;
|
|
int status = 0;
|
|
if (sim_fpu_is_zero (s))
|
|
{
|
|
*i = 0;
|
|
return 0;
|
|
}
|
|
if (sim_fpu_is_snan (s))
|
|
{
|
|
*i = MIN_INT; /* FIXME */
|
|
return sim_fpu_status_invalid_cvi;
|
|
}
|
|
if (sim_fpu_is_qnan (s))
|
|
{
|
|
*i = MIN_INT; /* FIXME */
|
|
return sim_fpu_status_invalid_cvi;
|
|
}
|
|
/* map infinity onto MAX_INT... */
|
|
if (sim_fpu_is_infinity (s))
|
|
{
|
|
*i = s->sign ? MIN_INT : MAX_INT;
|
|
return sim_fpu_status_invalid_cvi;
|
|
}
|
|
/* it is a number, but a small one */
|
|
if (s->normal_exp < 0)
|
|
{
|
|
*i = 0;
|
|
return sim_fpu_status_inexact;
|
|
}
|
|
/* Is the floating point MIN_INT or just close? */
|
|
if (s->sign && s->normal_exp == (NR_INTBITS - 1))
|
|
{
|
|
*i = MIN_INT;
|
|
ASSERT (s->fraction >= IMPLICIT_1);
|
|
if (s->fraction == IMPLICIT_1)
|
|
return 0; /* exact */
|
|
if (is_64bit) /* can't round */
|
|
return sim_fpu_status_invalid_cvi; /* must be overflow */
|
|
/* For a 32bit with MAX_INT, rounding is possible */
|
|
switch (round)
|
|
{
|
|
case sim_fpu_round_default:
|
|
abort ();
|
|
case sim_fpu_round_zero:
|
|
if ((s->fraction & FRAC32MASK) != IMPLICIT_1)
|
|
return sim_fpu_status_invalid_cvi;
|
|
else
|
|
return sim_fpu_status_inexact;
|
|
break;
|
|
case sim_fpu_round_near:
|
|
{
|
|
if ((s->fraction & FRAC32MASK) != IMPLICIT_1)
|
|
return sim_fpu_status_invalid_cvi;
|
|
else if ((s->fraction & !FRAC32MASK) >= (~FRAC32MASK >> 1))
|
|
return sim_fpu_status_invalid_cvi;
|
|
else
|
|
return sim_fpu_status_inexact;
|
|
}
|
|
case sim_fpu_round_up:
|
|
if ((s->fraction & FRAC32MASK) == IMPLICIT_1)
|
|
return sim_fpu_status_inexact;
|
|
else
|
|
return sim_fpu_status_invalid_cvi;
|
|
case sim_fpu_round_down:
|
|
return sim_fpu_status_invalid_cvi;
|
|
}
|
|
}
|
|
/* Would right shifting result in the FRAC being shifted into
|
|
(through) the integer's sign bit? */
|
|
if (s->normal_exp > (NR_INTBITS - 2))
|
|
{
|
|
*i = s->sign ? MIN_INT : MAX_INT;
|
|
return sim_fpu_status_invalid_cvi;
|
|
}
|
|
/* normal number shift it into place */
|
|
tmp = s->fraction;
|
|
shift = (s->normal_exp - (NR_FRAC_GUARD));
|
|
if (shift > 0)
|
|
{
|
|
tmp <<= shift;
|
|
}
|
|
else
|
|
{
|
|
shift = -shift;
|
|
if (tmp & ((SIGNED64 (1) << shift) - 1))
|
|
status |= sim_fpu_status_inexact;
|
|
tmp >>= shift;
|
|
}
|
|
*i = s->sign ? (-tmp) : (tmp);
|
|
return status;
|
|
}
|
|
|
|
/* convert an integer into a floating point */
|
|
STATIC_INLINE_SIM_FPU (int)
|
|
i2fpu (sim_fpu *f, signed64 i, int is_64bit)
|
|
{
|
|
int status = 0;
|
|
if (i == 0)
|
|
{
|
|
f->class = sim_fpu_class_zero;
|
|
f->sign = 0;
|
|
}
|
|
else
|
|
{
|
|
f->class = sim_fpu_class_number;
|
|
f->sign = (i < 0);
|
|
f->normal_exp = NR_FRAC_GUARD;
|
|
|
|
if (f->sign)
|
|
{
|
|
/* Special case for minint, since there is no corresponding
|
|
+ve integer representation for it */
|
|
if (i == MIN_INT)
|
|
{
|
|
f->fraction = IMPLICIT_1;
|
|
f->normal_exp = NR_INTBITS - 1;
|
|
}
|
|
else
|
|
f->fraction = (-i);
|
|
}
|
|
else
|
|
f->fraction = i;
|
|
|
|
if (f->fraction >= IMPLICIT_2)
|
|
{
|
|
do
|
|
{
|
|
f->fraction = (f->fraction >> 1) | (f->fraction & 1);
|
|
f->normal_exp += 1;
|
|
}
|
|
while (f->fraction >= IMPLICIT_2);
|
|
}
|
|
else if (f->fraction < IMPLICIT_1)
|
|
{
|
|
do
|
|
{
|
|
f->fraction <<= 1;
|
|
f->normal_exp -= 1;
|
|
}
|
|
while (f->fraction < IMPLICIT_1);
|
|
}
|
|
}
|
|
|
|
/* trace operation */
|
|
#if 0
|
|
{
|
|
printf ("i2fpu: 0x%08lX ->\n", (long) i);
|
|
}
|
|
#endif
|
|
|
|
/* sanity check */
|
|
{
|
|
signed64 val;
|
|
fpu2i (&val, f, is_64bit, sim_fpu_round_zero);
|
|
if (i >= MIN_INT32 && i <= MAX_INT32)
|
|
{
|
|
ASSERT (val == i);
|
|
}
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
|
|
/* Convert a floating point into an integer */
|
|
STATIC_INLINE_SIM_FPU (int)
|
|
fpu2u (unsigned64 *u, const sim_fpu *s, int is_64bit)
|
|
{
|
|
const int is_double = 1;
|
|
unsigned64 tmp;
|
|
int shift;
|
|
if (sim_fpu_is_zero (s))
|
|
{
|
|
*u = 0;
|
|
return 0;
|
|
}
|
|
if (sim_fpu_is_nan (s))
|
|
{
|
|
*u = 0;
|
|
return 0;
|
|
}
|
|
/* it is a negative number */
|
|
if (s->sign)
|
|
{
|
|
*u = 0;
|
|
return 0;
|
|
}
|
|
/* get reasonable MAX_USI_INT... */
|
|
if (sim_fpu_is_infinity (s))
|
|
{
|
|
*u = MAX_UINT;
|
|
return 0;
|
|
}
|
|
/* it is a number, but a small one */
|
|
if (s->normal_exp < 0)
|
|
{
|
|
*u = 0;
|
|
return 0;
|
|
}
|
|
/* overflow */
|
|
if (s->normal_exp > (NR_INTBITS - 1))
|
|
{
|
|
*u = MAX_UINT;
|
|
return 0;
|
|
}
|
|
/* normal number */
|
|
tmp = (s->fraction & ~PADMASK);
|
|
shift = (s->normal_exp - (NR_FRACBITS + NR_GUARDS));
|
|
if (shift > 0)
|
|
{
|
|
tmp <<= shift;
|
|
}
|
|
else
|
|
{
|
|
shift = -shift;
|
|
tmp >>= shift;
|
|
}
|
|
*u = tmp;
|
|
return 0;
|
|
}
|
|
|
|
/* Convert an unsigned integer into a floating point */
|
|
STATIC_INLINE_SIM_FPU (int)
|
|
u2fpu (sim_fpu *f, unsigned64 u, int is_64bit)
|
|
{
|
|
if (u == 0)
|
|
{
|
|
f->class = sim_fpu_class_zero;
|
|
f->sign = 0;
|
|
}
|
|
else
|
|
{
|
|
f->class = sim_fpu_class_number;
|
|
f->sign = 0;
|
|
f->normal_exp = NR_FRAC_GUARD;
|
|
f->fraction = u;
|
|
|
|
while (f->fraction < IMPLICIT_1)
|
|
{
|
|
f->fraction <<= 1;
|
|
f->normal_exp -= 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* register <-> sim_fpu */
|
|
|
|
INLINE_SIM_FPU (void)
|
|
sim_fpu_32to (sim_fpu *f, unsigned32 s)
|
|
{
|
|
unpack_fpu (f, s, 0);
|
|
}
|
|
|
|
|
|
INLINE_SIM_FPU (void)
|
|
sim_fpu_232to (sim_fpu *f, unsigned32 h, unsigned32 l)
|
|
{
|
|
unsigned64 s = h;
|
|
s = (s << 32) | l;
|
|
unpack_fpu (f, s, 1);
|
|
}
|
|
|
|
|
|
