mirror of
https://github.com/darlinghq/darling-gdb.git
synced 2024-11-25 21:19:54 +00:00
1665 lines
40 KiB
Plaintext
1665 lines
40 KiB
Plaintext
/* YACC grammar for Chill expressions, for GDB.
|
|
Copyright 1992, 1993, 1994 Free Software Foundation, Inc.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
|
|
|
|
/* Parse a Chill expression from text in a string,
|
|
and return the result as a struct expression pointer.
|
|
That structure contains arithmetic operations in reverse polish,
|
|
with constants represented by operations that are followed by special data.
|
|
See expression.h for the details of the format.
|
|
What is important here is that it can be built up sequentially
|
|
during the process of parsing; the lower levels of the tree always
|
|
come first in the result.
|
|
|
|
Note that malloc's and realloc's in this file are transformed to
|
|
xmalloc and xrealloc respectively by the same sed command in the
|
|
makefile that remaps any other malloc/realloc inserted by the parser
|
|
generator. Doing this with #defines and trying to control the interaction
|
|
with include files (<malloc.h> and <stdlib.h> for example) just became
|
|
too messy, particularly when such includes can be inserted at random
|
|
times by the parser generator.
|
|
|
|
Also note that the language accepted by this parser is more liberal
|
|
than the one accepted by an actual Chill compiler. For example, the
|
|
language rule that a simple name string can not be one of the reserved
|
|
simple name strings is not enforced (e.g "case" is not treated as a
|
|
reserved name). Another example is that Chill is a strongly typed
|
|
language, and certain expressions that violate the type constraints
|
|
may still be evaluated if gdb can do so in a meaningful manner, while
|
|
such expressions would be rejected by the compiler. The reason for
|
|
this more liberal behavior is the philosophy that the debugger
|
|
is intended to be a tool that is used by the programmer when things
|
|
go wrong, and as such, it should provide as few artificial barriers
|
|
to it's use as possible. If it can do something meaningful, even
|
|
something that violates language contraints that are enforced by the
|
|
compiler, it should do so without complaint.
|
|
|
|
*/
|
|
|
|
%{
|
|
|
|
#include "defs.h"
|
|
#include <string.h>
|
|
#include <ctype.h>
|
|
#include "expression.h"
|
|
#include "language.h"
|
|
#include "value.h"
|
|
#include "parser-defs.h"
|
|
#include "ch-lang.h"
|
|
#include "bfd.h" /* Required by objfiles.h. */
|
|
#include "symfile.h" /* Required by objfiles.h. */
|
|
#include "objfiles.h" /* For have_full_symbols and have_partial_symbols */
|
|
|
|
/* Remap normal yacc parser interface names (yyparse, yylex, yyerror, etc),
|
|
as well as gratuitiously global symbol names, so we can have multiple
|
|
yacc generated parsers in gdb. Note that these are only the variables
|
|
produced by yacc. If other parser generators (bison, byacc, etc) produce
|
|
additional global names that conflict at link time, then those parser
|
|
generators need to be fixed instead of adding those names to this list. */
|
|
|
|
#define yymaxdepth chill_maxdepth
|
|
#define yyparse chill_parse
|
|
#define yylex chill_lex
|
|
#define yyerror chill_error
|
|
#define yylval chill_lval
|
|
#define yychar chill_char
|
|
#define yydebug chill_debug
|
|
#define yypact chill_pact
|
|
#define yyr1 chill_r1
|
|
#define yyr2 chill_r2
|
|
#define yydef chill_def
|
|
#define yychk chill_chk
|
|
#define yypgo chill_pgo
|
|
#define yyact chill_act
|
|
#define yyexca chill_exca
|
|
#define yyerrflag chill_errflag
|
|
#define yynerrs chill_nerrs
|
|
#define yyps chill_ps
|
|
#define yypv chill_pv
|
|
#define yys chill_s
|
|
#define yy_yys chill_yys
|
|
#define yystate chill_state
|
|
#define yytmp chill_tmp
|
|
#define yyv chill_v
|
|
#define yy_yyv chill_yyv
|
|
#define yyval chill_val
|
|
#define yylloc chill_lloc
|
|
#define yyreds chill_reds /* With YYDEBUG defined */
|
|
#define yytoks chill_toks /* With YYDEBUG defined */
|
|
#define yylhs chill_yylhs
|
|
#define yylen chill_yylen
|
|
#define yydefred chill_yydefred
|
|
#define yydgoto chill_yydgoto
|
|
#define yysindex chill_yysindex
|
|
#define yyrindex chill_yyrindex
|
|
#define yygindex chill_yygindex
|
|
#define yytable chill_yytable
|
|
#define yycheck chill_yycheck
|
|
|
|
#ifndef YYDEBUG
|
|
#define YYDEBUG 0 /* Default to no yydebug support */
|
|
#endif
|
|
|
|
static void
|
|
write_lower_upper_value PARAMS ((enum exp_opcode, struct type *type));
|
|
|
|
int
|
|
yyparse PARAMS ((void));
|
|
|
|
static int
|
|
yylex PARAMS ((void));
|
|
|
|
void
|
|
yyerror PARAMS ((char *));
|
|
|
|
%}
|
|
|
|
/* Although the yacc "value" of an expression is not used,
|
|
since the result is stored in the structure being created,
|
|
other node types do have values. */
|
|
|
|
%union
|
|
{
|
|
LONGEST lval;
|
|
unsigned LONGEST ulval;
|
|
struct {
|
|
LONGEST val;
|
|
struct type *type;
|
|
} typed_val;
|
|
double dval;
|
|
struct symbol *sym;
|
|
struct type *tval;
|
|
struct stoken sval;
|
|
struct ttype tsym;
|
|
struct symtoken ssym;
|
|
int voidval;
|
|
struct block *bval;
|
|
enum exp_opcode opcode;
|
|
struct internalvar *ivar;
|
|
|
|
struct type **tvec;
|
|
int *ivec;
|
|
}
|
|
|
|
%token <typed_val> INTEGER_LITERAL
|
|
%token <ulval> BOOLEAN_LITERAL
|
|
%token <typed_val> CHARACTER_LITERAL
|
|
%token <dval> FLOAT_LITERAL
|
|
%token <ssym> GENERAL_PROCEDURE_NAME
|
|
%token <ssym> LOCATION_NAME
|
|
%token <voidval> EMPTINESS_LITERAL
|
|
%token <sval> CHARACTER_STRING_LITERAL
|
|
%token <sval> BIT_STRING_LITERAL
|
|
%token <tsym> TYPENAME
|
|
%token <sval> FIELD_NAME
|
|
|
|
%token <voidval> '.'
