darling-gdb/gdb/gdbserver/i387-fp.c
Gary Benson df7e526582 Rename 32- and 64-bit Intel files from "i386" to "x86"
This commit renames nine files that contain code used by both 32- and
64-bit Intel ports such that their names are prefixed with "x86"
rather than "i386".  All types, functions and variables within these
files are likewise renamed such that their names are prefixed with
"x86" rather than "i386".  This makes GDB follow the convention used
by gdbserver such that 32-bit Intel code lives in files called
"i386-*", 64-bit Intel code lives in files called "amd64-*", and code
for both 32- and 64-bit Intel lives in files called "x86-*".

This commit only renames OS-independent files.  The Linux ports of
both GDB and gdbserver now follow the i386/amd64/x86 convention fully.
Some ports still use the old convention where "i386" in file/function/
type/variable names can mean "32-bit only" or "32- and 64-bit" but I
don't want to touch ports I can't fully test except where absolutely
necessary.

gdb/ChangeLog:

	* i386-nat.h: Renamed as...
	* x86-nat.h: New file.  All type, function and variable name
	prefixes changed from "i386_" to "x86_".  All references updated.
	* i386-nat.c: Renamed as...
	* x86-nat.c: New file.  All type, function and variable name
	prefixes changed from "i386_" to "x86_".  All references updated.
	* common/i386-xstate.h: Renamed as...
	* common/x86-xstate.h: New file.  All type, function and variable
	name prefixes changed from "i386_" to "x86_".  All references
	updated.
	* nat/i386-cpuid.h: Renamed as...
	* nat/x86-cpuid.h: New file.  All type, function and variable name
	prefixes changed from "i386_" to "x86_".  All references updated.
	* nat/i386-gcc-cpuid.h: Renamed as...
	* nat/x86-gcc-cpuid.h: New file.  All type, function and variable
	name prefixes changed from "i386_" to "x86_".  All references
	updated.
	* nat/i386-dregs.h: Renamed as...
	* nat/x86-dregs.h: New file.  All type, function and variable name
	prefixes changed from "i386_" to "x86_".  All references updated.
	* nat/i386-dregs.c: Renamed as...
	* nat/x86-dregs.c: New file.  All type, function and variable name
	prefixes changed from "i386_" to "x86_".  All references updated.

gdb/gdbserver/ChangeLog:

	* i386-low.h: Renamed as...
	* x86-low.h: New file.  All type, function and variable name
	prefixes changed from "i386_" to "x86_".  All references updated.
	* i386-low.c: Renamed as...
	* x86-low.c: New file.  All type, function and variable name
	prefixes changed from "i386_" to "x86_".  All references updated.
2014-09-02 16:54:08 +01:00

841 lines
23 KiB
C

/* i387-specific utility functions, for the remote server for GDB.
Copyright (C) 2000-2014 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "server.h"
#include "i387-fp.h"
#include "x86-xstate.h"
static const int num_mpx_bnd_registers = 4;
static const int num_mpx_cfg_registers = 2;
static const int num_avx512_k_registers = 8;
static const int num_avx512_zmmh_low_registers = 16;
static const int num_avx512_zmmh_high_registers = 16;
static const int num_avx512_ymmh_registers = 16;
static const int num_avx512_xmm_registers = 16;
/* Note: These functions preserve the reserved bits in control registers.
