darling-gdb/sim/h8300/compile.c
1996-04-12 22:42:03 +00:00

1940 lines
36 KiB
C

/*
* Simulator for the Hitachi H8/300 architecture.
*
* Written by Steve Chamberlain of Cygnus Support. sac@cygnus.com
*
* This file is part of H8/300 sim
*
*
* THIS SOFTWARE IS NOT COPYRIGHTED
*
* Cygnus offers the following for use in the public domain. Cygnus makes no
* warranty with regard to the software or its performance and the user
* accepts the software "AS IS" with all faults.
*
* CYGNUS DISCLAIMS ANY WARRANTIES, EXPRESS OR IMPLIED, WITH REGARD TO THIS
* SOFTWARE INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
* AND FITNESS FOR A PARTICULAR PURPOSE.
*/
#include "config.h"
#include <signal.h>
#ifdef HAVE_TIME_H
#include <time.h>
#endif
#ifdef HAVE_STDLIB_H
#include <stdlib.h>
#endif
#include <sys/param.h>
#include "wait.h"
#include "ansidecl.h"
#include "callback.h"
#include "remote-sim.h"
#include "bfd.h"
int debug;
#define X(op, size) op*4+size
#define SP (h8300hmode ? SL:SW)
#define SB 0
#define SW 1
#define SL 2
#define OP_REG 1
#define OP_DEC 2
#define OP_DISP 3
#define OP_INC 4
#define OP_PCREL 5
#define OP_MEM 6
#define OP_CCR 7
#define OP_IMM 8
#define OP_ABS 10
#define h8_opcodes ops
#define DEFINE_TABLE
#include "opcode/h8300.h"
#include "inst.h"
#define LOW_BYTE(x) ((x) & 0xff)
#define HIGH_BYTE(x) (((x)>>8) & 0xff)
#define P(X,Y) ((X<<8) | Y)
#define BUILDSR() cpu.ccr = (N << 3) | (Z << 2) | (V<<1) | C;
#define GETSR() \
c = (cpu.ccr >> 0) & 1;\
v = (cpu.ccr >> 1) & 1;\
nz = !((cpu.ccr >> 2) & 1);\
n = (cpu.ccr >> 3) & 1;
#ifdef __CHAR_IS_SIGNED__
#define SEXTCHAR(x) ((char)(x))
#endif
#ifndef SEXTCHAR
#define SEXTCHAR(x) ((x & 0x80) ? (x | ~0xff):x)
#endif
#define UEXTCHAR(x) ((x) & 0xff)
#define UEXTSHORT(x) ((x) & 0xffff)
#define SEXTSHORT(x) ((short)(x))
static cpu_state_type cpu;
int h8300hmode = 0;
static int memory_size;
static int
get_now ()
{
#ifndef WIN32
return time (0);
#endif
return 0;
}
static int
now_persec ()
{
return 1;
}
static int
bitfrom (x)
{
switch (x & SIZE)
{
case L_8:
return SB;
case L_16:
return SW;
case L_32:
return SL;
case L_P:
return h8300hmode ? SL : SW;
}
}
static
unsigned int
lvalue (x, rn)
{
switch (x / 4)
{
case OP_DISP:
if (rn == 8)
{
return X (OP_IMM, SP);
}
return X (OP_REG, SP);
case OP_MEM:
return X (OP_MEM, SP);
default:
abort ();
}
}
static unsigned int
decode (addr, data, dst)
int addr;
unsigned char *data;
decoded_inst *dst;
{
int rs = 0;
int rd = 0;
int rdisp = 0;
int abs = 0;
int plen = 0;
int bit = 0;
struct h8_opcode *q = h8_opcodes;
int size = 0;
dst->dst.type = -1;
dst->src.type = -1;
/* Find the exact opcode/arg combo */
while (q->name)
{
op_type *nib;
unsigned int len = 0;
nib = q->data.nib;
while (1)
{
op_type looking_for = *nib;
int thisnib = data[len >> 1];
thisnib = (len & 1) ? (thisnib & 0xf) : ((thisnib >> 4) & 0xf);
if (looking_for < 16 && looking_for >= 0)
{
if (looking_for != thisnib)
goto fail;
}
else
{
if ((int) looking_for & (int) B31)
{
if (!(((int) thisnib & 0x8) != 0))
goto fail;
looking_for = (op_type) ((int) looking_for & ~(int)
B31);
thisnib &= 0x7;
}
if ((int) looking_for & (int) B30)
{
if (!(((int) thisnib & 0x8) == 0))
goto fail;
looking_for = (op_type) ((int) looking_for & ~(int) B30);