|
|
%token <voidval> ';'
|
|
%token <voidval> ':'
|
|
%token <voidval> CASE
|
|
%token <voidval> OF
|
|
%token <voidval> ESAC
|
|
%token <voidval> LOGIOR
|
|
%token <voidval> ORIF
|
|
%token <voidval> LOGXOR
|
|
%token <voidval> LOGAND
|
|
%token <voidval> ANDIF
|
|
%token <voidval> '='
|
|
%token <voidval> NOTEQUAL
|
|
%token <voidval> '>'
|
|
%token <voidval> GTR
|
|
%token <voidval> '<'
|
|
%token <voidval> LEQ
|
|
%token <voidval> IN
|
|
%token <voidval> '+'
|
|
%token <voidval> '-'
|
|
%token <voidval> '*'
|
|
%token <voidval> '/'
|
|
%token <voidval> SLASH_SLASH
|
|
%token <voidval> MOD
|
|
%token <voidval> REM
|
|
%token <voidval> NOT
|
|
%token <voidval> POINTER
|
|
%token <voidval> RECEIVE
|
|
%token <voidval> '['
|
|
%token <voidval> ']'
|
|
%token <voidval> '('
|
|
%token <voidval> ')'
|
|
%token <voidval> UP
|
|
%token <voidval> IF
|
|
%token <voidval> THEN
|
|
%token <voidval> ELSE
|
|
%token <voidval> FI
|
|
%token <voidval> ELSIF
|
|
%token <voidval> ILLEGAL_TOKEN
|
|
%token <voidval> NUM
|
|
%token <voidval> PRED
|
|
%token <voidval> SUCC
|
|
%token <voidval> ABS
|
|
%token <voidval> CARD
|
|
%token <voidval> MAX_TOKEN
|
|
%token <voidval> MIN_TOKEN
|
|
%token <voidval> ADDR_TOKEN
|
|
%token <voidval> SIZE
|
|
%token <voidval> UPPER
|
|
%token <voidval> LOWER
|
|
%token <voidval> LENGTH
|
|
%token <voidval> ARRAY
|
|
|
|
/* Tokens which are not Chill tokens used in expressions, but rather GDB
|
|
specific things that we recognize in the same context as Chill tokens
|
|
(register names for example). */
|
|
|
|
%token <voidval> GDB_VARIABLE /* Convenience variable */
|
|
%token <voidval> GDB_ASSIGNMENT /* Assign value to somewhere */
|
|
|
|
%type <voidval> access_name
|
|
%type <voidval> primitive_value
|
|
%type <voidval> value_name
|
|
%type <voidval> literal
|
|
%type <voidval> tuple
|
|
%type <voidval> slice
|
|
%type <voidval> expression_conversion
|
|
%type <voidval> value_built_in_routine_call
|
|
%type <voidval> parenthesised_expression
|
|
%type <voidval> value
|
|
%type <voidval> expression
|
|
%type <voidval> conditional_expression
|
|
%type <voidval> then_alternative
|
|
%type <voidval> else_alternative
|
|
%type <voidval> operand_0
|
|
%type <voidval> operand_1
|
|
%type <voidval> operand_2
|
|
%type <voidval> operand_3
|
|
%type <voidval> operand_4
|
|
%type <voidval> operand_5
|
|
%type <voidval> operand_6
|
|
%type <voidval> expression_list
|
|
%type <tval> mode_argument
|
|
%type <voidval> single_assignment_action
|
|
%type <tsym> mode_name
|
|
%type <lval> rparen
|
|
|
|
/* Not implemented:
|
|
%type <voidval> undefined_value
|
|
%type <voidval> array_mode_name
|
|
%type <voidval> string_mode_name
|
|
%type <voidval> variant_structure_mode_name
|
|
*/
|
|
|
|
%%
|
|
|
|
/* Z.200, 5.3.1 */
|
|
|
|
start : value { }
|
|
| mode_name
|
|
{ write_exp_elt_opcode(OP_TYPE);
|
|
write_exp_elt_type($1.type);
|
|
write_exp_elt_opcode(OP_TYPE);}
|
|
;
|
|
|
|
value : expression
|
|
/*
|
|
| undefined_value
|
|
{ ??? }
|
|
*/
|
|
;
|
|
|
|
/* Z.200, 4.2.2 */
|
|
|
|
access_name : LOCATION_NAME
|
|
{
|
|
write_exp_elt_opcode (OP_VAR_VALUE);
|
|
write_exp_elt_block (NULL);
|
|
write_exp_elt_sym ($1.sym);
|
|
write_exp_elt_opcode (OP_VAR_VALUE);
|
|
}
|
|
| GDB_VARIABLE /* gdb specific */
|
|
;
|
|
|
|
/* Z.200, 4.2.8 */
|
|
|
|
expression_list : expression
|
|
{
|
|
arglist_len = 1;
|
|
}
|
|
| expression_list ',' expression
|
|
{
|
|
arglist_len++;
|
|
}
|
|
;
|
|
|
|
maybe_expression_list: /* EMPTY */
|
|
{
|
|
arglist_len = 0;
|
|
}
|
|
| expression_list
|
|
;
|
|
|
|
|
|
/* Z.200, 5.2.1 */
|
|
|
|
primitive_value_lparen: primitive_value '('
|
|
/* This is to save the value of arglist_len
|
|
being accumulated for each dimension. */
|
|
{ start_arglist (); }
|
|
;
|
|
|
|
rparen : ')'
|
|
{ $$ = end_arglist (); }
|
|
;
|
|
|
|
primitive_value :
|
|
access_name
|
|
| primitive_value_lparen maybe_expression_list rparen
|
|
{
|
|
write_exp_elt_opcode (MULTI_SUBSCRIPT);
|
|
write_exp_elt_longcst ($3);
|
|
write_exp_elt_opcode (MULTI_SUBSCRIPT);
|
|
}
|
|
| primitive_value FIELD_NAME
|
|
{ write_exp_elt_opcode (STRUCTOP_STRUCT);
|
|
write_exp_string ($2);
|
|
write_exp_elt_opcode (STRUCTOP_STRUCT);
|
|
}
|
|
| primitive_value POINTER
|
|
{
|
|
write_exp_elt_opcode (UNOP_IND);
|
|
}
|
|
| primitive_value POINTER mode_name
|
|
{
|
|
write_exp_elt_opcode (UNOP_CAST);
|
|
write_exp_elt_type (lookup_pointer_type ($3.type));
|
|
write_exp_elt_opcode (UNOP_CAST);
|
|
write_exp_elt_opcode (UNOP_IND);
|
|
}
|
|
| value_name
|
|
| literal
|
|
| tuple
|
|
| slice
|
|
| expression_conversion
|
|
| value_built_in_routine_call
|
|
/*
|
|
| start_expression
|
|
{ ??? }
|
|
| zero_adic_operator
|
|
{ ??? }
|
|
*/
|
|
| parenthesised_expression
|
|
;
|
|
|
|
/* Z.200, 5.2.3 */
|
|
|
|
value_name : GENERAL_PROCEDURE_NAME
|
|
{
|
|
write_exp_elt_opcode (OP_VAR_VALUE);
|
|
write_exp_elt_block (NULL);
|
|
write_exp_elt_sym ($1.sym);
|
|
write_exp_elt_opcode (OP_VAR_VALUE);
|
|
}
|
|
;
|
|
|
|
/* Z.200, 5.2.4.1 */
|
|
|
|
literal : INTEGER_LITERAL
|
|
{
|
|
write_exp_elt_opcode (OP_LONG);
|
|
write_exp_elt_type ($1.type);
|
|
write_exp_elt_longcst ((LONGEST) ($1.val));
|
|
write_exp_elt_opcode (OP_LONG);
|
|
}