However, gdbserver promptly throws away that information. */
/* These structs should have the proper sizes and alignment on both
i386 and x86-64 machines. */
struct i387_fsave {
/* All these are only sixteen bits, plus padding, except for fop (which
is only eleven bits), and fooff / fioff (which are 32 bits each). */
unsigned short fctrl;
unsigned short pad1;
unsigned short fstat;
unsigned short pad2;
unsigned short ftag;
unsigned short pad3;
unsigned int fioff;
unsigned short fiseg;
unsigned short fop;
unsigned int fooff;
unsigned short foseg;
unsigned short pad4;
/* Space for eight 80-bit FP values. */
unsigned char st_space[80];
};
struct i387_fxsave {
/* All these are only sixteen bits, plus padding, except for fop (which
is only eleven bits), and fooff / fioff (which are 32 bits each). */
unsigned short fctrl;
unsigned short fstat;
unsigned short ftag;
unsigned short fop;
unsigned int fioff;
unsigned short fiseg;
unsigned short pad1;
unsigned int fooff;
unsigned short foseg;
unsigned short pad12;
unsigned int mxcsr;
unsigned int pad3;
/* Space for eight 80-bit FP values in 128-bit spaces. */
unsigned char st_space[128];
/* Space for eight 128-bit XMM values, or 16 on x86-64. */
unsigned char xmm_space[256];
};
struct i387_xsave {
/* All these are only sixteen bits, plus padding, except for fop (which
is only eleven bits), and fooff / fioff (which are 32 bits each). */
unsigned short fctrl;
unsigned short fstat;
unsigned short ftag;
unsigned short fop;
unsigned int fioff;
unsigned short fiseg;
unsigned short pad1;
unsigned int fooff;
unsigned short foseg;
unsigned short pad12;
unsigned int mxcsr;
unsigned int mxcsr_mask;
/* Space for eight 80-bit FP values in 128-bit spaces. */
unsigned char st_space[128];
/* Space for eight 128-bit XMM values, or 16 on x86-64. */
unsigned char xmm_space[256];
unsigned char reserved1[48];
/* The extended control register 0 (the XFEATURE_ENABLED_MASK
register). */
unsigned long long xcr0;
unsigned char reserved2[40];
/* The XSTATE_BV bit vector. */
unsigned long long xstate_bv;
unsigned char reserved3[56];
/* Space for eight upper 128-bit YMM values, or 16 on x86-64. */
unsigned char ymmh_space[256];
unsigned char reserved4[128];
/* Space for 4 bound registers values of 128 bits. */
unsigned char mpx_bnd_space[64];
/* Space for 2 MPX configuration registers of 64 bits
plus reserved space. */
unsigned char mpx_cfg_space[16];
unsigned char reserved5[48];
/* Space for 8 OpMask register values of 64 bits. */
unsigned char k_space[64];
/* Space for 16 256-bit zmm0-15. */
unsigned char zmmh_low_space[512];
/* Space for 16 512-bit zmm16-31 values. */
unsigned char zmmh_high_space[1024];
};
void
i387_cache_to_fsave (struct regcache *regcache, void *buf)
{
struct i387_fsave *fp = (struct i387_fsave *) buf;
int i;
int st0_regnum = find_regno (regcache->tdesc, "st0");
unsigned long val, val2;
for (i = 0; i < 8; i++)
collect_register (regcache, i + st0_regnum,
((char *) &fp->st_space[0]) + i * 10);
collect_register_by_name (regcache, "fioff", &fp->fioff);
collect_register_by_name (regcache, "fooff", &fp->fooff);
/* This one's 11 bits... */
collect_register_by_name (regcache, "fop", &val2);
fp->fop = (val2 & 0x7FF) | (fp->fop & 0xF800);
/* Some registers are 16-bit. */
collect_register_by_name (regcache, "fctrl", &val);
fp->fctrl = val;