}
if (looking_for & DBIT)
{
if ((looking_for & 5) != (thisnib & 5))
goto fail;
abs = (thisnib & 0x8) ? 2 : 1;
}
else if (looking_for & (REG | IND | INC | DEC))
{
if (looking_for & REG)
{
/*
* Can work out size from the
* register
*/
size = bitfrom (looking_for);
}
if (looking_for & SRC)
{
rs = thisnib;
}
else
{
rd = thisnib;
}
}
else if (looking_for & L_16)
{
abs = (data[len >> 1]) * 256 + data[(len + 2) >> 1];
plen = 16;
if (looking_for & (PCREL | DISP))
{
abs = (short) (abs);
}
}
else if (looking_for & ABSJMP)
{
abs =
(data[1] << 16)
| (data[2] << 8)
| (data[3]);
}
else if (looking_for & MEMIND)
{
abs = data[1];
}
else if (looking_for & L_32)
{
int i = len >> 1;
abs = (data[i] << 24)
| (data[i + 1] << 16)
| (data[i + 2] << 8)
| (data[i + 3]);
plen = 32;
}
else if (looking_for & L_24)
{
int i = len >> 1;
abs = (data[i] << 16) | (data[i + 1] << 8) | (data[i + 2]);
plen = 24;
}
else if (looking_for & IGNORE)
{
/* nothing to do */
}
else if (looking_for & DISPREG)
{
rdisp = thisnib & 0x7;
}
else if (looking_for & KBIT)
{
switch (thisnib)
{
case 9:
abs = 4;
break;
case 8:
abs = 2;
break;
case 0:
abs = 1;
break;
}
}
else if (looking_for & L_8)
{
plen = 8;
if (looking_for & PCREL)
{
abs = SEXTCHAR (data[len >> 1]);
}
else if (looking_for & ABS8MEM)
{
plen = 8;
abs = h8300hmode ? ~0xff0000ff : ~0xffff00ff;
abs |= data[len >> 1] & 0xff ;
}
else
{
abs = data[len >> 1] & 0xff;
}
}
else if (looking_for & L_3)
{
plen = 3;
bit = thisnib;
}
else if (looking_for == E)
{
dst->op = q;
/* Fill in the args */
{
op_type *args = q->args.nib;
int hadone = 0;
while (*args != E)
{
int x = *args;
int rn = (x & DST) ? rd : rs;
ea_type *p;
if (x & DST)
{
p = &(dst->dst);
}
else
{
p = &(dst->src);
}
if (x & (L_3))
{
p->type = X (OP_IMM, size);
p->literal = bit;
}
else if (x & (IMM | KBIT | DBIT))
{
p->type = X (OP_IMM, size);
p->literal = abs;
}
else if (x & REG)
{
/* Reset the size, some
ops (like mul) have two sizes */
size = bitfrom (x);
p->type = X (OP_REG, size);
p->reg = rn;
}
else if (x & INC)
{
p->type = X (OP_INC, size);
p->reg = rn & 0x7;
}
else if (x & DEC)
{
p->type = X (OP_DEC, size);
p->reg = rn & 0x7;
}
else if (x & IND)
{
p->type = X (OP_DISP, size);
p->reg = rn & 0x7;
p->literal = 0;
}
else if (x & (ABS | ABSJMP | ABS8MEM))
{
p->type = X (OP_DISP, size);
p->literal = abs;
p->reg = 8;
}
else if (x & MEMIND)
{
p->type = X (OP_MEM, size);
p->literal = abs;
}
else if (x & PCREL)
{
p->type = X (OP_PCREL, size);
p->literal = abs + addr + 2;
if (x & L_16)
p->literal += 2;
}
else if (x & ABSJMP)
{
p->type = X (OP_IMM, SP);
p->literal = abs;
}
else if (x & DISP)
{
p->type = X (OP_DISP, size);
p->literal = abs;
p->reg = rdisp & 0x7;
}
else if (x & CCR)
{
p->type = OP_CCR;
}
else
printf ("Hmmmm %x", x);
args++;
}
}
/*
* But a jmp or a jsr gets
* automagically lvalued, since we
* branch to their address not their
* contents
*/
if (q->how == O (O_JSR, SB)
|| q->how == O (O_JMP, SB))
{
dst->src.type = lvalue (dst->src.type, dst->src.reg);
}
if (dst->dst.type == -1)
dst->dst = dst->src;
dst->opcode = q->how;
dst->cycles = q->time;
/* And a jsr to 0xc4 is turned into a magic trap */
if (dst->opcode == O (O_JSR, SB))
{
if (dst->src.literal == 0xc4)
{
dst->opcode = O (O_SYSCALL, SB);
}