|
|
| BOOLEAN_LITERAL
|
|
{
|
|
write_exp_elt_opcode (OP_BOOL);
|
|
write_exp_elt_longcst ((LONGEST) $1);
|
|
write_exp_elt_opcode (OP_BOOL);
|
|
}
|
|
| CHARACTER_LITERAL
|
|
{
|
|
write_exp_elt_opcode (OP_LONG);
|
|
write_exp_elt_type ($1.type);
|
|
write_exp_elt_longcst ((LONGEST) ($1.val));
|
|
write_exp_elt_opcode (OP_LONG);
|
|
}
|
|
| FLOAT_LITERAL
|
|
{
|
|
write_exp_elt_opcode (OP_DOUBLE);
|
|
write_exp_elt_type (builtin_type_double);
|
|
write_exp_elt_dblcst ($1);
|
|
write_exp_elt_opcode (OP_DOUBLE);
|
|
}
|
|
| EMPTINESS_LITERAL
|
|
{
|
|
struct type *void_ptr_type
|
|
= lookup_pointer_type (builtin_type_void);
|
|
write_exp_elt_opcode (OP_LONG);
|
|
write_exp_elt_type (void_ptr_type);
|
|
write_exp_elt_longcst (0);
|
|
write_exp_elt_opcode (OP_LONG);
|
|
}
|
|
| CHARACTER_STRING_LITERAL
|
|
{
|
|
write_exp_elt_opcode (OP_STRING);
|
|
write_exp_string ($1);
|
|
write_exp_elt_opcode (OP_STRING);
|
|
}
|
|
| BIT_STRING_LITERAL
|
|
{
|
|
write_exp_elt_opcode (OP_BITSTRING);
|
|
write_exp_bitstring ($1);
|
|
write_exp_elt_opcode (OP_BITSTRING);
|
|
}
|
|
;
|
|
|
|
/* Z.200, 5.2.5 */
|
|
|
|
tuple_element : expression
|
|
| named_record_element
|
|
;
|
|
|
|
named_record_element: FIELD_NAME ',' named_record_element
|
|
{ write_exp_elt_opcode (OP_LABELED);
|
|
write_exp_string ($1);
|
|
write_exp_elt_opcode (OP_LABELED);
|
|
}
|
|
| FIELD_NAME ':' expression
|
|
{ write_exp_elt_opcode (OP_LABELED);
|
|
write_exp_string ($1);
|
|
write_exp_elt_opcode (OP_LABELED);
|
|
}
|
|
;
|
|
|
|
tuple_elements : tuple_element
|
|
{
|
|
arglist_len = 1;
|
|
}
|
|
| tuple_elements ',' tuple_element
|
|
{
|
|
arglist_len++;
|
|
}
|
|
;
|
|
|
|
maybe_tuple_elements : tuple_elements
|
|
| /* EMPTY */
|
|
;
|
|
|
|
tuple : '['
|
|
{ start_arglist (); }
|
|
maybe_tuple_elements ']'
|
|
{
|
|
write_exp_elt_opcode (OP_ARRAY);
|
|
write_exp_elt_longcst ((LONGEST) 0);
|
|
write_exp_elt_longcst ((LONGEST) end_arglist () - 1);
|
|
write_exp_elt_opcode (OP_ARRAY);
|
|
}
|
|
|
|
|
mode_name '['
|
|
{ start_arglist (); }
|
|
maybe_tuple_elements ']'
|
|
{
|
|
write_exp_elt_opcode (OP_ARRAY);
|
|
write_exp_elt_longcst ((LONGEST) 0);
|
|
write_exp_elt_longcst ((LONGEST) end_arglist () - 1);
|
|
write_exp_elt_opcode (OP_ARRAY);
|
|
|
|
write_exp_elt_opcode (UNOP_CAST);
|
|
write_exp_elt_type ($1.type);
|
|
write_exp_elt_opcode (UNOP_CAST);
|
|
}
|
|
;
|
|
|
|
|
|
/* Z.200, 5.2.6 */
|
|
|
|
|
|
slice: primitive_value_lparen expression ':' expression rparen
|
|
{
|
|
write_exp_elt_opcode (TERNOP_SLICE);
|
|
}
|
|
| primitive_value_lparen expression UP expression rparen
|
|
{
|
|
write_exp_elt_opcode (TERNOP_SLICE_COUNT);
|
|
}
|
|
;
|
|
|
|
/* Z.200, 5.2.11 */
|
|
|
|
expression_conversion: mode_name parenthesised_expression
|
|
{
|
|
write_exp_elt_opcode (UNOP_CAST);
|
|
write_exp_elt_type ($1.type);
|
|
write_exp_elt_opcode (UNOP_CAST);
|
|
}
|
|
| ARRAY '(' ')' mode_name parenthesised_expression
|
|
/* This is pseudo-Chill, similar to C's '(TYPE[])EXPR'
|
|
which casts to an artificial array. */
|
|
{
|
|
struct type *range_type
|
|
= create_range_type ((struct type *) NULL,
|
|
builtin_type_int, 0, 0);
|
|
struct type *array_type
|
|
= create_array_type ((struct type *) NULL,
|
|
$4.type, range_type);
|
|
TYPE_ARRAY_UPPER_BOUND_TYPE(array_type)
|
|
= BOUND_CANNOT_BE_DETERMINED;
|
|
write_exp_elt_opcode (UNOP_CAST);
|
|
write_exp_elt_type (array_type);
|
|
write_exp_elt_opcode (UNOP_CAST);
|
|
}
|
|
;
|
|
|
|
/* Z.200, 5.2.16 */
|
|
|
|
parenthesised_expression: '(' expression ')'
|
|
;
|
|
|
|
/* Z.200, 5.3.2 */
|
|
|
|
expression : operand_0
|
|
| single_assignment_action
|
|
| conditional_expression
|
|
;
|
|
|
|
conditional_expression : IF expression then_alternative else_alternative FI
|
|
{ write_exp_elt_opcode (TERNOP_COND); }
|
|
/*
|
|
| CASE case_selector_list OF value_case_alternative ELSE expression ESAC
|
|
{ error ("not implemented: CASE expression" }
|
|
*/
|
|
;
|
|
|
|
then_alternative: THEN expression
|
|
;
|
|
|
|
else_alternative: ELSE expression
|
|
| ELSIF expression then_alternative else_alternative
|
|
{ write_exp_elt_opcode (TERNOP_COND); }
|
|
;
|
|
|
|
/* Z.200, 5.3.3 */
|
|
|
|
operand_0 : operand_1
|
|
| operand_0 LOGIOR operand_1
|
|
{
|
|
write_exp_elt_opcode (BINOP_BITWISE_IOR);
|
|
}
|
|
| operand_0 ORIF operand_1
|
|
{
|
|
write_exp_elt_opcode (BINOP_LOGICAL_OR);
|
|
}
|
|
| operand_0 LOGXOR operand_1
|
|
{
|
|
write_exp_elt_opcode (BINOP_BITWISE_XOR);
|
|
}
|
|
;
|
|
|
|
/* Z.200, 5.3.4 */
|
|
|
|
operand_1 : operand_2
|
|
| operand_1 LOGAND operand_2
|
|
{
|
|
write_exp_elt_opcode (BINOP_BITWISE_AND);
|
|
}
|
|
| operand_1 ANDIF operand_2
|
|
{
|
|
write_exp_elt_opcode (BINOP_LOGICAL_AND);
|
|
}
|
|
;
|
|
|
|
/* Z.200, 5.3.5 */
|
|
|
|
operand_2 : operand_3
|
|
| operand_2 '=' operand_3
|
|
{
|
|
write_exp_elt_opcode (BINOP_EQUAL);
|
|
}
|
|
| operand_2 NOTEQUAL operand_3
|
|
{
|
|
write_exp_elt_opcode (BINOP_NOTEQUAL);
|
|
}
|
|
| operand_2 '>' operand_3
|
|
{
|
|
write_exp_elt_opcode (BINOP_GTR);
|
|
}
|
|
| operand_2 GTR operand_3
|
|
{
|
|
write_exp_elt_opcode (BINOP_GEQ);
|
|
}
|
|
| operand_2 '<' operand_3
|
|
{
|
|
write_exp_elt_opcode (BINOP_LESS);
|
|
}
|
|
| operand_2 LEQ operand_3
|