collect_register_by_name (regcache, "fstat", &val);
val &= 0xFFFF;
fp->fstat = val;
collect_register_by_name (regcache, "ftag", &val);
val &= 0xFFFF;
fp->ftag = val;
collect_register_by_name (regcache, "fiseg", &val);
val &= 0xFFFF;
fp->fiseg = val;
collect_register_by_name (regcache, "foseg", &val);
val &= 0xFFFF;
fp->foseg = val;
}
void
i387_fsave_to_cache (struct regcache *regcache, const void *buf)
{
struct i387_fsave *fp = (struct i387_fsave *) buf;
int i;
int st0_regnum = find_regno (regcache->tdesc, "st0");
unsigned long val;
for (i = 0; i < 8; i++)
supply_register (regcache, i + st0_regnum,
((char *) &fp->st_space[0]) + i * 10);
supply_register_by_name (regcache, "fioff", &fp->fioff);
supply_register_by_name (regcache, "fooff", &fp->fooff);
/* Some registers are 16-bit. */
val = fp->fctrl & 0xFFFF;
supply_register_by_name (regcache, "fctrl", &val);
val = fp->fstat & 0xFFFF;
supply_register_by_name (regcache, "fstat", &val);
val = fp->ftag & 0xFFFF;
supply_register_by_name (regcache, "ftag", &val);
val = fp->fiseg & 0xFFFF;
supply_register_by_name (regcache, "fiseg", &val);
val = fp->foseg & 0xFFFF;
supply_register_by_name (regcache, "foseg", &val);
/* fop has only 11 valid bits. */
val = (fp->fop) & 0x7FF;
supply_register_by_name (regcache, "fop", &val);
}
void
i387_cache_to_fxsave (struct regcache *regcache, void *buf)
{
struct i387_fxsave *fp = (struct i387_fxsave *) buf;
int i;
int st0_regnum = find_regno (regcache->tdesc, "st0");
int xmm0_regnum = find_regno (regcache->tdesc, "xmm0");
unsigned long val, val2;
/* Amd64 has 16 xmm regs; I386 has 8 xmm regs. */
int num_xmm_registers = register_size (regcache->tdesc, 0) == 8 ? 16 : 8;
for (i = 0; i < 8; i++)
collect_register (regcache, i + st0_regnum,
((char *) &fp->st_space[0]) + i * 16);
for (i = 0; i < num_xmm_registers; i++)
collect_register (regcache, i + xmm0_regnum,
((char *) &fp->xmm_space[0]) + i * 16);
collect_register_by_name (regcache, "fioff", &fp->fioff);
collect_register_by_name (regcache, "fooff", &fp->fooff);
collect_register_by_name (regcache, "mxcsr", &fp->mxcsr);
/* This one's 11 bits... */
collect_register_by_name (regcache, "fop", &val2);
fp->fop = (val2 & 0x7FF) | (fp->fop & 0xF800);
/* Some registers are 16-bit. */
collect_register_by_name (regcache, "fctrl", &val);
fp->fctrl = val;
collect_register_by_name (regcache, "fstat", &val);
fp->fstat = val;
/* Convert to the simplifed tag form stored in fxsave data. */
collect_register_by_name (regcache, "ftag", &val);
val &= 0xFFFF;
val2 = 0;
for (i = 7; i >= 0; i--)
{
int tag = (val >> (i * 2)) & 3;
if (tag != 3)
val2 |= (1 << i);
}
fp->ftag = val2;
collect_register_by_name (regcache, "fiseg", &val);
fp->fiseg = val;
collect_register_by_name (regcache, "foseg", &val);
fp->foseg = val;
}
void
i387_cache_to_xsave (struct regcache *regcache, void *buf)
{
struct i387_xsave *fp = (struct i387_xsave *) buf;
int i;
unsigned long val, val2;
unsigned int clear_bv;
unsigned long long xstate_bv = 0;
char raw[64];
char *p;
/* Amd64 has 16 xmm regs; I386 has 8 xmm regs. */
int num_xmm_registers = register_size (regcache->tdesc, 0) == 8 ? 16 : 8;
/* The supported bits in `xstat_bv' are 1 byte. Clear part in
vector registers if its bit in xstat_bv is zero. */
clear_bv = (~fp->xstate_bv) & x86_xcr0;
/* Clear part in x87 and vector registers if its bit in xstat_bv is
zero. */
if (clear_bv)