INLINE_SIM_FPU (void)
|
|
sim_fpu_64to (sim_fpu *f, unsigned64 s)
|
|
{
|
|
unpack_fpu (f, s, 1);
|
|
}
|
|
|
|
|
|
INLINE_SIM_FPU (void)
|
|
sim_fpu_to32 (unsigned32 *s,
|
|
const sim_fpu *f)
|
|
{
|
|
*s = pack_fpu (f, 0);
|
|
}
|
|
|
|
|
|
INLINE_SIM_FPU (void)
|
|
sim_fpu_to232 (unsigned32 *h, unsigned32 *l,
|
|
const sim_fpu *f)
|
|
{
|
|
unsigned64 s = pack_fpu (f, 1);
|
|
*l = s;
|
|
*h = (s >> 32);
|
|
}
|
|
|
|
|
|
INLINE_SIM_FPU (void)
|
|
sim_fpu_to64 (unsigned64 *u,
|
|
const sim_fpu *f)
|
|
{
|
|
*u = pack_fpu (f, 1);
|
|
}
|
|
|
|
|
|
INLINE_SIM_FPU (void)
|
|
sim_fpu_fractionto (sim_fpu *f,
|
|
int sign,
|
|
int normal_exp,
|
|
unsigned64 fraction,
|
|
int precision)
|
|
{
|
|
int shift = (NR_FRAC_GUARD - precision);
|
|
f->class = sim_fpu_class_number;
|
|
f->sign = sign;
|
|
f->normal_exp = normal_exp;
|
|
/* shift the fraction to where sim-fpu expects it */
|
|
if (shift >= 0)
|
|
f->fraction = (fraction << shift);
|
|
else
|
|
f->fraction = (fraction >> -shift);
|
|
f->fraction |= IMPLICIT_1;
|
|
}
|
|
|
|
|
|
INLINE_SIM_FPU (unsigned64)
|
|
sim_fpu_tofraction (const sim_fpu *d,
|
|
int precision)
|
|
{
|
|
/* we have NR_FRAC_GUARD bits, we want only PRECISION bits */
|
|
int shift = (NR_FRAC_GUARD - precision);
|
|
unsigned64 fraction = (d->fraction & ~IMPLICIT_1);
|
|
if (shift >= 0)
|
|
return fraction >> shift;
|
|
else
|
|
return fraction << -shift;
|
|
}
|
|
|
|
|
|
/* Rounding */
|
|
|
|
STATIC_INLINE_SIM_FPU (int)
|
|
do_normal_overflow (sim_fpu *f,
|
|
int is_double,
|
|
sim_fpu_round round)
|
|
{
|
|
switch (round)
|
|
{
|
|
case sim_fpu_round_default:
|
|
return 0;
|
|
case sim_fpu_round_near:
|
|
f->class = sim_fpu_class_infinity;
|
|
break;
|
|
case sim_fpu_round_up:
|
|
if (!f->sign)
|
|
f->class = sim_fpu_class_infinity;
|
|
break;
|
|
case sim_fpu_round_down:
|
|
if (f->sign)
|
|
f->class = sim_fpu_class_infinity;
|
|
break;
|
|
case sim_fpu_round_zero:
|
|
break;
|
|
}
|
|
f->normal_exp = NORMAL_EXPMAX;
|
|
f->fraction = LSMASK64 (NR_FRAC_GUARD, NR_GUARDS);
|
|
return (sim_fpu_status_overflow | sim_fpu_status_inexact);
|
|
}
|
|
|
|
STATIC_INLINE_SIM_FPU (int)
|
|
do_normal_underflow (sim_fpu *f,
|
|
int is_double,
|
|
sim_fpu_round round)
|
|
{
|
|
switch (round)
|
|
{
|
|
case sim_fpu_round_default:
|
|
return 0;
|
|
case sim_fpu_round_near:
|
|
f->class = sim_fpu_class_zero;
|
|
break;
|
|
case sim_fpu_round_up:
|
|
if (f->sign)
|
|
f->class = sim_fpu_class_zero;
|
|
break;
|
|
case sim_fpu_round_down:
|
|
if (!f->sign)
|
|
f->class = sim_fpu_class_zero;
|
|
break;
|
|
case sim_fpu_round_zero:
|
|
f->class = sim_fpu_class_zero;
|
|
break;
|
|
}
|
|
f->normal_exp = NORMAL_EXPMIN - NR_FRACBITS;
|
|
f->fraction = IMPLICIT_1;
|
|
return (sim_fpu_status_inexact | sim_fpu_status_underflow);
|
|
}
|
|
|
|
|
|
|
|
/* Round a number using NR_GUARDS.
|
|
Will return the rounded number or F->FRACTION == 0 when underflow */
|
|
|
|
STATIC_INLINE_SIM_FPU (int)
|
|
do_normal_round (sim_fpu *f,
|
|
int nr_guards,
|
|
sim_fpu_round round)
|
|
{
|
|
unsigned64 guardmask = LSMASK64 (nr_guards - 1, 0);
|
|
unsigned64 guardmsb = LSBIT64 (nr_guards - 1);
|
|
unsigned64 fraclsb = guardmsb << 1;
|
|
if ((f->fraction & guardmask))
|
|
{
|
|
int status = sim_fpu_status_inexact;
|
|
switch (round)
|
|
{
|
|
case sim_fpu_round_default:
|
|
return 0;
|
|
case sim_fpu_round_near:
|
|
if ((f->fraction & guardmsb))
|
|
{
|
|
if ((f->fraction & fraclsb))
|
|
{
|
|
status |= sim_fpu_status_rounded;
|
|
}
|
|
else if ((f->fraction & (guardmask >> 1)))
|
|
{
|
|
status |= sim_fpu_status_rounded;
|
|
}
|
|
}
|
|
break;
|
|
case sim_fpu_round_up:
|
|
if (!f->sign)
|
|
status |= sim_fpu_status_rounded;
|
|
break;
|
|
case sim_fpu_round_down:
|
|
if (f->sign)
|
|
status |= sim_fpu_status_rounded;
|
|
break;
|
|
case sim_fpu_round_zero:
|
|
break;
|
|
}
|
|
f->fraction &= ~guardmask;
|
|
/* round if needed, handle resulting overflow */
|
|
if ((status & sim_fpu_status_rounded))
|
|
{
|
|
f->fraction += fraclsb;
|
|
if ((f->fraction & IMPLICIT_2))
|
|
{
|
|
f->fraction >>= 1;
|
|
f->normal_exp += 1;
|
|
}
|
|
}
|
|
return status;
|
|
}
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
|
|
STATIC_INLINE_SIM_FPU (int)
|
|
do_round (sim_fpu *f,
|
|
int is_double,
|
|
sim_fpu_round round,
|
|
sim_fpu_denorm denorm)
|
|
{
|
|
switch (f->class)
|
|
{
|
|
case sim_fpu_class_qnan:
|
|
case sim_fpu_class_zero:
|
|
case sim_fpu_class_infinity:
|
|
return 0;
|
|
break;
|
|
case sim_fpu_class_snan:
|
|
/* Quieten a SignalingNaN */
|
|
f->class = sim_fpu_class_qnan;
|
|
return sim_fpu_status_invalid_snan;
|
|
break;
|
|
case sim_fpu_class_number:
|
|
case sim_fpu_class_denorm:
|
|
{
|
|
int status;
|
|
ASSERT (f->fraction < IMPLICIT_2);
|
|
ASSERT (f->fraction >= IMPLICIT_1);
|
|
if (f->normal_exp < NORMAL_EXPMIN)
|
|
{
|
|
/* This number's exponent is too low to fit into the bits
|
|
available in the number. Round off any bits that will be
|
|
discarded as a result of denormalization. Edge case is
|
|
the implicit bit shifted to GUARD0 and then rounded
|
|
up. */
|
|
int shift = NORMAL_EXPMIN - f->normal_exp;
|
|
if (shift + NR_GUARDS <= NR_FRAC_GUARD + 1
|
|
&& !(denorm & sim_fpu_denorm_zero))
|
|
{
|
|
status = do_normal_round (f, shift + NR_GUARDS, round);
|
|
if (f->fraction == 0) /* rounding underflowed */
|
|
{
|
|
status |= do_normal_underflow (f, is_double, round);
|
|
}
|
|
else if (f->normal_exp < NORMAL_EXPMIN) /* still underflow? */
|
|
{
|
|
status |= sim_fpu_status_denorm;
|
|
/* Any loss of precision when denormalizing is
|
|
underflow. Some processors check for underflow