|
{
|
|
write_exp_elt_opcode (BINOP_LEQ);
|
|
}
|
|
| operand_2 IN operand_3
|
|
{
|
|
write_exp_elt_opcode (BINOP_IN);
|
|
}
|
|
;
|
|
|
|
|
|
/* Z.200, 5.3.6 */
|
|
|
|
operand_3 : operand_4
|
|
| operand_3 '+' operand_4
|
|
{
|
|
write_exp_elt_opcode (BINOP_ADD);
|
|
}
|
|
| operand_3 '-' operand_4
|
|
{
|
|
write_exp_elt_opcode (BINOP_SUB);
|
|
}
|
|
| operand_3 SLASH_SLASH operand_4
|
|
{
|
|
write_exp_elt_opcode (BINOP_CONCAT);
|
|
}
|
|
;
|
|
|
|
/* Z.200, 5.3.7 */
|
|
|
|
operand_4 : operand_5
|
|
| operand_4 '*' operand_5
|
|
{
|
|
write_exp_elt_opcode (BINOP_MUL);
|
|
}
|
|
| operand_4 '/' operand_5
|
|
{
|
|
write_exp_elt_opcode (BINOP_DIV);
|
|
}
|
|
| operand_4 MOD operand_5
|
|
{
|
|
write_exp_elt_opcode (BINOP_MOD);
|
|
}
|
|
| operand_4 REM operand_5
|
|
{
|
|
write_exp_elt_opcode (BINOP_REM);
|
|
}
|
|
;
|
|
|
|
/* Z.200, 5.3.8 */
|
|
|
|
operand_5 : operand_6
|
|
| '-' operand_6
|
|
{
|
|
write_exp_elt_opcode (UNOP_NEG);
|
|
}
|
|
| NOT operand_6
|
|
{
|
|
write_exp_elt_opcode (UNOP_LOGICAL_NOT);
|
|
}
|
|
| parenthesised_expression literal
|
|
/* We require the string operand to be a literal, to avoid some
|
|
nasty parsing ambiguities. */
|
|
{
|
|
write_exp_elt_opcode (BINOP_CONCAT);
|
|
}
|
|
;
|
|
|
|
/* Z.200, 5.3.9 */
|
|
|
|
operand_6 : POINTER primitive_value
|
|
{
|
|
write_exp_elt_opcode (UNOP_ADDR);
|
|
}
|
|
| RECEIVE expression
|
|
{ error ("not implemented: RECEIVE expression"); }
|
|
| primitive_value
|
|
;
|
|
|
|
|
|
/* Z.200, 6.2 */
|
|
|
|
single_assignment_action :
|
|
primitive_value GDB_ASSIGNMENT value
|
|
{
|
|
write_exp_elt_opcode (BINOP_ASSIGN);
|
|
}
|
|
;
|
|
|
|
/* Z.200, 6.20.3 */
|
|
|
|
value_built_in_routine_call :
|
|
NUM '(' expression ')'
|
|
{
|
|
write_exp_elt_opcode (UNOP_CAST);
|
|
write_exp_elt_type (builtin_type_int);
|
|
write_exp_elt_opcode (UNOP_CAST);
|
|
}
|
|
| PRED '(' expression ')'
|
|
{ error ("not implemented: PRED builtin function"); }
|
|
| SUCC '(' expression ')'
|
|
{ error ("not implemented: SUCC builtin function"); }
|
|
| ADDR_TOKEN '(' expression ')'
|
|
{ write_exp_elt_opcode (UNOP_ADDR); }
|
|
| ABS '(' expression ')'
|
|
{ error ("not implemented: ABS builtin function"); }
|
|
| CARD '(' expression ')'
|
|
{ error ("not implemented: CARD builtin function"); }
|
|
| MAX_TOKEN '(' expression ')'
|
|
{ error ("not implemented: MAX builtin function"); }
|
|
| MIN_TOKEN '(' expression ')'
|
|
{ error ("not implemented: MIN builtin function"); }
|
|
| SIZE '(' expression ')'
|
|
{ write_exp_elt_opcode (UNOP_SIZEOF); }
|
|
| SIZE '(' mode_argument ')'
|
|
{ write_exp_elt_opcode (OP_LONG);
|
|
write_exp_elt_type (builtin_type_int);
|
|
write_exp_elt_longcst ((LONGEST) TYPE_LENGTH ($3));
|
|
write_exp_elt_opcode (OP_LONG); }
|
|
| LOWER '(' mode_argument ')'
|
|
{ write_lower_upper_value (UNOP_LOWER, $3); }
|
|
| UPPER '(' mode_argument ')'
|
|
{ write_lower_upper_value (UNOP_UPPER, $3); }
|
|
| LOWER '(' expression ')'
|
|
{ write_exp_elt_opcode (UNOP_LOWER); }
|
|
| UPPER '(' expression ')'
|
|
{ write_exp_elt_opcode (UNOP_UPPER); }
|
|
| LENGTH '(' expression ')'
|
|
{ write_exp_elt_opcode (UNOP_LENGTH); }
|
|
;
|
|
|
|
mode_argument : mode_name
|
|
{
|
|
$$ = $1.type;
|
|
}
|
|
/*
|
|
| array_mode_name '(' expression ')'
|
|
{ ??? }
|
|
| string_mode_name '(' expression ')'
|
|
{ ??? }
|
|
| variant_structure_mode_name '(' expression_list ')'
|
|
{ ??? }
|
|
*/
|
|
;
|
|
|
|
mode_name : TYPENAME
|
|
;
|
|
|
|
%%
|
|
|
|
/* Implementation of a dynamically expandable buffer for processing input
|
|
characters acquired through lexptr and building a value to return in
|
|
yylval. */
|
|
|
|
static char *tempbuf; /* Current buffer contents */
|
|
static int tempbufsize; /* Size of allocated buffer */
|
|
static int tempbufindex; /* Current index into buffer */
|
|
|
|
#define GROWBY_MIN_SIZE 64 /* Minimum amount to grow buffer by */
|
|
|
|
#define CHECKBUF(size) \
|
|
do { \
|
|
if (tempbufindex + (size) >= tempbufsize) \
|
|
{ \
|
|
growbuf_by_size (size); \
|
|
} \
|
|
} while (0);
|
|
|
|
/* Grow the static temp buffer if necessary, including allocating the first one
|
|
on demand. */
|
|
|
|
static void
|
|
growbuf_by_size (count)
|
|
int count;
|
|
{
|
|
int growby;
|
|
|
|
growby = max (count, GROWBY_MIN_SIZE);
|
|
tempbufsize += growby;
|
|
if (tempbuf == NULL)
|
|
{
|
|
tempbuf = (char *) malloc (tempbufsize);
|
|
}
|
|
else
|
|
{
|
|
tempbuf = (char *) realloc (tempbuf, tempbufsize);
|
|
}
|
|
}
|
|
|
|
/* Try to consume a simple name string token. If successful, returns
|
|
a pointer to a nullbyte terminated copy of the name that can be used
|
|
in symbol table lookups. If not successful, returns NULL. */
|
|
|
|
static char *
|
|
match_simple_name_string ()
|
|
{
|
|
char *tokptr = lexptr;
|
|
|
|
if (isalpha (*tokptr) || *tokptr == '_')
|
|
{
|
|
char *result;
|
|
do {
|
|
tokptr++;
|
|
} while (isalnum (*tokptr) || (*tokptr == '_'));
|
|
yylval.sval.ptr = lexptr;
|
|
yylval.sval.length = tokptr - lexptr;
|
|
lexptr = tokptr;
|
|
result = copy_name (yylval.sval);
|
|
return result;
|
|
}
|
|
return (NULL);
|
|
}
|
|
|
|
/* Start looking for a value composed of valid digits as set by the base
|
|