{
if ((clear_bv & X86_XSTATE_X87))
for (i = 0; i < 8; i++)
memset (((char *) &fp->st_space[0]) + i * 16, 0, 10);
if ((clear_bv & X86_XSTATE_SSE))
for (i = 0; i < num_xmm_registers; i++)
memset (((char *) &fp->xmm_space[0]) + i * 16, 0, 16);
if ((clear_bv & X86_XSTATE_AVX))
for (i = 0; i < num_xmm_registers; i++)
memset (((char *) &fp->ymmh_space[0]) + i * 16, 0, 16);
if ((clear_bv & X86_XSTATE_BNDREGS))
for (i = 0; i < num_mpx_bnd_registers; i++)
memset (((char *) &fp->mpx_bnd_space[0]) + i * 16, 0, 16);
if ((clear_bv & X86_XSTATE_BNDCFG))
for (i = 0; i < num_mpx_cfg_registers; i++)
memset (((char *) &fp->mpx_cfg_space[0]) + i * 8, 0, 8);
if ((clear_bv & X86_XSTATE_K))
for (i = 0; i < num_avx512_k_registers; i++)
memset (((char *) &fp->k_space[0]) + i * 8, 0, 8);
if ((clear_bv & X86_XSTATE_ZMM_H))
for (i = 0; i < num_avx512_zmmh_low_registers; i++)
memset (((char *) &fp->zmmh_low_space[0]) + i * 32, 0, 32);
if ((clear_bv & X86_XSTATE_ZMM))
{
for (i = 0; i < num_avx512_zmmh_high_registers; i++)
memset (((char *) &fp->zmmh_low_space[0]) + 32 + i * 64, 0, 32);
for (i = 0; i < num_avx512_xmm_registers; i++)
memset (((char *) &fp->zmmh_high_space[0]) + i * 64, 0, 16);
for (i = 0; i < num_avx512_ymmh_registers; i++)
memset (((char *) &fp->zmmh_high_space[0]) + 16 + i * 64, 0, 16);
}
}
/* Check if any x87 registers are changed. */
if ((x86_xcr0 & X86_XSTATE_X87))
{
int st0_regnum = find_regno (regcache->tdesc, "st0");
for (i = 0; i < 8; i++)
{
collect_register (regcache, i + st0_regnum, raw);
p = ((char *) &fp->st_space[0]) + i * 16;
if (memcmp (raw, p, 10))
{
xstate_bv |= X86_XSTATE_X87;
memcpy (p, raw, 10);
}
}
}
/* Check if any SSE registers are changed. */
if ((x86_xcr0 & X86_XSTATE_SSE))
{
int xmm0_regnum = find_regno (regcache->tdesc, "xmm0");
for (i = 0; i < num_xmm_registers; i++)
{
collect_register (regcache, i + xmm0_regnum, raw);
p = ((char *) &fp->xmm_space[0]) + i * 16;
if (memcmp (raw, p, 16))
{
xstate_bv |= X86_XSTATE_SSE;
memcpy (p, raw, 16);
}
}
}
/* Check if any AVX registers are changed. */
if ((x86_xcr0 & X86_XSTATE_AVX))
{
int ymm0h_regnum = find_regno (regcache->tdesc, "ymm0h");
for (i = 0; i < num_xmm_registers; i++)
{
collect_register (regcache, i + ymm0h_regnum, raw);
p = ((char *) &fp->ymmh_space[0]) + i * 16;
if (memcmp (raw, p, 16))
{
xstate_bv |= X86_XSTATE_AVX;
memcpy (p, raw, 16);
}
}
}
/* Check if any bound register has changed. */
if ((x86_xcr0 & X86_XSTATE_BNDREGS))
{
int bnd0r_regnum = find_regno (regcache->tdesc, "bnd0raw");
for (i = 0; i < num_mpx_bnd_registers; i++)
{
collect_register (regcache, i + bnd0r_regnum, raw);
p = ((char *) &fp->mpx_bnd_space[0]) + i * 16;
if (memcmp (raw, p, 16))
{
xstate_bv |= X86_XSTATE_BNDREGS;
memcpy (p, raw, 16);
}
}
}
/* Check if any status register has changed. */
if ((x86_xcr0 & X86_XSTATE_BNDCFG))
{
int bndcfg_regnum = find_regno (regcache->tdesc, "bndcfgu");
for (i = 0; i < num_mpx_cfg_registers; i++)
{
collect_register (regcache, i + bndcfg_regnum, raw);
p = ((char *) &fp->mpx_cfg_space[0]) + i * 8;
if (memcmp (raw, p, 8))
{
xstate_bv |= X86_XSTATE_BNDCFG;
memcpy (p, raw, 8);
}
}
}
/* Check if any K registers are changed. */
if ((x86_xcr0 & X86_XSTATE_K))
{
int k0_regnum = find_regno (regcache->tdesc, "k0");
for (i = 0; i < num_avx512_k_registers; i++)
{
collect_register (regcache, i + k0_regnum, raw);