|
|
before rounding, some after! */
|
|
if (status & sim_fpu_status_inexact)
|
|
status |= sim_fpu_status_underflow;
|
|
/* Flag that resultant value has been denormalized */
|
|
f->class = sim_fpu_class_denorm;
|
|
}
|
|
else if ((denorm & sim_fpu_denorm_underflow_inexact))
|
|
{
|
|
if ((status & sim_fpu_status_inexact))
|
|
status |= sim_fpu_status_underflow;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
status = do_normal_underflow (f, is_double, round);
|
|
}
|
|
}
|
|
else if (f->normal_exp > NORMAL_EXPMAX)
|
|
{
|
|
/* Infinity */
|
|
status = do_normal_overflow (f, is_double, round);
|
|
}
|
|
else
|
|
{
|
|
status = do_normal_round (f, NR_GUARDS, round);
|
|
if (f->fraction == 0)
|
|
/* f->class = sim_fpu_class_zero; */
|
|
status |= do_normal_underflow (f, is_double, round);
|
|
else if (f->normal_exp > NORMAL_EXPMAX)
|
|
/* oops! rounding caused overflow */
|
|
status |= do_normal_overflow (f, is_double, round);
|
|
}
|
|
ASSERT ((f->class == sim_fpu_class_number
|
|
|| f->class == sim_fpu_class_denorm)
|
|
<= (f->fraction < IMPLICIT_2 && f->fraction >= IMPLICIT_1));
|
|
return status;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
INLINE_SIM_FPU (int)
|
|
sim_fpu_round_32 (sim_fpu *f,
|
|
sim_fpu_round round,
|
|
sim_fpu_denorm denorm)
|
|
{
|
|
return do_round (f, 0, round, denorm);
|
|
}
|
|
|
|
INLINE_SIM_FPU (int)
|
|
sim_fpu_round_64 (sim_fpu *f,
|
|
sim_fpu_round round,
|
|
sim_fpu_denorm denorm)
|
|
{
|
|
return do_round (f, 1, round, denorm);
|
|
}
|
|
|
|
|
|
|
|
/* Arithmetic ops */
|
|
|
|
INLINE_SIM_FPU (int)
|
|
sim_fpu_add (sim_fpu *f,
|
|
const sim_fpu *l,
|
|
const sim_fpu *r)
|
|
{
|
|
if (sim_fpu_is_snan (l))
|
|
{
|
|
*f = *l;
|
|
f->class = sim_fpu_class_qnan;
|
|
return sim_fpu_status_invalid_snan;
|
|
}
|
|
if (sim_fpu_is_snan (r))
|
|
{
|
|
*f = *r;
|
|
f->class = sim_fpu_class_qnan;
|
|
return sim_fpu_status_invalid_snan;
|
|
}
|
|
if (sim_fpu_is_qnan (l))
|
|
{
|
|
*f = *l;
|
|
return 0;
|
|
}
|
|
if (sim_fpu_is_qnan (r))
|
|
{
|
|
*f = *r;
|
|
return 0;
|
|
}
|
|
if (sim_fpu_is_infinity (l))
|
|
{
|
|
if (sim_fpu_is_infinity (r)
|
|
&& l->sign != r->sign)
|
|
{
|
|
*f = sim_fpu_qnan;
|
|
return sim_fpu_status_invalid_isi;
|
|
}
|
|
*f = *l;
|
|
return 0;
|
|
}
|
|
if (sim_fpu_is_infinity (r))
|
|
{
|
|
*f = *r;
|
|
return 0;
|
|
}
|
|
if (sim_fpu_is_zero (l))
|
|
{
|
|
if (sim_fpu_is_zero (r))
|
|
{
|
|
*f = sim_fpu_zero;
|
|
f->sign = l->sign & r->sign;
|
|
}
|
|
else
|
|
*f = *r;
|
|
return 0;
|
|
}
|
|
if (sim_fpu_is_zero (r))
|
|
{
|
|
*f = *l;
|
|
return 0;
|
|
}
|
|
{
|
|
int status = 0;
|
|
int shift = l->normal_exp - r->normal_exp;
|
|
unsigned64 lfraction;
|
|
unsigned64 rfraction;
|
|
/* use exp of larger */
|
|
if (shift >= NR_FRAC_GUARD)
|
|
{
|
|
/* left has much bigger magnitute */
|
|
*f = *l;
|
|
return sim_fpu_status_inexact;
|
|
}
|
|
if (shift <= - NR_FRAC_GUARD)
|
|
{
|
|
/* right has much bigger magnitute */
|
|
*f = *r;
|
|
return sim_fpu_status_inexact;
|
|
}
|
|
lfraction = l->fraction;
|
|
rfraction = r->fraction;
|
|
if (shift > 0)
|
|
{
|
|
f->normal_exp = l->normal_exp;
|
|
if (rfraction & LSMASK64 (shift - 1, 0))
|
|
{
|
|
status |= sim_fpu_status_inexact;
|
|
rfraction |= LSBIT64 (shift); /* stick LSBit */
|
|
}
|
|
rfraction >>= shift;
|
|
}
|
|
else if (shift < 0)
|
|
{
|
|
f->normal_exp = r->normal_exp;
|
|
if (lfraction & LSMASK64 (- shift - 1, 0))
|
|
{
|
|
status |= sim_fpu_status_inexact;
|
|
lfraction |= LSBIT64 (- shift); /* stick LSBit */
|
|
}
|
|
lfraction >>= -shift;
|
|
}
|
|
else
|
|
{
|
|
f->normal_exp = r->normal_exp;
|
|
}
|
|
|
|
/* perform the addition */
|
|
if (l->sign)
|
|
lfraction = - lfraction;
|
|
if (r->sign)
|
|
rfraction = - rfraction;
|
|
f->fraction = lfraction + rfraction;
|
|
|
|
/* zero? */
|
|
if (f->fraction == 0)
|
|
{
|
|
*f = sim_fpu_zero;
|
|
return 0;
|
|
}
|
|
|
|
/* sign? */
|
|
f->class = sim_fpu_class_number;
|
|
if ((signed64) f->fraction >= 0)
|
|
f->sign = 0;
|
|
else
|
|
{
|
|
f->sign = 1;
|
|
f->fraction = - f->fraction;
|
|
}
|
|
|
|
/* normalize it */
|
|
if ((f->fraction & IMPLICIT_2))
|
|
{
|
|
f->fraction = (f->fraction >> 1) | (f->fraction & 1);
|
|
f->normal_exp ++;
|
|
}
|
|
else if (f->fraction < IMPLICIT_1)
|
|
{
|
|
do
|
|
{
|
|
f->fraction <<= 1;
|
|
f->normal_exp --;
|
|
}
|
|
while (f->fraction < IMPLICIT_1);
|
|
}
|
|
ASSERT (f->fraction >= IMPLICIT_1 && f->fraction < IMPLICIT_2);
|
|
return status;
|
|
}
|
|
}
|
|
|
|
|
|
INLINE_SIM_FPU (int)
|
|
sim_fpu_sub (sim_fpu *f,
|
|
const sim_fpu *l,
|
|
const sim_fpu *r)
|
|
{
|
|
if (sim_fpu_is_snan (l))
|
|
{
|
|
*f = *l;
|
|
f->class = sim_fpu_class_qnan;
|
|
return sim_fpu_status_invalid_snan;
|
|
}
|
|
if (sim_fpu_is_snan (r))
|
|
{
|
|
*f = *r;
|
|
f->class = sim_fpu_class_qnan;
|
|
return sim_fpu_status_invalid_snan;
|
|
}
|
|
if (sim_fpu_is_qnan (l))
|
|
{
|
|
*f = *l;
|
|
return 0;
|
|
}
|
|
if (sim_fpu_is_qnan (r))
|
|
{
|
|
*f = *r;
|
|
return 0;
|
|
}
|
|
if (sim_fpu_is_infinity (l))
|
|
{
|
|
if (sim_fpu_is_infinity (r)
|
|
&& l->sign == r->sign)
|
|
{
|
|
*f = sim_fpu_qnan;
|
|
return sim_fpu_status_invalid_isi;
|
|
}
|
|
*f = *l;
|
|
return 0;
|
|
}
|
|
if (sim_fpu_is_infinity (r))
|
|
{
|
|
*f = *r;
|
|
f->sign = !r->sign;
|
|
return 0;
|
|
}
|
|
if (sim_fpu_is_zero (l))
|
|
{
|
|
if (sim_fpu_is_zero (r))
|
|
{
|
|
*f = sim_fpu_zero;
|
|
f->sign = l->sign & !r->sign;
|
|
}
|
|
else
|
|
{
|
|
*f = *r;
|
|
f->sign = !r->sign;
|
|
}
|
|
return 0;
|
|
}
|
|
if (sim_fpu_is_zero (r))
|
|
{
|
|
*f = *l;
|
|
return 0;
|
|
}
|
|
{
|
|
