mirror of
https://github.com/darlinghq/darling-gdb.git
synced 2024-12-02 00:56:27 +00:00
194 lines
6.2 KiB
Plaintext
194 lines
6.2 KiB
Plaintext
# This shell script emits a C file. -*- C -*-
|
|
# Copyright 2000, 2001 Free Software Foundation, Inc.
|
|
# Written by Michael Sokolov <msokolov@ivan.Harhan.ORG>, based on armelf.em
|
|
#
|
|
# This file is part of GLD, the Gnu Linker.
|
|
#
|
|
# This program is free software; you can redistribute it and/or modify
|
|
# it under the terms of the GNU General Public License as published by
|
|
# the Free Software Foundation; either version 2 of the License, or
|
|
# (at your option) any later version.
|
|
#
|
|
# This program is distributed in the hope that it will be useful,
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
# GNU General Public License for more details.
|
|
#
|
|
# You should have received a copy of the GNU General Public License
|
|
# along with this program; if not, write to the Free Software
|
|
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
|
|
# This file is sourced from elf32.em, and defines some extra routines for m68k
|
|
# embedded systems using ELF and for some other systems using m68k ELF. While
|
|
# it is sourced from elf32.em for all m68k ELF configurations, here we include
|
|
# only the features we want depending on the configuration.
|
|
|
|
case ${target} in
|
|
m68*-*-elf)
|
|
echo "#define SUPPORT_EMBEDDED_RELOCS" >>e${EMULATION_NAME}.c
|
|
;;
|
|
esac
|
|
|
|
cat >>e${EMULATION_NAME}.c <<EOF
|
|
|
|
static void m68k_elf_after_open PARAMS ((void));
|
|
#ifdef SUPPORT_EMBEDDED_RELOCS
|
|
static void check_sections PARAMS ((bfd *, asection *, PTR));
|
|
#endif
|
|
static void m68k_elf_after_allocation PARAMS ((void));
|
|
|
|
/* This function is run after all the input files have been opened. */
|
|
|
|
static void
|
|
m68k_elf_after_open ()
|
|
{
|
|
/* Call the standard elf routine. */
|
|
gld${EMULATION_NAME}_after_open ();
|
|
|
|
#ifdef SUPPORT_EMBEDDED_RELOCS
|
|
if (command_line.embedded_relocs
|
|
&& (! link_info.relocateable))
|
|
{
|
|
bfd *abfd;
|
|
|
|
/* In the embedded relocs mode we create a .emreloc section for each
|
|
input file with a nonzero .data section. The BFD backend will fill in
|
|
these sections with magic numbers which can be used to relocate the
|
|
data section at run time. */
|
|
for (abfd = link_info.input_bfds; abfd != NULL; abfd = abfd->link_next)
|
|
{
|
|
asection *datasec;
|
|
|
|
/* As first-order business, make sure that each input BFD is either
|
|
COFF or ELF. We need to call a special BFD backend function to
|
|
generate the embedded relocs, and we have such functions only for
|
|
COFF and ELF. */
|
|
if (bfd_get_flavour (abfd) != bfd_target_coff_flavour
|
|
&& bfd_get_flavour (abfd) != bfd_target_elf_flavour)
|
|
einfo ("%F%B: all input objects must be COFF or ELF for --embedded-relocs\n");
|
|
|
|
datasec = bfd_get_section_by_name (abfd, ".data");
|
|
|
|
/* Note that we assume that the reloc_count field has already
|
|
been set up. We could call bfd_get_reloc_upper_bound, but
|
|
that returns the size of a memory buffer rather than a reloc
|
|
count. We do not want to call bfd_canonicalize_reloc,
|
|
because although it would always work it would force us to
|
|