in use. Note that '_' characters are valid anywhere, in any quantity,
|
|
and are simply ignored. Since we must find at least one valid digit,
|
|
or reject this token as an integer literal, we keep track of how many
|
|
digits we have encountered. */
|
|
|
|
static int
|
|
decode_integer_value (base, tokptrptr, ivalptr)
|
|
int base;
|
|
char **tokptrptr;
|
|
int *ivalptr;
|
|
{
|
|
char *tokptr = *tokptrptr;
|
|
int temp;
|
|
int digits = 0;
|
|
|
|
while (*tokptr != '\0')
|
|
{
|
|
temp = *tokptr;
|
|
if (isupper (temp))
|
|
temp = tolower (temp);
|
|
tokptr++;
|
|
switch (temp)
|
|
{
|
|
case '_':
|
|
continue;
|
|
case '0': case '1': case '2': case '3': case '4':
|
|
case '5': case '6': case '7': case '8': case '9':
|
|
temp -= '0';
|
|
break;
|
|
case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
|
|
temp -= 'a';
|
|
temp += 10;
|
|
break;
|
|
default:
|
|
temp = base;
|
|
break;
|
|
}
|
|
if (temp < base)
|
|
{
|
|
digits++;
|
|
*ivalptr *= base;
|
|
*ivalptr += temp;
|
|
}
|
|
else
|
|
{
|
|
/* Found something not in domain for current base. */
|
|
tokptr--; /* Unconsume what gave us indigestion. */
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* If we didn't find any digits, then we don't have a valid integer
|
|
value, so reject the entire token. Otherwise, update the lexical
|
|
scan pointer, and return non-zero for success. */
|
|
|
|
if (digits == 0)
|
|
{
|
|
return (0);
|
|
}
|
|
else
|
|
{
|
|
*tokptrptr = tokptr;
|
|
return (1);
|
|
}
|
|
}
|
|
|
|
static int
|
|
decode_integer_literal (valptr, tokptrptr)
|
|
int *valptr;
|
|
char **tokptrptr;
|
|
{
|
|
char *tokptr = *tokptrptr;
|
|
int base = 0;
|
|
int ival = 0;
|
|
int explicit_base = 0;
|
|
|
|
/* Look for an explicit base specifier, which is optional. */
|
|
|
|
switch (*tokptr)
|
|
{
|
|
case 'd':
|
|
case 'D':
|
|
explicit_base++;
|
|
base = 10;
|
|
tokptr++;
|
|
break;
|
|
case 'b':
|
|
case 'B':
|
|
explicit_base++;
|
|
base = 2;
|
|
tokptr++;
|
|
break;
|
|
case 'h':
|
|
case 'H':
|
|
explicit_base++;
|
|
base = 16;
|
|
tokptr++;
|
|
break;
|
|
case 'o':
|
|
case 'O':
|
|
explicit_base++;
|
|
base = 8;
|
|
tokptr++;
|
|
break;
|
|
default:
|
|
base = 10;
|
|
break;
|
|
}
|
|
|
|
/* If we found an explicit base ensure that the character after the
|
|
explicit base is a single quote. */
|
|
|
|
if (explicit_base && (*tokptr++ != '\''))
|
|
{
|
|
return (0);
|
|
}
|
|
|
|
/* Attempt to decode whatever follows as an integer value in the
|
|
indicated base, updating the token pointer in the process and
|
|
computing the value into ival. Also, if we have an explicit
|
|
base, then the next character must not be a single quote, or we
|
|
have a bitstring literal, so reject the entire token in this case.
|
|
Otherwise, update the lexical scan pointer, and return non-zero
|
|
for success. */
|
|
|
|
if (!decode_integer_value (base, &tokptr, &ival))
|
|
{
|
|
return (0);
|
|
}
|
|
else if (explicit_base && (*tokptr == '\''))
|
|
{
|
|
return (0);
|
|
}
|
|
else
|
|
{
|
|
*valptr = ival;
|
|
*tokptrptr = tokptr;
|
|
return (1);
|
|
}
|
|
}
|
|
|
|
/* If it wasn't for the fact that floating point values can contain '_'
|
|
characters, we could just let strtod do all the hard work by letting it
|
|
try to consume as much of the current token buffer as possible and
|
|
find a legal conversion. Unfortunately we need to filter out the '_'
|
|
characters before calling strtod, which we do by copying the other
|
|
legal chars to a local buffer to be converted. However since we also
|
|
need to keep track of where the last unconsumed character in the input
|
|
buffer is, we have transfer only as many characters as may compose a
|
|
legal floating point value. */
|
|
|
|
static int
|
|
match_float_literal ()
|
|
{
|
|
char *tokptr = lexptr;
|
|
char *buf;
|
|
char *copy;
|
|
double dval;
|
|
extern double strtod ();
|
|
|
|
/* Make local buffer in which to build the string to convert. This is
|
|
required because underscores are valid in chill floating point numbers
|
|
but not in the string passed to strtod to convert. The string will be
|
|
no longer than our input string. */
|
|
|
|
copy = buf = (char *) alloca (strlen (tokptr) + 1);
|
|
|
|
/* Transfer all leading digits to the conversion buffer, discarding any
|
|
underscores. */
|
|
|
|
while (isdigit (*tokptr) || *tokptr == '_')
|
|
{
|
|
if (*tokptr != '_')
|
|
{
|
|
*copy++ = *tokptr;
|
|
}
|
|
tokptr++;
|
|
}
|
|
|
|
/* Now accept either a '.', or one of [eEdD]. Dot is legal regardless
|
|
of whether we found any leading digits, and we simply accept it and
|
|
continue on to look for the fractional part and/or exponent. One of
|
|
[eEdD] is legal only if we have seen digits, and means that there
|
|
is no fractional part. If we find neither of these, then this is
|
|
not a floating point number, so return failure. */
|
|
|
|
switch (*tokptr++)
|
|
{
|
|
case '.':
|
|
/* Accept and then look for fractional part and/or exponent. */
|
|
*copy++ = '.';
|
|
break;
|
|
|
|
case 'e':
|
|
case 'E':
|
|
case 'd':
|
|
case 'D':
|
|
if (copy == buf)
|
|
{
|
|
return (0);
|
|
}
|
|
*copy++ = 'e';
|
|
goto collect_exponent;
|
|
break;
|
|
|
|
default:
|
|
return (0);
|
|
break;
|
|
}
|
|
|
|