int status = 0;
|
|
int shift = l->normal_exp - r->normal_exp;
|
|
unsigned64 lfraction;
|
|
unsigned64 rfraction;
|
|
/* use exp of larger */
|
|
if (shift >= NR_FRAC_GUARD)
|
|
{
|
|
/* left has much bigger magnitute */
|
|
*f = *l;
|
|
return sim_fpu_status_inexact;
|
|
}
|
|
if (shift <= - NR_FRAC_GUARD)
|
|
{
|
|
/* right has much bigger magnitute */
|
|
*f = *r;
|
|
f->sign = !r->sign;
|
|
return sim_fpu_status_inexact;
|
|
}
|
|
lfraction = l->fraction;
|
|
rfraction = r->fraction;
|
|
if (shift > 0)
|
|
{
|
|
f->normal_exp = l->normal_exp;
|
|
if (rfraction & LSMASK64 (shift - 1, 0))
|
|
{
|
|
status |= sim_fpu_status_inexact;
|
|
rfraction |= LSBIT64 (shift); /* stick LSBit */
|
|
}
|
|
rfraction >>= shift;
|
|
}
|
|
else if (shift < 0)
|
|
{
|
|
f->normal_exp = r->normal_exp;
|
|
if (lfraction & LSMASK64 (- shift - 1, 0))
|
|
{
|
|
status |= sim_fpu_status_inexact;
|
|
lfraction |= LSBIT64 (- shift); /* stick LSBit */
|
|
}
|
|
lfraction >>= -shift;
|
|
}
|
|
else
|
|
{
|
|
f->normal_exp = r->normal_exp;
|
|
}
|
|
|
|
/* perform the subtraction */
|
|
if (l->sign)
|
|
lfraction = - lfraction;
|
|
if (!r->sign)
|
|
rfraction = - rfraction;
|
|
f->fraction = lfraction + rfraction;
|
|
|
|
/* zero? */
|
|
if (f->fraction == 0)
|
|
{
|
|
*f = sim_fpu_zero;
|
|
return 0;
|
|
}
|
|
|
|
/* sign? */
|
|
f->class = sim_fpu_class_number;
|
|
if ((signed64) f->fraction >= 0)
|
|
f->sign = 0;
|
|
else
|
|
{
|
|
f->sign = 1;
|
|
f->fraction = - f->fraction;
|
|
}
|
|
|
|
/* normalize it */
|
|
if ((f->fraction & IMPLICIT_2))
|
|
{
|
|
f->fraction = (f->fraction >> 1) | (f->fraction & 1);
|
|
f->normal_exp ++;
|
|
}
|
|
else if (f->fraction < IMPLICIT_1)
|
|
{
|
|
do
|
|
{
|
|
f->fraction <<= 1;
|
|
f->normal_exp --;
|
|
}
|
|
while (f->fraction < IMPLICIT_1);
|
|
}
|
|
ASSERT (f->fraction >= IMPLICIT_1 && f->fraction < IMPLICIT_2);
|
|
return status;
|
|
}
|
|
}
|
|
|
|
|
|
INLINE_SIM_FPU (int)
|
|
sim_fpu_mul (sim_fpu *f,
|
|
const sim_fpu *l,
|
|
const sim_fpu *r)
|
|
{
|
|
if (sim_fpu_is_snan (l))
|
|
{
|
|
*f = *l;
|
|
f->class = sim_fpu_class_qnan;
|
|
return sim_fpu_status_invalid_snan;
|
|
}
|
|
if (sim_fpu_is_snan (r))
|
|
{
|
|
*f = *r;
|
|
f->class = sim_fpu_class_qnan;
|
|
return sim_fpu_status_invalid_snan;
|
|
}
|
|
if (sim_fpu_is_qnan (l))
|
|
{
|
|
*f = *l;
|
|
return 0;
|
|
}
|
|
if (sim_fpu_is_qnan (r))
|
|
{
|
|
*f = *r;
|
|
return 0;
|
|
}
|
|
if (sim_fpu_is_infinity (l))
|
|
{
|
|
if (sim_fpu_is_zero (r))
|
|
{
|
|
*f = sim_fpu_qnan;
|
|
return sim_fpu_status_invalid_imz;
|
|
}
|
|
*f = *l;
|
|
f->sign = l->sign ^ r->sign;
|
|
return 0;
|
|
}
|
|
if (sim_fpu_is_infinity (r))
|
|
{
|
|
if (sim_fpu_is_zero (l))
|
|
{
|
|
*f = sim_fpu_qnan;
|
|
return sim_fpu_status_invalid_imz;
|
|
}
|
|
*f = *r;
|
|
f->sign = l->sign ^ r->sign;
|
|
return 0;
|
|
}
|
|
if (sim_fpu_is_zero (l) || sim_fpu_is_zero (r))
|
|
{
|
|
*f = sim_fpu_zero;
|
|
f->sign = l->sign ^ r->sign;
|
|
return 0;
|
|
}
|
|
/* Calculate the mantissa by multiplying both 64bit numbers to get a
|
|
128 bit number */
|
|
{
|
|
unsigned64 low;
|
|
unsigned64 high;
|
|
unsigned64 nl = l->fraction & 0xffffffff;
|
|
unsigned64 nh = l->fraction >> 32;
|
|
unsigned64 ml = r->fraction & 0xffffffff;
|
|
unsigned64 mh = r->fraction >>32;
|
|
unsigned64 pp_ll = ml * nl;
|
|
unsigned64 pp_hl = mh * nl;
|
|
unsigned64 pp_lh = ml * nh;
|
|
unsigned64 pp_hh = mh * nh;
|
|
unsigned64 res2 = 0;
|
|
unsigned64 res0 = 0;
|
|
unsigned64 ps_hh__ = pp_hl + pp_lh;
|
|
if (ps_hh__ < pp_hl)
|
|
res2 += UNSIGNED64 (0x100000000);
|
|
pp_hl = (ps_hh__ << 32) & UNSIGNED64 (0xffffffff00000000);
|
|
res0 = pp_ll + pp_hl;
|
|
if (res0 < pp_ll)
|
|
res2++;
|
|
res2 += ((ps_hh__ >> 32) & 0xffffffff) + pp_hh;
|
|
high = res2;
|
|
low = res0;
|
|
|
|
f->normal_exp = l->normal_exp + r->normal_exp;
|
|
f->sign = l->sign ^ r->sign;
|
|
f->class = sim_fpu_class_number;
|
|
|
|
/* Input is bounded by [1,2) ; [2^60,2^61)
|
|
Output is bounded by [1,4) ; [2^120,2^122) */
|
|
|
|
/* Adjust the exponent according to where the decimal point ended
|
|
up in the high 64 bit word. In the source the decimal point
|
|
was at NR_FRAC_GUARD. */
|
|
f->normal_exp += NR_FRAC_GUARD + 64 - (NR_FRAC_GUARD * 2);
|
|
|
|
/* The high word is bounded according to the above. Consequently
|
|
it has never overflowed into IMPLICIT_2. */
|
|
ASSERT (high < LSBIT64 (((NR_FRAC_GUARD + 1) * 2) - 64));
|
|
ASSERT (high >= LSBIT64 ((NR_FRAC_GUARD * 2) - 64));
|
|
ASSERT (LSBIT64 (((NR_FRAC_GUARD + 1) * 2) - 64) < IMPLICIT_1);
|
|
|
|
#if 0
|
|
printf ("\n");
|
|
print_bits (high, 63, (sim_fpu_print_func*)fprintf, stdout);
|
|
printf (";");
|
|
print_bits (low, 63, (sim_fpu_print_func*)fprintf, stdout);
|
|
printf ("\n");
|
|
#endif
|
|
|
|
/* normalize */
|
|
do
|
|
{
|
|
f->normal_exp--;
|
|
high <<= 1;
|
|
if (low & LSBIT64 (63))
|
|
high |= 1;
|
|
low <<= 1;
|
|
}
|
|
while (high < IMPLICIT_1);
|
|
|
|
#if 0
|
|
print_bits (high, 63, (sim_fpu_print_func*)fprintf, stdout);
|
|
printf (";");
|
|
print_bits (low, 63, (sim_fpu_print_func*)fprintf, stdout);
|
|
printf ("\n");
|
|
#endif
|
|
|
|
ASSERT (high >= IMPLICIT_1 && high < IMPLICIT_2);
|
|
if (low != 0)
|
|
{
|
|
f->fraction = (high | 1); /* sticky */
|
|
return sim_fpu_status_inexact;
|
|
}
|
|
else
|
|
{
|
|
f->fraction = high;
|
|
return 0;
|
|
}
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
INLINE_SIM_FPU (int)
|
|
sim_fpu_div (sim_fpu *f,
|
|
const sim_fpu *l,
|
|
const sim_fpu *r)
|
|
{
|
|
if (sim_fpu_is_snan (l))
|
|
{
|
|
*f = *l;
|
|
f->class = sim_fpu_class_qnan;
|
|