read in the relocs into BFD canonical form, which would waste
|
|
a significant amount of time and memory. */
|
|
if (datasec != NULL && datasec->reloc_count > 0)
|
|
{
|
|
asection *relsec;
|
|
|
|
relsec = bfd_make_section (abfd, ".emreloc");
|
|
if (relsec == NULL
|
|
|| ! bfd_set_section_flags (abfd, relsec,
|
|
(SEC_ALLOC
|
|
| SEC_LOAD
|
|
| SEC_HAS_CONTENTS
|
|
| SEC_IN_MEMORY))
|
|
|| ! bfd_set_section_alignment (abfd, relsec, 2)
|
|
|| ! bfd_set_section_size (abfd, relsec,
|
|
datasec->reloc_count * 12))
|
|
einfo ("%F%B: can not create .emreloc section: %E\n");
|
|
}
|
|
|
|
/* Double check that all other data sections are empty, as is
|
|
required for embedded PIC code. */
|
|
bfd_map_over_sections (abfd, check_sections, (PTR) datasec);
|
|
}
|
|
}
|
|
#endif /* SUPPORT_EMBEDDED_RELOCS */
|
|
}
|
|
|
|
#ifdef SUPPORT_EMBEDDED_RELOCS
|
|
/* Check that of the data sections, only the .data section has
|
|
relocs. This is called via bfd_map_over_sections. */
|
|
|
|
static void
|
|
check_sections (abfd, sec, datasec)
|
|
bfd *abfd;
|
|
asection *sec;
|
|
PTR datasec;
|
|
{
|
|
if ((bfd_get_section_flags (abfd, sec) & SEC_DATA)
|
|
&& sec != (asection *) datasec
|
|
&& sec->reloc_count != 0)
|
|
einfo ("%B%X: section %s has relocs; can not use --embedded-relocs\n",
|
|
abfd, bfd_get_section_name (abfd, sec));
|
|
}
|
|
|
|
#endif /* SUPPORT_EMBEDDED_RELOCS */
|
|
|
|
/* This function is called after the section sizes and offsets have
|
|
been set. */
|
|
|
|
static void
|
|
m68k_elf_after_allocation ()
|
|
{
|
|
/* Call the standard elf routine. */
|
|
after_allocation_default ();
|
|
|
|
#ifdef SUPPORT_EMBEDDED_RELOCS
|
|
if (command_line.embedded_relocs
|
|
&& (! link_info.relocateable))
|
|
{
|
|
bfd *abfd;
|
|
|
|
/* If we are generating embedded relocs, call a special BFD backend
|
|
routine to do the work. */
|
|
for (abfd = link_info.input_bfds; abfd != NULL; abfd = abfd->link_next)
|
|
{
|
|
asection *datasec, *relsec;
|
|
char *errmsg;
|
|
|
|
datasec = bfd_get_section_by_name (abfd, ".data");
|
|
|
|
if (datasec == NULL || datasec->reloc_count == 0)
|
|
continue;
|
|
|
|
relsec = bfd_get_section_by_name (abfd, ".emreloc");
|
|
ASSERT (relsec != NULL);
|
|
|
|
if (bfd_get_flavour (abfd) == bfd_target_coff_flavour)
|
|
{
|
|
if (! bfd_m68k_coff_create_embedded_relocs (abfd, &link_info,
|
|
datasec, relsec,
|
|
&errmsg))
|
|
{
|
|
if (errmsg == NULL)
|
|
einfo ("%B%X: can not create runtime reloc information: %E\n",
|
|
abfd);
|
|
else
|
|
einfo ("%X%B: can not create runtime reloc information: %s\n",
|
|
abfd, errmsg);
|
|
}
|
|
}
|
|
else if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
|
|
{
|
|
if (! bfd_m68k_elf32_create_embedded_relocs (abfd, &link_info,
|
|
datasec, relsec,
|
|
&errmsg))
|
|
{
|
|
if (errmsg == NULL)
|
|
einfo ("%B%X: can not create runtime reloc information: %E\n",
|
|
abfd);
|
|
else
|
|
einfo ("%X%B: can not create runtime reloc information: %s\n",
|
|
abfd, errmsg);
|
|
}
|
|
}
|
|
else
|
|
abort ();
|
|
}
|
|
}
|
|
#endif /* SUPPORT_EMBEDDED_RELOCS */
|
|
}
|
|
|
|
EOF
|
|
|
|
# We have our own after_open and after_allocation functions, but they call
|
|
# the standard routines, so give them a different name.
|
|
LDEMUL_AFTER_OPEN=m68k_elf_after_open
|
|
LDEMUL_AFTER_ALLOCATION=m68k_elf_after_allocation
|