p = ((char *) &fp->k_space[0]) + i * 8;
if (memcmp (raw, p, 8) != 0)
{
xstate_bv |= X86_XSTATE_K;
memcpy (p, raw, 8);
}
}
}
/* Check if any of ZMM0H-ZMM15H registers are changed. */
if ((x86_xcr0 & X86_XSTATE_ZMM_H))
{
int zmm0h_regnum = find_regno (regcache->tdesc, "zmm0h");
for (i = 0; i < num_avx512_zmmh_low_registers; i++)
{
collect_register (regcache, i + zmm0h_regnum, raw);
p = ((char *) &fp->zmmh_low_space[0]) + i * 32;
if (memcmp (raw, p, 32) != 0)
{
xstate_bv |= X86_XSTATE_ZMM_H;
memcpy (p, raw, 32);
}
}
}
/* Check if any of ZMM16H-ZMM31H registers are changed. */
if ((x86_xcr0 & X86_XSTATE_ZMM))
{
int zmm16h_regnum = find_regno (regcache->tdesc, "zmm16h");
for (i = 0; i < num_avx512_zmmh_high_registers; i++)
{
collect_register (regcache, i + zmm16h_regnum, raw);
p = ((char *) &fp->zmmh_low_space[0]) + 32 + i * 64;
if (memcmp (raw, p, 32) != 0)
{
xstate_bv |= X86_XSTATE_ZMM;
memcpy (p, raw, 32);
}
}
}
/* Check if any XMM_AVX512 registers are changed. */
if ((x86_xcr0 & X86_XSTATE_ZMM))
{
int xmm_avx512_regnum = find_regno (regcache->tdesc, "xmm16");
for (i = 0; i < num_avx512_xmm_registers; i++)
{
collect_register (regcache, i + xmm_avx512_regnum, raw);
p = ((char *) &fp->zmmh_high_space[0]) + i * 64;
if (memcmp (raw, p, 16) != 0)
{
xstate_bv |= X86_XSTATE_ZMM;
memcpy (p, raw, 16);
}
}
}
/* Check if any YMMH_AVX512 registers are changed. */
if ((x86_xcr0 & X86_XSTATE_ZMM))
{
int ymmh_avx512_regnum = find_regno (regcache->tdesc, "ymm16h");
for (i = 0; i < num_avx512_ymmh_registers; i++)
{
collect_register (regcache, i + ymmh_avx512_regnum, raw);
p = ((char *) &fp->zmmh_high_space[0]) + 16 + i * 64;
if (memcmp (raw, p, 16) != 0)
{
xstate_bv |= X86_XSTATE_ZMM;
memcpy (p, raw, 16);
}
}
}
/* Update the corresponding bits in xstate_bv if any SSE/AVX
registers are changed. */
fp->xstate_bv |= xstate_bv;
collect_register_by_name (regcache, "fioff", &fp->fioff);
collect_register_by_name (regcache, "fooff", &fp->fooff);
collect_register_by_name (regcache, "mxcsr", &fp->mxcsr);
/* This one's 11 bits... */
collect_register_by_name (regcache, "fop", &val2);
fp->fop = (val2 & 0x7FF) | (fp->fop & 0xF800);
/* Some registers are 16-bit. */
collect_register_by_name (regcache, "fctrl", &val);
fp->fctrl = val;
collect_register_by_name (regcache, "fstat", &val);
fp->fstat = val;
/* Convert to the simplifed tag form stored in fxsave data. */
collect_register_by_name (regcache, "ftag", &val);
val &= 0xFFFF;
val2 = 0;
for (i = 7; i >= 0; i--)
{
int tag = (val >> (i * 2)) & 3;
if (tag != 3)
val2 |= (1 << i);
}
fp->ftag = val2;
collect_register_by_name (regcache, "fiseg", &val);
fp->fiseg = val;
collect_register_by_name (regcache, "foseg", &val);
fp->foseg = val;
}
static int
i387_ftag (struct i387_fxsave *fp, int regno)
{
unsigned char *raw = &fp->st_space[regno * 16];
unsigned int exponent;
unsigned long fraction[2];
int integer;
integer = raw[7] & 0x80;
exponent = (((raw[9] & 0x7f) << 8) | raw[8]);
fraction[0] = ((raw[3] << 24) | (raw[2] << 16) | (raw[1] << 8) | raw[0]);
fraction[1] = (((raw[7] & 0x7f) << 24) | (raw[6] << 16)
| (raw[5] << 8) | raw[4]);
if (exponent == 0x7fff)
{
/* Special. */
return (2);
}
else if (exponent == 0x0000)
{
if (fraction[0] == 0x0000 && fraction[1] == 0x0000 && !integer)
{
/* Zero. */
return (1);
}
else
{
/* Special. */
return (2);
}
}
else
{
if (integer)
{
/* Valid. */