return sim_fpu_status_invalid_snan;
|
|
}
|
|
if (sim_fpu_is_snan (r))
|
|
{
|
|
*f = *r;
|
|
f->class = sim_fpu_class_qnan;
|
|
return sim_fpu_status_invalid_snan;
|
|
}
|
|
if (sim_fpu_is_qnan (l))
|
|
{
|
|
*f = *l;
|
|
f->class = sim_fpu_class_qnan;
|
|
return 0;
|
|
}
|
|
if (sim_fpu_is_qnan (r))
|
|
{
|
|
*f = *r;
|
|
f->class = sim_fpu_class_qnan;
|
|
return 0;
|
|
}
|
|
if (sim_fpu_is_infinity (l))
|
|
{
|
|
if (sim_fpu_is_infinity (r))
|
|
{
|
|
*f = sim_fpu_qnan;
|
|
return sim_fpu_status_invalid_idi;
|
|
}
|
|
else
|
|
{
|
|
*f = *l;
|
|
f->sign = l->sign ^ r->sign;
|
|
return 0;
|
|
}
|
|
}
|
|
if (sim_fpu_is_zero (l))
|
|
{
|
|
if (sim_fpu_is_zero (r))
|
|
{
|
|
*f = sim_fpu_qnan;
|
|
return sim_fpu_status_invalid_zdz;
|
|
}
|
|
else
|
|
{
|
|
*f = *l;
|
|
f->sign = l->sign ^ r->sign;
|
|
return 0;
|
|
}
|
|
}
|
|
if (sim_fpu_is_infinity (r))
|
|
{
|
|
*f = sim_fpu_zero;
|
|
f->sign = l->sign ^ r->sign;
|
|
return 0;
|
|
}
|
|
if (sim_fpu_is_zero (r))
|
|
{
|
|
f->class = sim_fpu_class_infinity;
|
|
f->sign = l->sign ^ r->sign;
|
|
return sim_fpu_status_invalid_div0;
|
|
}
|
|
|
|
/* Calculate the mantissa by multiplying both 64bit numbers to get a
|
|
128 bit number */
|
|
{
|
|
/* quotient = ( ( numerator / denominator)
|
|
x 2^(numerator exponent - denominator exponent)
|
|
*/
|
|
unsigned64 numerator;
|
|
unsigned64 denominator;
|
|
unsigned64 quotient;
|
|
unsigned64 bit;
|
|
|
|
f->class = sim_fpu_class_number;
|
|
f->sign = l->sign ^ r->sign;
|
|
f->normal_exp = l->normal_exp - r->normal_exp;
|
|
|
|
numerator = l->fraction;
|
|
denominator = r->fraction;
|
|
|
|
/* Fraction will be less than 1.0 */
|
|
if (numerator < denominator)
|
|
{
|
|
numerator <<= 1;
|
|
f->normal_exp--;
|
|
}
|
|
ASSERT (numerator >= denominator);
|
|
|
|
/* Gain extra precision, already used one spare bit */
|
|
numerator <<= NR_SPARE;
|
|
denominator <<= NR_SPARE;
|
|
|
|
/* Does divide one bit at a time. Optimize??? */
|
|
quotient = 0;
|
|
bit = (IMPLICIT_1 << NR_SPARE);
|
|
while (bit)
|
|
{
|
|
if (numerator >= denominator)
|
|
{
|
|
quotient |= bit;
|
|
numerator -= denominator;
|
|
}
|
|
bit >>= 1;
|
|
numerator <<= 1;
|
|
}
|
|
|
|
#if 0
|
|
printf ("\n");
|
|
print_bits (quotient, 63, (sim_fpu_print_func*)fprintf, stdout);
|
|
printf ("\n");
|
|
print_bits (numerator, 63, (sim_fpu_print_func*)fprintf, stdout);
|
|
printf ("\n");
|
|
print_bits (denominator, 63, (sim_fpu_print_func*)fprintf, stdout);
|
|
printf ("\n");
|
|
#endif
|
|
|
|
/* discard (but save) the extra bits */
|
|
if ((quotient & LSMASK64 (NR_SPARE -1, 0)))
|
|
quotient = (quotient >> NR_SPARE) | 1;
|
|
else
|
|
quotient = (quotient >> NR_SPARE);
|
|
|
|
f->fraction = quotient;
|
|
ASSERT (f->fraction >= IMPLICIT_1 && f->fraction < IMPLICIT_2);
|
|
if (numerator != 0)
|
|
{
|
|
f->fraction |= 1; /* stick remaining bits */
|
|
return sim_fpu_status_inexact;
|
|
}
|
|
else
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
|
|
INLINE_SIM_FPU (int)
|
|
sim_fpu_max (sim_fpu *f,
|
|
const sim_fpu *l,
|
|
const sim_fpu *r)
|
|
{
|
|
if (sim_fpu_is_snan (l))
|
|
{
|
|
*f = *l;
|
|
f->class = sim_fpu_class_qnan;
|
|
return sim_fpu_status_invalid_snan;
|
|
}
|
|
if (sim_fpu_is_snan (r))
|
|
{
|
|
*f = *r;
|
|
f->class = sim_fpu_class_qnan;
|
|
return sim_fpu_status_invalid_snan;
|
|
}
|
|
if (sim_fpu_is_qnan (l))
|
|
{
|
|
*f = *l;
|
|
return 0;
|
|
}
|
|
if (sim_fpu_is_qnan (r))
|
|
{
|
|
*f = *r;
|
|
return 0;
|
|
}
|
|
if (sim_fpu_is_infinity (l))
|
|
{
|
|
if (sim_fpu_is_infinity (r)
|
|
&& l->sign == r->sign)
|
|
{
|
|
*f = sim_fpu_qnan;
|
|
return sim_fpu_status_invalid_isi;
|
|
}
|
|
if (l->sign)
|
|
*f = *r; /* -inf < anything */
|
|
else
|
|
*f = *l; /* +inf > anthing */
|
|
return 0;
|
|
}
|
|
if (sim_fpu_is_infinity (r))
|
|
{
|
|
if (r->sign)
|
|
*f = *l; /* anything > -inf */
|
|
else
|
|
*f = *r; /* anthing < +inf */
|
|
return 0;
|
|
}
|
|
if (l->sign > r->sign)
|
|
{
|
|
*f = *r; /* -ve < +ve */
|
|
return 0;
|
|
}
|
|
if (l->sign < r->sign)
|
|
{
|
|
*f = *l; /* +ve > -ve */
|
|
return 0;
|
|
}
|
|
ASSERT (l->sign == r->sign);
|
|
if (l->normal_exp > r->normal_exp
|
|
|| (l->normal_exp == r->normal_exp &&
|
|
l->fraction > r->fraction))
|
|
{
|
|
/* |l| > |r| */
|
|
if (l->sign)
|
|
*f = *r; /* -ve < -ve */
|
|
else
|
|
*f = *l; /* +ve > +ve */
|
|
return 0;
|
|
}
|
|
else
|
|
{
|
|
/* |l| <= |r| */
|
|
if (l->sign)
|
|
*f = *l; /* -ve > -ve */
|
|
else
|
|
*f = *r; /* +ve < +ve */
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
|
|
INLINE_SIM_FPU (int)
|
|
sim_fpu_min (sim_fpu *f,
|
|
const sim_fpu *l,
|
|
const sim_fpu *r)
|
|
{
|
|
if (sim_fpu_is_snan (l))
|
|
{
|
|
*f = *l;
|
|
f->class = sim_fpu_class_qnan;
|
|
return sim_fpu_status_invalid_snan;
|
|
}
|
|
if (sim_fpu_is_snan (r))
|
|
{
|
|
*f = *r;
|
|
f->class = sim_fpu_class_qnan;
|
|
return sim_fpu_status_invalid_snan;
|
|
}
|
|
if (sim_fpu_is_qnan (l))
|
|
{
|
|
*f = *l;
|
|
return 0;
|
|
}
|
|
if (sim_fpu_is_qnan (r))
|
|
{
|
|
*f = *r;
|
|
return 0;
|
|
}
|
|
if (sim_fpu_is_infinity (l))
|
|
{
|
|
if (sim_fpu_is_infinity (r)
|
|
&& l->sign == r->sign)
|
|
{
|
|
*f = sim_fpu_qnan;
|
|
return sim_fpu_status_invalid_isi;
|
|
}
|
|
if (l->sign)
|
|
*f = *l; /* -inf < anything */
|
|
else
|
|
*f = *r; /* +inf > anthing */
|
|
return 0;
|
|
}
|
|
if (sim_fpu_is_infinity (r))
|
|
{
|
|
if (r->sign)
|
|
*f = *r; /* anything > -inf */
|
|
else
|
|
*f = *l; /* anything < +inf */
|
|
return 0;
|
|
}
|
|
if (l->sign > r->sign)
|
|
{
|
|
*f = *l; /* -ve < +ve */
|
|
return 0;
|
|
}
|
|
if (l->sign < r->sign)
|
|
{
|
|
*f = *r; /* +ve > -ve */