/* We found a '.', copy any fractional digits to the conversion buffer, up
|
|
to the first nondigit, non-underscore character. */
|
|
|
|
while (isdigit (*tokptr) || *tokptr == '_')
|
|
{
|
|
if (*tokptr != '_')
|
|
{
|
|
*copy++ = *tokptr;
|
|
}
|
|
tokptr++;
|
|
}
|
|
|
|
/* Look for an exponent, which must start with one of [eEdD]. If none
|
|
is found, jump directly to trying to convert what we have collected
|
|
so far. */
|
|
|
|
switch (*tokptr)
|
|
{
|
|
case 'e':
|
|
case 'E':
|
|
case 'd':
|
|
case 'D':
|
|
*copy++ = 'e';
|
|
tokptr++;
|
|
break;
|
|
default:
|
|
goto convert_float;
|
|
break;
|
|
}
|
|
|
|
/* Accept an optional '-' or '+' following one of [eEdD]. */
|
|
|
|
collect_exponent:
|
|
if (*tokptr == '+' || *tokptr == '-')
|
|
{
|
|
*copy++ = *tokptr++;
|
|
}
|
|
|
|
/* Now copy an exponent into the conversion buffer. Note that at the
|
|
moment underscores are *not* allowed in exponents. */
|
|
|
|
while (isdigit (*tokptr))
|
|
{
|
|
*copy++ = *tokptr++;
|
|
}
|
|
|
|
/* If we transfered any chars to the conversion buffer, try to interpret its
|
|
contents as a floating point value. If any characters remain, then we
|
|
must not have a valid floating point string. */
|
|
|
|
convert_float:
|
|
*copy = '\0';
|
|
if (copy != buf)
|
|
{
|
|
dval = strtod (buf, ©);
|
|
if (*copy == '\0')
|
|
{
|
|
yylval.dval = dval;
|
|
lexptr = tokptr;
|
|
return (FLOAT_LITERAL);
|
|
}
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/* Recognize a string literal. A string literal is a sequence
|
|
of characters enclosed in matching single or double quotes, except that
|
|
a single character inside single quotes is a character literal, which
|
|
we reject as a string literal. To embed the terminator character inside
|
|
a string, it is simply doubled (I.E. "this""is""one""string") */
|
|
|
|
static int
|
|
match_string_literal ()
|
|
{
|
|
char *tokptr = lexptr;
|
|
|
|
for (tempbufindex = 0, tokptr++; *tokptr != '\0'; tokptr++)
|
|
{
|
|
CHECKBUF (1);
|
|
if (*tokptr == *lexptr)
|
|
{
|
|
if (*(tokptr + 1) == *lexptr)
|
|
{
|
|
tokptr++;
|
|
}
|
|
else
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
tempbuf[tempbufindex++] = *tokptr;
|
|
}
|
|
if (*tokptr == '\0' /* no terminator */
|
|
|| (tempbufindex == 1 && *tokptr == '\'')) /* char literal */
|
|
{
|
|
return (0);
|
|
}
|
|
else
|
|
{
|
|
tempbuf[tempbufindex] = '\0';
|
|
yylval.sval.ptr = tempbuf;
|
|
yylval.sval.length = tempbufindex;
|
|
lexptr = ++tokptr;
|
|
return (CHARACTER_STRING_LITERAL);
|
|
}
|
|
}
|
|
|
|
/* Recognize a character literal. A character literal is single character
|
|
or a control sequence, enclosed in single quotes. A control sequence
|
|
is a comma separated list of one or more integer literals, enclosed
|
|
in parenthesis and introduced with a circumflex character.
|
|
|
|
EX: 'a' '^(7)' '^(7,8)'
|
|
|
|
As a GNU chill extension, the syntax C'xx' is also recognized as a
|
|
character literal, where xx is a hex value for the character.
|
|
|
|
Note that more than a single character, enclosed in single quotes, is
|
|
a string literal.
|
|
|
|
Also note that the control sequence form is not in GNU Chill since it
|
|
is ambiguous with the string literal form using single quotes. I.E.
|
|
is '^(7)' a character literal or a string literal. In theory it it
|
|
possible to tell by context, but GNU Chill doesn't accept the control
|
|
sequence form, so neither do we (for now the code is disabled).
|
|
|
|
Returns CHARACTER_LITERAL if a match is found.
|
|
*/
|
|
|
|
static int
|
|
match_character_literal ()
|
|
{
|
|
char *tokptr = lexptr;
|
|
int ival = 0;
|
|
|
|
if ((*tokptr == 'c' || *tokptr == 'C') && (*(tokptr + 1) == '\''))
|
|
{
|
|
/* We have a GNU chill extension form, so skip the leading "C'",
|
|
decode the hex value, and then ensure that we have a trailing
|
|
single quote character. */
|
|
tokptr += 2;
|
|
if (!decode_integer_value (16, &tokptr, &ival) || (*tokptr != '\''))
|
|
{
|
|
return (0);
|
|
}
|
|
tokptr++;
|
|
}
|
|
else if (*tokptr == '\'')
|
|
{
|
|
tokptr++;
|
|
|
|
/* Determine which form we have, either a control sequence or the
|
|
single character form. */
|
|
|
|
if ((*tokptr == '^') && (*(tokptr + 1) == '('))
|
|
{
|
|
#if 0 /* Disable, see note above. -fnf */
|
|
/* Match and decode a control sequence. Return zero if we don't
|
|
find a valid integer literal, or if the next unconsumed character
|
|
after the integer literal is not the trailing ')'.
|
|
FIXME: We currently don't handle the multiple integer literal
|
|
form. */
|
|
tokptr += 2;
|
|
if (!decode_integer_literal (&ival, &tokptr) || (*tokptr++ != ')'))
|
|
{
|
|
return (0);
|
|
}
|
|
#else
|
|
return (0);
|
|
#endif
|
|
}
|
|
else
|
|
{
|
|
ival = *tokptr++;
|
|
}
|
|
|
|
/* The trailing quote has not yet been consumed. If we don't find
|
|
it, then we have no match. */
|
|
|
|
if (*tokptr++ != '\'')
|
|
{
|
|
return (0);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Not a character literal. */
|
|
return (0);
|
|
}
|
|
yylval.typed_val.val = ival;
|
|
yylval.typed_val.type = builtin_type_chill_char;
|
|
lexptr = tokptr;
|
|
return (CHARACTER_LITERAL);
|
|
}
|
|
|
|
/* Recognize an integer literal, as specified in Z.200 sec 5.2.4.2.