return (0);
}
else
{
/* Special. */
return (2);
}
}
}
void
i387_fxsave_to_cache (struct regcache *regcache, const void *buf)
{
struct i387_fxsave *fp = (struct i387_fxsave *) buf;
int i, top;
int st0_regnum = find_regno (regcache->tdesc, "st0");
int xmm0_regnum = find_regno (regcache->tdesc, "xmm0");
unsigned long val;
/* Amd64 has 16 xmm regs; I386 has 8 xmm regs. */
int num_xmm_registers = register_size (regcache->tdesc, 0) == 8 ? 16 : 8;
for (i = 0; i < 8; i++)
supply_register (regcache, i + st0_regnum,
((char *) &fp->st_space[0]) + i * 16);
for (i = 0; i < num_xmm_registers; i++)
supply_register (regcache, i + xmm0_regnum,
((char *) &fp->xmm_space[0]) + i * 16);
supply_register_by_name (regcache, "fioff", &fp->fioff);
supply_register_by_name (regcache, "fooff", &fp->fooff);
supply_register_by_name (regcache, "mxcsr", &fp->mxcsr);
/* Some registers are 16-bit. */
val = fp->fctrl & 0xFFFF;
supply_register_by_name (regcache, "fctrl", &val);
val = fp->fstat & 0xFFFF;
supply_register_by_name (regcache, "fstat", &val);
/* Generate the form of ftag data that GDB expects. */
top = (fp->fstat >> 11) & 0x7;
val = 0;
for (i = 7; i >= 0; i--)
{
int tag;
if (fp->ftag & (1 << i))
tag = i387_ftag (fp, (i + 8 - top) % 8);
else
tag = 3;
val |= tag << (2 * i);
}
supply_register_by_name (regcache, "ftag", &val);
val = fp->fiseg & 0xFFFF;
supply_register_by_name (regcache, "fiseg", &val);
val = fp->foseg & 0xFFFF;
supply_register_by_name (regcache, "foseg", &val);
val = (fp->fop) & 0x7FF;
supply_register_by_name (regcache, "fop", &val);
}
void
i387_xsave_to_cache (struct regcache *regcache, const void *buf)
{
struct i387_xsave *fp = (struct i387_xsave *) buf;
struct i387_fxsave *fxp = (struct i387_fxsave *) buf;
int i, top;
unsigned long val;
unsigned int clear_bv;
gdb_byte *p;
/* Amd64 has 16 xmm regs; I386 has 8 xmm regs. */
int num_xmm_registers = register_size (regcache->tdesc, 0) == 8 ? 16 : 8;
/* The supported bits in `xstat_bv' are 1 byte. Clear part in
vector registers if its bit in xstat_bv is zero. */
clear_bv = (~fp->xstate_bv) & x86_xcr0;
/* Check if any x87 registers are changed. */
if ((x86_xcr0 & X86_XSTATE_X87) != 0)
{
int st0_regnum = find_regno (regcache->tdesc, "st0");
if ((clear_bv & X86_XSTATE_X87) != 0)
{
for (i = 0; i < 8; i++)
supply_register_zeroed (regcache, i + st0_regnum);
}
else
{
p = (gdb_byte *) &fp->st_space[0];
for (i = 0; i < 8; i++)
supply_register (regcache, i + st0_regnum, p + i * 16);
}
}
if ((x86_xcr0 & X86_XSTATE_SSE) != 0)
{
int xmm0_regnum = find_regno (regcache->tdesc, "xmm0");
if ((clear_bv & X86_XSTATE_SSE))
{
for (i = 0; i < num_xmm_registers; i++)
supply_register_zeroed (regcache, i + xmm0_regnum);
}
else
{
p = (gdb_byte *) &fp->xmm_space[0];
for (i = 0; i < num_xmm_registers; i++)
supply_register (regcache, i + xmm0_regnum, p + i * 16);
}
}
if ((x86_xcr0 & X86_XSTATE_AVX) != 0)
{
int ymm0h_regnum = find_regno (regcache->tdesc, "ymm0h");
if ((clear_bv & X86_XSTATE_AVX) != 0)
{
for (i = 0; i < num_xmm_registers; i++)
supply_register_zeroed (regcache, i + ymm0h_regnum);
}
else
{
p = (gdb_byte *) &fp->ymmh_space[0];
for (i = 0; i < num_xmm_registers; i++)
supply_register (regcache, i + ymm0h_regnum, p + i * 16);
}
}
if ((x86_xcr0 & X86_XSTATE_BNDREGS))
{
int bnd0r_regnum = find_regno (regcache->tdesc, "bnd0raw");
if ((clear_bv & X86_XSTATE_BNDREGS) != 0)