|
|
return 0;
|
|
}
|
|
ASSERT (l->sign == r->sign);
|
|
if (l->normal_exp > r->normal_exp
|
|
|| (l->normal_exp == r->normal_exp &&
|
|
l->fraction > r->fraction))
|
|
{
|
|
/* |l| > |r| */
|
|
if (l->sign)
|
|
*f = *l; /* -ve < -ve */
|
|
else
|
|
*f = *r; /* +ve > +ve */
|
|
return 0;
|
|
}
|
|
else
|
|
{
|
|
/* |l| <= |r| */
|
|
if (l->sign)
|
|
*f = *r; /* -ve > -ve */
|
|
else
|
|
*f = *l; /* +ve < +ve */
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
|
|
INLINE_SIM_FPU (int)
|
|
sim_fpu_neg (sim_fpu *f,
|
|
const sim_fpu *r)
|
|
{
|
|
if (sim_fpu_is_snan (r))
|
|
{
|
|
*f = *r;
|
|
f->class = sim_fpu_class_qnan;
|
|
return sim_fpu_status_invalid_snan;
|
|
}
|
|
if (sim_fpu_is_qnan (r))
|
|
{
|
|
*f = *r;
|
|
return 0;
|
|
}
|
|
*f = *r;
|
|
f->sign = !r->sign;
|
|
return 0;
|
|
}
|
|
|
|
|
|
INLINE_SIM_FPU (int)
|
|
sim_fpu_abs (sim_fpu *f,
|
|
const sim_fpu *r)
|
|
{
|
|
if (sim_fpu_is_snan (r))
|
|
{
|
|
*f = *r;
|
|
f->class = sim_fpu_class_qnan;
|
|
return sim_fpu_status_invalid_snan;
|
|
}
|
|
if (sim_fpu_is_qnan (r))
|
|
{
|
|
*f = *r;
|
|
return 0;
|
|
}
|
|
*f = *r;
|
|
f->sign = 0;
|
|
return 0;
|
|
}
|
|
|
|
|
|
INLINE_SIM_FPU (int)
|
|
sim_fpu_inv (sim_fpu *f,
|
|
const sim_fpu *r)
|
|
{
|
|
if (sim_fpu_is_snan (r))
|
|
{
|
|
*f = *r;
|
|
f->class = sim_fpu_class_qnan;
|
|
return sim_fpu_status_invalid_snan;
|
|
}
|
|
if (sim_fpu_is_qnan (r))
|
|
{
|
|
*f = *r;
|
|
f->class = sim_fpu_class_qnan;
|
|
return 0;
|
|
}
|
|
if (sim_fpu_is_infinity (r))
|
|
{
|
|
*f = sim_fpu_zero;
|
|
f->sign = r->sign;
|
|
return 0;
|
|
}
|
|
if (sim_fpu_is_zero (r))
|
|
{
|
|
f->class = sim_fpu_class_infinity;
|
|
f->sign = r->sign;
|
|
return sim_fpu_status_invalid_div0;
|
|
}
|
|
*f = *r;
|
|
f->normal_exp = - r->normal_exp;
|
|
return 0;
|
|
}
|
|
|
|
|
|
INLINE_SIM_FPU (int)
|
|
sim_fpu_sqrt (sim_fpu *f,
|
|
const sim_fpu *r)
|
|
{
|
|
if (sim_fpu_is_snan (r))
|
|
{
|
|
*f = sim_fpu_qnan;
|
|
return sim_fpu_status_invalid_snan;
|
|
}
|
|
if (sim_fpu_is_qnan (r))
|
|
{
|
|
*f = sim_fpu_qnan;
|
|
return 0;
|
|
}
|
|
if (sim_fpu_is_zero (r))
|
|
{
|
|
f->class = sim_fpu_class_zero;
|
|
f->sign = r->sign;
|
|
return 0;
|
|
}
|
|
if (sim_fpu_is_infinity (r))
|
|
{
|
|
if (r->sign)
|
|
{
|
|
*f = sim_fpu_qnan;
|
|
return sim_fpu_status_invalid_sqrt;
|
|
}
|
|
else
|
|
{
|
|
f->class = sim_fpu_class_infinity;
|
|
f->sign = 0;
|
|
f->sign = 0;
|
|
return 0;
|
|
}
|
|
}
|
|
if (r->sign)
|
|
{
|
|
*f = sim_fpu_qnan;
|
|
return sim_fpu_status_invalid_sqrt;
|
|
}
|
|
|
|
/* @(#)e_sqrt.c 5.1 93/09/24 */
|
|
/*
|
|
* ====================================================
|
|
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
|
*
|
|
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
|
* Permission to use, copy, modify, and distribute this
|
|
* software is freely granted, provided that this notice
|
|
* is preserved.
|
|
* ====================================================
|
|
*/
|
|
|
|
/* __ieee754_sqrt(x)
|
|
* Return correctly rounded sqrt.
|
|
* ------------------------------------------
|
|
* | Use the hardware sqrt if you have one |
|
|
* ------------------------------------------
|
|
* Method:
|
|
* Bit by bit method using integer arithmetic. (Slow, but portable)
|
|
* 1. Normalization
|
|
* Scale x to y in [1,4) with even powers of 2:
|
|
* find an integer k such that 1 <= (y=x*2^(2k)) < 4, then
|
|
* sqrt(x) = 2^k * sqrt(y)
|
|
-
|
|
- Since:
|
|
- sqrt ( x*2^(2m) ) = sqrt(x).2^m ; m even
|
|
- sqrt ( x*2^(2m + 1) ) = sqrt(2.x).2^m ; m odd
|
|
- Define:
|
|
- y = ((m even) ? x : 2.x)
|
|
- Then:
|
|
- y in [1, 4) ; [IMPLICIT_1,IMPLICIT_4)
|
|
- And:
|
|
- sqrt (y) in [1, 2) ; [IMPLICIT_1,IMPLICIT_2)
|
|
-
|
|
* 2. Bit by bit computation
|
|
* Let q = sqrt(y) truncated to i bit after binary point (q = 1),
|
|
* i 0
|
|
* i+1 2
|
|
* s = 2*q , and y = 2 * ( y - q ). (1)
|
|
* i i i i
|
|
*
|
|
* To compute q from q , one checks whether
|
|
* i+1 i
|
|
*
|
|
* -(i+1) 2
|
|
* (q + 2 ) <= y. (2)
|
|
* i
|
|
* -(i+1)
|
|
* If (2) is false, then q = q ; otherwise q = q + 2 .
|
|
* i+1 i i+1 i
|
|
*
|
|
* With some algebric manipulation, it is not difficult to see
|
|
* that (2) is equivalent to
|
|
* -(i+1)
|
|
* s + 2 <= y (3)
|
|
* i i
|
|
*
|
|
* The advantage of (3) is that s and y can be computed by
|
|
* i i
|
|
* the following recurrence formula:
|
|
* if (3) is false
|
|
*
|
|
* s = s , y = y ; (4)
|
|
* i+1 i i+1 i
|
|
*
|
|
-
|
|
- NOTE: y = 2*y
|
|
- i+1 i
|
|
-
|
|
* otherwise,
|
|
* -i -(i+1)
|
|
* s = s + 2 , y = y - s - 2 (5)
|
|
* i+1 i i+1 i i
|
|
*
|
|
-
|
|
- -(i+1)
|
|
- NOTE: y = 2 (y - s - 2 )
|
|
- i+1 i i
|
|
-
|
|
* One may easily use induction to prove (4) and (5).
|
|
* Note. Since the left hand side of (3) contain only i+2 bits,
|
|
* it does not necessary to do a full (53-bit) comparison
|
|
* in (3).
|
|
* 3. Final rounding
|
|
* After generating the 53 bits result, we compute one more bit.
|
|
* Together with the remainder, we can decide whether the
|
|
* result is exact, bigger than 1/2ulp, or less than 1/2ulp
|
|
* (it will never equal to 1/2ulp).
|
|
* The rounding mode can be detected by checking whether
|
|
* huge + tiny is equal to huge, and whether huge - tiny is
|
|
* equal to huge for some floating point number "huge" and "tiny".
|
|
*
|
|
* Special cases:
|
|
* sqrt(+-0) = +-0 ... exact
|
|
* sqrt(inf) = inf
|
|
* sqrt(-ve) = NaN ... with invalid signal
|
|
* sqrt(NaN) = NaN ... with invalid signal for signaling NaN
|
|
*
|
|
* Other methods : see the appended file at the end of the program below.