|
|
Note that according to 5.2.4.2, a single "_" is also a valid integer
|
|
literal, however GNU-chill requires there to be at least one "digit"
|
|
in any integer literal. */
|
|
|
|
static int
|
|
match_integer_literal ()
|
|
{
|
|
char *tokptr = lexptr;
|
|
int ival;
|
|
|
|
if (!decode_integer_literal (&ival, &tokptr))
|
|
{
|
|
return (0);
|
|
}
|
|
else
|
|
{
|
|
yylval.typed_val.val = ival;
|
|
yylval.typed_val.type = builtin_type_int;
|
|
lexptr = tokptr;
|
|
return (INTEGER_LITERAL);
|
|
}
|
|
}
|
|
|
|
/* Recognize a bit-string literal, as specified in Z.200 sec 5.2.4.8
|
|
Note that according to 5.2.4.8, a single "_" is also a valid bit-string
|
|
literal, however GNU-chill requires there to be at least one "digit"
|
|
in any bit-string literal. */
|
|
|
|
static int
|
|
match_bitstring_literal ()
|
|
{
|
|
register char *tokptr = lexptr;
|
|
int bitoffset = 0;
|
|
int bitcount = 0;
|
|
int bits_per_char;
|
|
int digit;
|
|
|
|
tempbufindex = 0;
|
|
CHECKBUF (1);
|
|
tempbuf[0] = 0;
|
|
|
|
/* Look for the required explicit base specifier. */
|
|
|
|
switch (*tokptr++)
|
|
{
|
|
case 'b':
|
|
case 'B':
|
|
bits_per_char = 1;
|
|
break;
|
|
case 'o':
|
|
case 'O':
|
|
bits_per_char = 3;
|
|
break;
|
|
case 'h':
|
|
case 'H':
|
|
bits_per_char = 4;
|
|
break;
|
|
default:
|
|
return (0);
|
|
break;
|
|
}
|
|
|
|
/* Ensure that the character after the explicit base is a single quote. */
|
|
|
|
if (*tokptr++ != '\'')
|
|
{
|
|
return (0);
|
|
}
|
|
|
|
while (*tokptr != '\0' && *tokptr != '\'')
|
|
{
|
|
digit = *tokptr;
|
|
if (isupper (digit))
|
|
digit = tolower (digit);
|
|
tokptr++;
|
|
switch (digit)
|
|
{
|
|
case '_':
|
|
continue;
|
|
case '0': case '1': case '2': case '3': case '4':
|
|
case '5': case '6': case '7': case '8': case '9':
|
|
digit -= '0';
|
|
break;
|
|
case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
|
|
digit -= 'a';
|
|
digit += 10;
|
|
break;
|
|
default:
|
|
return (0);
|
|
break;
|
|
}
|
|
if (digit >= 1 << bits_per_char)
|
|
{
|
|
/* Found something not in domain for current base. */
|
|
return (0);
|
|
}
|
|
else
|
|
{
|
|
/* Extract bits from digit, packing them into the bitstring byte. */
|
|
int k = TARGET_BYTE_ORDER == BIG_ENDIAN ? bits_per_char - 1 : 0;
|
|
for (; TARGET_BYTE_ORDER == BIG_ENDIAN ? k >= 0 : k < bits_per_char;
|
|
TARGET_BYTE_ORDER == BIG_ENDIAN ? k-- : k++)
|
|
{
|
|
bitcount++;
|
|
if (digit & (1 << k))
|
|
{
|
|
tempbuf[tempbufindex] |=
|
|
(TARGET_BYTE_ORDER == BIG_ENDIAN)
|
|
? (1 << (HOST_CHAR_BIT - 1 - bitoffset))
|
|
: (1 << bitoffset);
|
|
}
|
|
bitoffset++;
|
|
if (bitoffset == HOST_CHAR_BIT)
|
|
{
|
|
bitoffset = 0;
|
|
tempbufindex++;
|
|
CHECKBUF(1);
|
|
tempbuf[tempbufindex] = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Verify that we consumed everything up to the trailing single quote,
|
|
and that we found some bits (IE not just underbars). */
|
|
|
|
if (*tokptr++ != '\'')
|
|
{
|
|
return (0);
|
|
}
|
|
else
|
|
{
|
|
yylval.sval.ptr = tempbuf;
|
|
yylval.sval.length = bitcount;
|
|
lexptr = tokptr;
|
|
return (BIT_STRING_LITERAL);
|
|
}
|
|
}
|
|
|
|
struct token
|
|
{
|
|
char *operator;
|
|
int token;
|
|
};
|
|
|
|
static const struct token idtokentab[] =
|
|
{
|
|
{ "array", ARRAY },
|
|
{ "length", LENGTH },
|
|
{ "lower", LOWER },
|
|
{ "upper", UPPER },
|
|
{ "andif", ANDIF },
|
|
{ "pred", PRED },
|
|
{ "succ", SUCC },
|
|
{ "card", CARD },
|
|
{ "size", SIZE },
|
|
{ "orif", ORIF },
|
|
{ "num", NUM },
|
|
{ "abs", ABS },
|
|
{ "max", MAX_TOKEN },
|
|
{ "min", MIN_TOKEN },
|
|
{ "mod", MOD },
|
|
{ "rem", REM },
|
|
{ "not", NOT },
|
|
{ "xor", LOGXOR },
|
|
{ "and", LOGAND },
|
|
{ "in", IN },
|
|
{ "or", LOGIOR },
|
|
{ "up", UP },
|
|
{ "addr", ADDR_TOKEN },
|
|
{ "null", EMPTINESS_LITERAL }
|
|
};
|
|
|
|
static const struct token tokentab2[] =
|
|
{
|
|
{ ":=", GDB_ASSIGNMENT },
|
|
{ "//", SLASH_SLASH },
|
|
{ "->", POINTER },
|
|
{ "/=", NOTEQUAL },
|
|
{ "<=", LEQ },
|
|
{ ">=", GTR }
|
|
};
|
|
|
|
/* Read one token, getting characters through lexptr. */
|
|
/* This is where we will check to make sure that the language and the
|
|
operators used are compatible. */
|
|
|
|
static int
|
|
yylex ()
|
|
{
|
|
unsigned int i;
|
|
int token;
|
|
char *inputname;
|
|
struct symbol *sym;
|
|
|
|
/* Skip over any leading whitespace. */
|
|
while (isspace (*lexptr))
|
|
{
|
|
lexptr++;
|
|
}
|
|
/* Look for special single character cases which can't be the first
|
|
character of some other multicharacter token. */
|
|
switch (*lexptr)
|
|
{
|
|
case '\0':
|
|
return (0);
|
|
case ',':
|
|
case '=':
|
|
case ';':
|
|
case '!':
|
|
case '+':
|
|
case '*':
|
|
case '(':
|
|
case ')':
|
|
case '[':
|
|
case ']':
|
|
return (*lexptr++);
|
|
}
|
|
/* Look for characters which start a particular kind of multicharacter
|
|
token, such as a character literal, register name, convenience
|
|
variable name, string literal, etc. */
|
|
switch (*lexptr)
|
|
{
|
|
case '\'':
|
|
case '\"':
|
|
/* First try to match a string literal, which is any
|
|
sequence of characters enclosed in matching single or double
|
|
quotes, except that a single character inside single quotes
|
|
is a character literal, so we have to catch that case also. */
|
|
token = match_string_literal ();
|
|