{
for (i = 0; i < num_mpx_bnd_registers; i++)
supply_register_zeroed (regcache, i + bnd0r_regnum);
}
else
{
p = (gdb_byte *) &fp->mpx_bnd_space[0];
for (i = 0; i < num_mpx_bnd_registers; i++)
supply_register (regcache, i + bnd0r_regnum, p + i * 16);
}
}
if ((x86_xcr0 & X86_XSTATE_BNDCFG))
{
int bndcfg_regnum = find_regno (regcache->tdesc, "bndcfgu");
if ((clear_bv & X86_XSTATE_BNDCFG) != 0)
{
for (i = 0; i < num_mpx_cfg_registers; i++)
supply_register_zeroed (regcache, i + bndcfg_regnum);
}
else
{
p = (gdb_byte *) &fp->mpx_cfg_space[0];
for (i = 0; i < num_mpx_cfg_registers; i++)
supply_register (regcache, i + bndcfg_regnum, p + i * 8);
}
}
if ((x86_xcr0 & X86_XSTATE_K) != 0)
{
int k0_regnum = find_regno (regcache->tdesc, "k0");
if ((clear_bv & X86_XSTATE_K) != 0)
{
for (i = 0; i < num_avx512_k_registers; i++)
supply_register_zeroed (regcache, i + k0_regnum);
}
else
{
p = (gdb_byte *) &fp->k_space[0];
for (i = 0; i < num_avx512_k_registers; i++)
supply_register (regcache, i + k0_regnum, p + i * 8);
}
}
if ((x86_xcr0 & X86_XSTATE_ZMM_H) != 0)
{
int zmm0h_regnum = find_regno (regcache->tdesc, "zmm0h");
if ((clear_bv & X86_XSTATE_ZMM_H) != 0)
{
for (i = 0; i < num_avx512_zmmh_low_registers; i++)
supply_register_zeroed (regcache, i + zmm0h_regnum);
}
else
{
p = (gdb_byte *) &fp->zmmh_low_space[0];
for (i = 0; i < num_avx512_zmmh_low_registers; i++)
supply_register (regcache, i + zmm0h_regnum, p + i * 32);
}
}
if ((x86_xcr0 & X86_XSTATE_ZMM) != 0)
{
int zmm16h_regnum = find_regno (regcache->tdesc, "zmm16h");
int ymm16h_regnum = find_regno (regcache->tdesc, "ymm16h");
int xmm16_regnum = find_regno (regcache->tdesc, "xmm16");
if ((clear_bv & X86_XSTATE_ZMM) != 0)
{
for (i = 0; i < num_avx512_zmmh_high_registers; i++)
supply_register_zeroed (regcache, i + zmm16h_regnum);
for (i = 0; i < num_avx512_ymmh_registers; i++)
supply_register_zeroed (regcache, i + ymm16h_regnum);
for (i = 0; i < num_avx512_xmm_registers; i++)
supply_register_zeroed (regcache, i + xmm16_regnum);
}
else
{
p = (gdb_byte *) &fp->zmmh_high_space[0];
for (i = 0; i < num_avx512_zmmh_high_registers; i++)
supply_register (regcache, i + zmm16h_regnum, p + 32 + i * 64);
for (i = 0; i < num_avx512_ymmh_registers; i++)
supply_register (regcache, i + ymm16h_regnum, p + 16 + i * 64);
for (i = 0; i < num_avx512_xmm_registers; i++)
supply_register (regcache, i + xmm16_regnum, p + i * 64);
}
}
supply_register_by_name (regcache, "fioff", &fp->fioff);
supply_register_by_name (regcache, "fooff", &fp->fooff);
supply_register_by_name (regcache, "mxcsr", &fp->mxcsr);
/* Some registers are 16-bit. */
val = fp->fctrl & 0xFFFF;
supply_register_by_name (regcache, "fctrl", &val);
val = fp->fstat & 0xFFFF;
supply_register_by_name (regcache, "fstat", &val);
/* Generate the form of ftag data that GDB expects. */
top = (fp->fstat >> 11) & 0x7;
val = 0;
for (i = 7; i >= 0; i--)
{
int tag;
if (fp->ftag & (1 << i))
tag = i387_ftag (fxp, (i + 8 - top) % 8);
else
tag = 3;
val |= tag << (2 * i);
}
supply_register_by_name (regcache, "ftag", &val);
val = fp->fiseg & 0xFFFF;
supply_register_by_name (regcache, "fiseg", &val);
val = fp->foseg & 0xFFFF;
supply_register_by_name (regcache, "foseg", &val);
val = (fp->fop) & 0x7FF;
supply_register_by_name (regcache, "fop", &val);
}
/* Default to SSE. */
unsigned long long x86_xcr0 = X86_XSTATE_SSE_MASK;