|
|
*---------------
|
|
*/
|
|
|
|
{
|
|
/* generate sqrt(x) bit by bit */
|
|
unsigned64 y;
|
|
unsigned64 q;
|
|
unsigned64 s;
|
|
unsigned64 b;
|
|
|
|
f->class = sim_fpu_class_number;
|
|
f->sign = 0;
|
|
y = r->fraction;
|
|
f->normal_exp = (r->normal_exp >> 1); /* exp = [exp/2] */
|
|
|
|
/* odd exp, double x to make it even */
|
|
ASSERT (y >= IMPLICIT_1 && y < IMPLICIT_4);
|
|
if ((r->normal_exp & 1))
|
|
{
|
|
y += y;
|
|
}
|
|
ASSERT (y >= IMPLICIT_1 && y < (IMPLICIT_2 << 1));
|
|
|
|
/* Let loop determine first value of s (either 1 or 2) */
|
|
b = IMPLICIT_1;
|
|
q = 0;
|
|
s = 0;
|
|
|
|
while (b)
|
|
{
|
|
unsigned64 t = s + b;
|
|
if (t <= y)
|
|
{
|
|
s |= (b << 1);
|
|
y -= t;
|
|
q |= b;
|
|
}
|
|
y <<= 1;
|
|
b >>= 1;
|
|
}
|
|
|
|
ASSERT (q >= IMPLICIT_1 && q < IMPLICIT_2);
|
|
f->fraction = q;
|
|
if (y != 0)
|
|
{
|
|
f->fraction |= 1; /* stick remaining bits */
|
|
return sim_fpu_status_inexact;
|
|
}
|
|
else
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
|
|
/* int/long <-> sim_fpu */
|
|
|
|
INLINE_SIM_FPU (int)
|
|
sim_fpu_i32to (sim_fpu *f,
|
|
signed32 i,
|
|
sim_fpu_round round)
|
|
{
|
|
i2fpu (f, i, 0);
|
|
return 0;
|
|
}
|
|
|
|
INLINE_SIM_FPU (int)
|
|
sim_fpu_u32to (sim_fpu *f,
|
|
unsigned32 u,
|
|
sim_fpu_round round)
|
|
{
|
|
u2fpu (f, u, 0);
|
|
return 0;
|
|
}
|
|
|
|
INLINE_SIM_FPU (int)
|
|
sim_fpu_i64to (sim_fpu *f,
|
|
signed64 i,
|
|
sim_fpu_round round)
|
|
{
|
|
i2fpu (f, i, 1);
|
|
return 0;
|
|
}
|
|
|
|
INLINE_SIM_FPU (int)
|
|
sim_fpu_u64to (sim_fpu *f,
|
|
unsigned64 u,
|
|
sim_fpu_round round)
|
|
{
|
|
u2fpu (f, u, 1);
|
|
return 0;
|
|
}
|
|
|
|
|
|
INLINE_SIM_FPU (int)
|
|
sim_fpu_to32i (signed32 *i,
|
|
const sim_fpu *f,
|
|
sim_fpu_round round)
|
|
{
|
|
signed64 i64;
|
|
int status = fpu2i (&i64, f, 0, round);
|
|
*i = i64;
|
|
return status;
|
|
}
|
|
|
|
INLINE_SIM_FPU (int)
|
|
sim_fpu_to32u (unsigned32 *u,
|
|
const sim_fpu *f,
|
|
sim_fpu_round round)
|
|
{
|
|
unsigned64 u64;
|
|
int status = fpu2u (&u64, f, 0);
|
|
*u = u64;
|
|
return status;
|
|
}
|
|
|
|
INLINE_SIM_FPU (int)
|
|
sim_fpu_to64i (signed64 *i,
|
|
const sim_fpu *f,
|
|
sim_fpu_round round)
|
|
{
|
|
return fpu2i (i, f, 1, round);
|
|
}
|
|
|
|
|
|
INLINE_SIM_FPU (int)
|
|
sim_fpu_to64u (unsigned64 *u,
|
|
const sim_fpu *f,
|
|
sim_fpu_round round)
|
|
{
|
|
return fpu2u (u, f, 1);
|
|
}
|
|
|
|
|
|
|
|
/* sim_fpu -> host format */
|
|
|
|
#if 0
|
|
INLINE_SIM_FPU (float)
|
|
sim_fpu_2f (const sim_fpu *f)
|
|
{
|
|
return fval.d;
|
|
}
|
|
#endif
|
|
|
|
|
|
INLINE_SIM_FPU (double)
|
|
sim_fpu_2d (const sim_fpu *s)
|
|
{
|
|
sim_fpu_map val;
|
|
if (sim_fpu_is_snan (s))
|
|
{
|
|
/* gag SNaN's */
|
|
sim_fpu n = *s;
|
|
n.class = sim_fpu_class_qnan;
|
|
val.i = pack_fpu (&n, 1);
|
|
}
|
|
else
|
|
{
|
|
val.i = pack_fpu (s, 1);
|
|
}
|
|
return val.d;
|
|
}
|
|
|
|
|
|
#if 0
|
|
INLINE_SIM_FPU (void)
|
|
sim_fpu_f2 (sim_fpu *f,
|
|
float s)
|
|
{
|
|
sim_fpu_map val;
|
|
val.d = s;
|
|
unpack_fpu (f, val.i, 1);
|
|
}
|
|
#endif
|
|
|
|
|
|
INLINE_SIM_FPU (void)
|
|
sim_fpu_d2 (sim_fpu *f,
|
|
double d)
|
|
{
|
|
sim_fpu_map val;
|
|
val.d = d;
|
|
unpack_fpu (f, val.i, 1);
|
|
}
|
|
|
|
|
|
/* General */
|
|
|
|
INLINE_SIM_FPU (int)
|
|
sim_fpu_is_nan (const sim_fpu *d)
|
|
{
|
|
switch (d->class)
|
|
{
|
|
case sim_fpu_class_qnan:
|
|
case sim_fpu_class_snan:
|
|
return 1;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
INLINE_SIM_FPU (int)
|
|
sim_fpu_is_qnan (const sim_fpu *d)
|
|
{
|
|
switch (d->class)
|
|
{
|
|
case sim_fpu_class_qnan:
|
|
return 1;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
INLINE_SIM_FPU (int)
|
|
sim_fpu_is_snan (const sim_fpu *d)
|
|
{
|
|
switch (d->class)
|
|
{
|
|
case sim_fpu_class_snan:
|
|
return 1;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
INLINE_SIM_FPU (int)
|
|
sim_fpu_is_zero (const sim_fpu *d)
|
|
{
|
|
switch (d->class)
|
|
{
|
|
case sim_fpu_class_zero:
|
|
return 1;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
INLINE_SIM_FPU (int)
|
|
sim_fpu_is_infinity (const sim_fpu *d)
|
|
{
|
|
switch (d->class)
|
|
{
|
|
case sim_fpu_class_infinity:
|
|
return 1;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
INLINE_SIM_FPU (int)
|
|
sim_fpu_is_number (const sim_fpu *d)
|
|
{
|
|
switch (d->class)
|
|
{
|
|
case sim_fpu_class_denorm:
|
|
case sim_fpu_class_number:
|
|
return 1;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
INLINE_SIM_FPU (int)
|
|
sim_fpu_is_denorm (const sim_fpu *d)
|
|
{
|
|
switch (d->class)
|
|
{
|
|
case sim_fpu_class_denorm:
|
|
return 1;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
|
|
INLINE_SIM_FPU (int)
|
|
sim_fpu_sign (const sim_fpu *d)
|
|
{
|
|
return d->sign;
|
|
}
|
|
|
|
|
|
INLINE_SIM_FPU (int)
|
|
sim_fpu_exp (const sim_fpu *d)
|
|
{
|
|
return d->normal_exp;
|
|
}
|
|
|
|
|
|
|
|
INLINE_SIM_FPU (int)
|
|
sim_fpu_is (const sim_fpu *d)
|
|
{
|
|
switch (d->class)
|
|
{
|
|
case sim_fpu_class_qnan:
|
|
return SIM_FPU_IS_QNAN;
|
|
case sim_fpu_class_snan:
|
|
return SIM_FPU_IS_SNAN;
|
|
case sim_fpu_class_infinity:
|
|
if (d->sign)
|
|
return SIM_FPU_IS_NINF;
|
|
else
|
|
return SIM_FPU_IS_PINF;
|
|
case sim_fpu_class_number:
|
|
if (d->sign)
|
|
return SIM_FPU_IS_NNUMBER;
|
|
else
|
|
return SIM_FPU_IS_PNUMBER;
|
|
case sim_fpu_class_denorm:
|
|
if (d->sign)
|
|
return SIM_FPU_IS_NDENORM;
|
|
else
|
|
return SIM_FPU_IS_PDENORM;
|
|
case sim_fpu_class_zero:
|
|
if (d->sign)
|
|
return SIM_FPU_IS_NZERO;
|
|
else
|
|
return SIM_FPU_IS_PZERO;
|
|
default:
|
|
return -1;
|
|
abort ();
|
|
}
|
|
}
|
|
|
|
INLINE_SIM_FPU (int)
|
|
sim_fpu_cmp (const sim_fpu *l, const sim_fpu *r)
|
|
{
|
|
sim_fpu res;
|
|
sim_fpu_sub (&res, l, r);
|
|
return sim_fpu_is (&res);
|
|
}
|
|
|
|
INLINE_SIM_FPU (int)
|
|
sim_fpu_is_lt (const sim_fpu *l, const sim_fpu *r)
|
|
{
|
|
int status;
|
|
sim_fpu_lt (&status, l, r);
|
|
return status;
|
|
}
|
|
|
|
INLINE_SIM_FPU (int)
|
|
sim_fpu_is_le (const sim_fpu *l, const sim_fpu *r)
|
|
{
|
|
int is;
|
|
sim_fpu_le (&is, l, r);
|
|
return is;
|
|
}
|
|
|
|
INLINE_SIM_FPU (int)
|
|
sim_fpu_is_eq (const sim_fpu *l, const sim_fpu *r)