if (token != 0)
|
|
{
|
|
return (token);
|
|
}
|
|
if (*lexptr == '\'')
|
|
{
|
|
token = match_character_literal ();
|
|
if (token != 0)
|
|
{
|
|
return (token);
|
|
}
|
|
}
|
|
break;
|
|
case 'C':
|
|
case 'c':
|
|
token = match_character_literal ();
|
|
if (token != 0)
|
|
{
|
|
return (token);
|
|
}
|
|
break;
|
|
case '$':
|
|
yylval.sval.ptr = lexptr;
|
|
do {
|
|
lexptr++;
|
|
} while (isalnum (*lexptr) || *lexptr == '_' || *lexptr == '$');
|
|
yylval.sval.length = lexptr - yylval.sval.ptr;
|
|
write_dollar_variable (yylval.sval);
|
|
return GDB_VARIABLE;
|
|
break;
|
|
}
|
|
/* See if it is a special token of length 2. */
|
|
for (i = 0; i < sizeof (tokentab2) / sizeof (tokentab2[0]); i++)
|
|
{
|
|
if (STREQN (lexptr, tokentab2[i].operator, 2))
|
|
{
|
|
lexptr += 2;
|
|
return (tokentab2[i].token);
|
|
}
|
|
}
|
|
/* Look for single character cases which which could be the first
|
|
character of some other multicharacter token, but aren't, or we
|
|
would already have found it. */
|
|
switch (*lexptr)
|
|
{
|
|
case '-':
|
|
case ':':
|
|
case '/':
|
|
case '<':
|
|
case '>':
|
|
return (*lexptr++);
|
|
}
|
|
/* Look for a float literal before looking for an integer literal, so
|
|
we match as much of the input stream as possible. */
|
|
token = match_float_literal ();
|
|
if (token != 0)
|
|
{
|
|
return (token);
|
|
}
|
|
token = match_bitstring_literal ();
|
|
if (token != 0)
|
|
{
|
|
return (token);
|
|
}
|
|
token = match_integer_literal ();
|
|
if (token != 0)
|
|
{
|
|
return (token);
|
|
}
|
|
|
|
/* Try to match a simple name string, and if a match is found, then
|
|
further classify what sort of name it is and return an appropriate
|
|
token. Note that attempting to match a simple name string consumes
|
|
the token from lexptr, so we can't back out if we later find that
|
|
we can't classify what sort of name it is. */
|
|
|
|
inputname = match_simple_name_string ();
|
|
|
|
if (inputname != NULL)
|
|
{
|
|
char *simplename = (char*) alloca (strlen (inputname) + 1);
|
|
|
|
char *dptr = simplename, *sptr = inputname;
|
|
for (; *sptr; sptr++)
|
|
*dptr++ = isupper (*sptr) ? tolower(*sptr) : *sptr;
|
|
*dptr = '\0';
|
|
|
|
/* See if it is a reserved identifier. */
|
|
for (i = 0; i < sizeof (idtokentab) / sizeof (idtokentab[0]); i++)
|
|
{
|
|
if (STREQ (simplename, idtokentab[i].operator))
|
|
{
|
|
return (idtokentab[i].token);
|
|
}
|
|
}
|
|
|
|
/* Look for other special tokens. */
|
|
if (STREQ (simplename, "true"))
|
|
{
|
|
yylval.ulval = 1;
|
|
return (BOOLEAN_LITERAL);
|
|
}
|
|
if (STREQ (simplename, "false"))
|
|
{
|
|
yylval.ulval = 0;
|
|
return (BOOLEAN_LITERAL);
|
|
}
|
|
|
|
sym = lookup_symbol (inputname, expression_context_block,
|
|
VAR_NAMESPACE, (int *) NULL,
|
|
(struct symtab **) NULL);
|
|
if (sym == NULL && strcmp (inputname, simplename) != 0)
|
|
{
|
|
sym = lookup_symbol (simplename, expression_context_block,
|
|
VAR_NAMESPACE, (int *) NULL,
|
|
(struct symtab **) NULL);
|
|
}
|
|
if (sym != NULL)
|
|
{
|
|
yylval.ssym.stoken.ptr = NULL;
|
|
yylval.ssym.stoken.length = 0;
|
|
yylval.ssym.sym = sym;
|
|
yylval.ssym.is_a_field_of_this = 0; /* FIXME, C++'ism */
|
|
switch (SYMBOL_CLASS (sym))
|
|
{
|
|
case LOC_BLOCK:
|
|
/* Found a procedure name. */
|
|
return (GENERAL_PROCEDURE_NAME);
|
|
case LOC_STATIC:
|
|
/* Found a global or local static variable. */
|
|
return (LOCATION_NAME);
|
|
case LOC_REGISTER:
|
|
case LOC_ARG:
|
|
case LOC_REF_ARG:
|
|
case LOC_REGPARM:
|
|
case LOC_REGPARM_ADDR:
|
|
case LOC_LOCAL:
|
|
case LOC_LOCAL_ARG:
|
|
case LOC_BASEREG:
|
|
case LOC_BASEREG_ARG:
|
|
if (innermost_block == NULL
|
|
|| contained_in (block_found, innermost_block))
|
|
{
|
|
innermost_block = block_found;
|
|
}
|
|
return (LOCATION_NAME);
|
|
break;
|
|
case LOC_CONST:
|
|
case LOC_LABEL:
|
|
return (LOCATION_NAME);
|
|
break;
|
|
case LOC_TYPEDEF:
|
|
yylval.tsym.type = SYMBOL_TYPE (sym);
|
|
return TYPENAME;
|
|
case LOC_UNDEF:
|
|
case LOC_CONST_BYTES:
|
|
case LOC_OPTIMIZED_OUT:
|
|
error ("Symbol \"%s\" names no location.", inputname);
|
|
break;
|
|
}
|
|
}
|
|
else if (!have_full_symbols () && !have_partial_symbols ())
|
|
{
|
|
error ("No symbol table is loaded. Use the \"file\" command.");
|
|
}
|
|
else
|
|
{
|
|
error ("No symbol \"%s\" in current context.", inputname);
|
|
}
|
|
}
|
|
|
|
/* Catch single character tokens which are not part of some
|
|
longer token. */
|
|
|
|
switch (*lexptr)
|
|
{
|
|
case '.': /* Not float for example. */
|
|
lexptr++;
|
|
while (isspace (*lexptr)) lexptr++;
|
|
inputname = match_simple_name_string ();
|
|
if (!inputname)
|
|
return '.';
|
|
return FIELD_NAME;
|
|
}
|
|
|
|
return (ILLEGAL_TOKEN);
|
|
}
|
|
|
|
static void
|
|
write_lower_upper_value (opcode, type)
|
|
enum exp_opcode opcode; /* Either UNOP_LOWER or UNOP_UPPER */
|
|
struct type *type;
|
|
{
|
|
extern LONGEST type_lower_upper ();
|
|
struct type *result_type;
|
|
LONGEST val = type_lower_upper (opcode, type, &result_type);
|
|
write_exp_elt_opcode (OP_LONG);
|
|
write_exp_elt_type (result_type);
|
|
write_exp_elt_longcst (val);
|
|
write_exp_elt_opcode (OP_LONG);
|
|
}
|
|
|
|
void
|
|
yyerror (msg)
|
|
char *msg;
|
|
{
|
|
error ("A %s in expression, near `%s'.", (msg ? msg : "error"), lexptr);
|
|
}
|