|
|
{
|
|
int is;
|
|
sim_fpu_eq (&is, l, r);
|
|
return is;
|
|
}
|
|
|
|
INLINE_SIM_FPU (int)
|
|
sim_fpu_is_ne (const sim_fpu *l, const sim_fpu *r)
|
|
{
|
|
int is;
|
|
sim_fpu_ne (&is, l, r);
|
|
return is;
|
|
}
|
|
|
|
INLINE_SIM_FPU (int)
|
|
sim_fpu_is_ge (const sim_fpu *l, const sim_fpu *r)
|
|
{
|
|
int is;
|
|
sim_fpu_ge (&is, l, r);
|
|
return is;
|
|
}
|
|
|
|
INLINE_SIM_FPU (int)
|
|
sim_fpu_is_gt (const sim_fpu *l, const sim_fpu *r)
|
|
{
|
|
int is;
|
|
sim_fpu_gt (&is, l, r);
|
|
return is;
|
|
}
|
|
|
|
|
|
/* Compare operators */
|
|
|
|
INLINE_SIM_FPU (int)
|
|
sim_fpu_lt (int *is,
|
|
const sim_fpu *l,
|
|
const sim_fpu *r)
|
|
{
|
|
if (!sim_fpu_is_nan (l) && !sim_fpu_is_nan (r))
|
|
{
|
|
sim_fpu_map lval;
|
|
sim_fpu_map rval;
|
|
lval.i = pack_fpu (l, 1);
|
|
rval.i = pack_fpu (r, 1);
|
|
(*is) = (lval.d < rval.d);
|
|
return 0;
|
|
}
|
|
else if (sim_fpu_is_snan (l) || sim_fpu_is_snan (r))
|
|
{
|
|
*is = 0;
|
|
return sim_fpu_status_invalid_snan;
|
|
}
|
|
else
|
|
{
|
|
*is = 0;
|
|
return sim_fpu_status_invalid_qnan;
|
|
}
|
|
}
|
|
|
|
INLINE_SIM_FPU (int)
|
|
sim_fpu_le (int *is,
|
|
const sim_fpu *l,
|
|
const sim_fpu *r)
|
|
{
|
|
if (!sim_fpu_is_nan (l) && !sim_fpu_is_nan (r))
|
|
{
|
|
sim_fpu_map lval;
|
|
sim_fpu_map rval;
|
|
lval.i = pack_fpu (l, 1);
|
|
rval.i = pack_fpu (r, 1);
|
|
*is = (lval.d <= rval.d);
|
|
return 0;
|
|
}
|
|
else if (sim_fpu_is_snan (l) || sim_fpu_is_snan (r))
|
|
{
|
|
*is = 0;
|
|
return sim_fpu_status_invalid_snan;
|
|
}
|
|
else
|
|
{
|
|
*is = 0;
|
|
return sim_fpu_status_invalid_qnan;
|
|
}
|
|
}
|
|
|
|
INLINE_SIM_FPU (int)
|
|
sim_fpu_eq (int *is,
|
|
const sim_fpu *l,
|
|
const sim_fpu *r)
|
|
{
|
|
if (!sim_fpu_is_nan (l) && !sim_fpu_is_nan (r))
|
|
{
|
|
sim_fpu_map lval;
|
|
sim_fpu_map rval;
|
|
lval.i = pack_fpu (l, 1);
|
|
rval.i = pack_fpu (r, 1);
|
|
(*is) = (lval.d == rval.d);
|
|
return 0;
|
|
}
|
|
else if (sim_fpu_is_snan (l) || sim_fpu_is_snan (r))
|
|
{
|
|
*is = 0;
|
|
return sim_fpu_status_invalid_snan;
|
|
}
|
|
else
|
|
{
|
|
*is = 0;
|
|
return sim_fpu_status_invalid_qnan;
|
|
}
|
|
}
|
|
|
|
INLINE_SIM_FPU (int)
|
|
sim_fpu_ne (int *is,
|
|
const sim_fpu *l,
|
|
const sim_fpu *r)
|
|
{
|
|
if (!sim_fpu_is_nan (l) && !sim_fpu_is_nan (r))
|
|
{
|
|
sim_fpu_map lval;
|
|
sim_fpu_map rval;
|
|
lval.i = pack_fpu (l, 1);
|
|
rval.i = pack_fpu (r, 1);
|
|
(*is) = (lval.d != rval.d);
|
|
return 0;
|
|
}
|
|
else if (sim_fpu_is_snan (l) || sim_fpu_is_snan (r))
|
|
{
|
|
*is = 0;
|
|
return sim_fpu_status_invalid_snan;
|
|
}
|
|
else
|
|
{
|
|
*is = 0;
|
|
return sim_fpu_status_invalid_qnan;
|
|
}
|
|
}
|
|
|
|
INLINE_SIM_FPU (int)
|
|
sim_fpu_ge (int *is,
|
|
const sim_fpu *l,
|
|
const sim_fpu *r)
|
|
{
|
|
return sim_fpu_le (is, r, l);
|
|
}
|
|
|
|
INLINE_SIM_FPU (int)
|
|
sim_fpu_gt (int *is,
|
|
const sim_fpu *l,
|
|
const sim_fpu *r)
|
|
{
|
|
return sim_fpu_lt (is, r, l);
|
|
}
|
|
|
|
|
|
/* A number of useful constants */
|
|
|
|
#if EXTERN_SIM_FPU_P
|
|
const sim_fpu sim_fpu_zero = {
|
|
sim_fpu_class_zero,
|
|
};
|
|
const sim_fpu sim_fpu_qnan = {
|
|
sim_fpu_class_qnan,
|
|
};
|
|
const sim_fpu sim_fpu_one = {
|
|
sim_fpu_class_number, 0, IMPLICIT_1, 1
|
|
};
|
|
const sim_fpu sim_fpu_two = {
|
|
sim_fpu_class_number, 0, IMPLICIT_1, 2
|
|
};
|
|
const sim_fpu sim_fpu_max32 = {
|
|
sim_fpu_class_number, 0, LSMASK64 (NR_FRAC_GUARD, NR_GUARDS32), NORMAL_EXPMAX32
|
|
};
|
|
const sim_fpu sim_fpu_max64 = {
|
|
sim_fpu_class_number, 0, LSMASK64 (NR_FRAC_GUARD, NR_GUARDS64), NORMAL_EXPMAX64
|
|
};
|
|
#endif
|
|
|
|
|
|
/* For debugging */
|
|
|
|
INLINE_SIM_FPU (void)
|
|
sim_fpu_print_fpu (const sim_fpu *f,
|
|
sim_fpu_print_func *print,
|
|
void *arg)
|
|
{
|
|
print (arg, "%s", f->sign ? "-" : "+");
|
|
switch (f->class)
|
|
{
|
|
case sim_fpu_class_qnan:
|
|
print (arg, "0.");
|
|
print_bits (f->fraction, NR_FRAC_GUARD - 1, print, arg);
|
|
print (arg, "*QuietNaN");
|
|
break;
|
|
case sim_fpu_class_snan:
|
|
print (arg, "0.");
|
|
print_bits (f->fraction, NR_FRAC_GUARD - 1, print, arg);
|
|
print (arg, "*SignalNaN");
|
|
break;
|
|
case sim_fpu_class_zero:
|
|
print (arg, "0.0");
|
|
break;
|
|
case sim_fpu_class_infinity:
|
|
print (arg, "INF");
|
|
break;
|
|
case sim_fpu_class_number:
|
|
case sim_fpu_class_denorm:
|
|
print (arg, "1.");
|
|
print_bits (f->fraction, NR_FRAC_GUARD - 1, print, arg);
|
|
print (arg, "*2^%+-5d", f->normal_exp);
|
|
ASSERT (f->fraction >= IMPLICIT_1);
|
|
ASSERT (f->fraction < IMPLICIT_2);
|
|
}
|
|
}
|
|
|
|
|
|
INLINE_SIM_FPU (void)
|
|
sim_fpu_print_status (int status,
|
|
sim_fpu_print_func *print,
|
|
void *arg)
|
|
{
|
|
int i = 1;
|
|
char *prefix = "";
|
|
while (status >= i)
|
|
{
|
|
switch ((sim_fpu_status) (status & i))
|
|
{
|
|
case sim_fpu_status_denorm:
|
|
print (arg, "%sD", prefix);
|
|
break;
|
|
case sim_fpu_status_invalid_snan:
|
|
print (arg, "%sSNaN", prefix);
|
|
break;
|
|
case sim_fpu_status_invalid_qnan:
|
|
print (arg, "%sQNaN", prefix);
|
|
break;
|
|
case sim_fpu_status_invalid_isi:
|
|
print (arg, "%sISI", prefix);
|
|
break;
|
|
case sim_fpu_status_invalid_idi:
|
|
print (arg, "%sIDI", prefix);
|
|
break;
|
|
case sim_fpu_status_invalid_zdz:
|
|
print (arg, "%sZDZ", prefix);
|
|
break;
|
|
case sim_fpu_status_invalid_imz:
|
|
print (arg, "%sIMZ", prefix);
|
|
break;
|
|
case sim_fpu_status_invalid_cvi:
|
|
print (arg, "%sCVI", prefix);
|
|
break;
|
|
case sim_fpu_status_invalid_cmp:
|
|
print (arg, "%sCMP", prefix);
|
|
break;
|
|
case sim_fpu_status_invalid_sqrt:
|
|
print (arg, "%sSQRT", prefix);
|
|
break;
|
|
break;
|
|
case sim_fpu_status_inexact:
|
|
print (arg, "%sX", prefix);
|
|
break;
|
|
break;
|
|
case sim_fpu_status_overflow:
|
|
print (arg, "%sO", prefix);
|
|
break;
|
|
break;
|
|
case sim_fpu_status_underflow:
|
|
print (arg, "%sU", prefix);
|
|
break;
|
|
break;
|
|
case sim_fpu_status_invalid_div0:
|
|
print (arg, "%s/", prefix);
|
|
break;
|
|
break;
|
|
case sim_fpu_status_rounded:
|
|
print (arg, "%sR", prefix);
|
|
break;
|
|
break;
|
|
}
|
|
i <<= 1;
|
|
prefix = ",";
|
|
}
|
|
}
|
|
|
|
#endif
|