}
dst->next_pc = addr + len / 2;
return;
}
else
{
printf ("Dont understand %x \n", looking_for);
}
}
len++;
nib++;
}
fail:
q++;
}
dst->opcode = O (O_ILL, SB);
}
static void
compile (pc)
{
int idx;
/* find the next cache entry to use */
idx = cpu.cache_top + 1;
cpu.compiles++;
if (idx >= cpu.csize)
{
idx = 1;
}
cpu.cache_top = idx;
/* Throw away its old meaning */
cpu.cache_idx[cpu.cache[idx].oldpc] = 0;
/* set to new address */
cpu.cache[idx].oldpc = pc;
/* fill in instruction info */
decode (pc, cpu.memory + pc, cpu.cache + idx);
/* point to new cache entry */
cpu.cache_idx[pc] = idx;
}
static unsigned char *breg[18];
static unsigned short *wreg[18];
static unsigned int *lreg[18];
#define GET_B_REG(x) *(breg[x])
#define SET_B_REG(x,y) (*(breg[x])) = (y)
#define GET_W_REG(x) *(wreg[x])
#define SET_W_REG(x,y) (*(wreg[x])) = (y)
#define GET_L_REG(x) *(lreg[x])
#define SET_L_REG(x,y) (*(lreg[x])) = (y)
#define GET_MEMORY_L(x) \
((cpu.memory[x+0] << 24) | (cpu.memory[x+1] << 16) | (cpu.memory[x+2] << 8) | cpu.memory[x+3])
#define GET_MEMORY_W(x) \
((cpu.memory[x+0] << 8) | (cpu.memory[x+1] << 0))
#define SET_MEMORY_B(x,y) \
(cpu.memory[(x)] = y)
#define SET_MEMORY_W(x,y) \
{register unsigned char *_p = cpu.memory+x;\
register int __y = y;\
_p[0] = (__y)>>8;\
_p[1] =(__y); }
#define SET_MEMORY_L(x,y) \
{register unsigned char *_p = cpu.memory+x;register int __y = y;\
_p[0] = (__y)>>24; _p[1] = (__y)>>16; _p[2] = (__y)>>8; _p[3] = (__y)>>0;}
#define GET_MEMORY_B(x) (cpu.memory[x])
int
fetch (arg, n)
ea_type *arg;
{
int rn = arg->reg;
int abs = arg->literal;
int r;
int t;
switch (arg->type)
{
case X (OP_REG, SB):
return GET_B_REG (rn);
case X (OP_REG, SW):
return GET_W_REG (rn);
case X (OP_REG, SL):
return GET_L_REG (rn);
case X (OP_IMM, SB):
case X (OP_IMM, SW):
case X (OP_IMM, SL):
return abs;
case X (OP_DEC, SB):
abort ();
case X (OP_INC, SB):
t = GET_L_REG (rn);
t &= cpu.mask;
r = GET_MEMORY_B (t);
t++;
t = t & cpu.mask;
SET_L_REG (rn, t);
return r;
break;
case X (OP_INC, SW):
t = GET_L_REG (rn);
t &= cpu.mask;
r = GET_MEMORY_W (t);
t += 2;
t = t & cpu.mask;
SET_L_REG (rn, t);
return r;
case X (OP_INC, SL):
t = GET_L_REG (rn);
t &= cpu.mask;
r = GET_MEMORY_L (t);
t += 4;
t = t & cpu.mask;
SET_L_REG (rn, t);
return r;
case X (OP_DISP, SB):
t = GET_L_REG (rn) + abs;
t &= cpu.mask;
return GET_MEMORY_B (t);
case X (OP_DISP, SW):
t = GET_L_REG (rn) + abs;
t &= cpu.mask;
return GET_MEMORY_W (t);
case X (OP_DISP, SL):
t = GET_L_REG (rn) + abs;
t &= cpu.mask;
return GET_MEMORY_L (t);
case X (OP_MEM, SL):
t = GET_MEMORY_L (abs);
t &= cpu.mask;
return t;
case X (OP_MEM, SW):
t = GET_MEMORY_W (abs);
t &= cpu.mask;
return t;
default:
abort ();
}
}
static
void
store (arg, n)
ea_type *arg;
int n;
{
int rn = arg->reg;
int abs = arg->literal;
int t;
switch (arg->type)
{
case X (OP_REG, SB):
SET_B_REG (rn, n);
break;
case X (OP_REG, SW):
SET_W_REG (rn, n);
break;
case X (OP_REG, SL):
SET_L_REG (rn, n);
break;
case X (OP_DEC, SB):
t = GET_L_REG (rn) - 1;
t &= cpu.mask;
SET_L_REG (rn, t);
SET_MEMORY_B (t, n);
break;
case X (OP_DEC, SW):
t = (GET_L_REG (rn) - 2) & cpu.mask;
SET_L_REG (rn, t);
SET_MEMORY_W (t, n);
break;
case X (OP_DEC, SL):
t = (GET_L_REG (rn) - 4) & cpu.mask;
SET_L_REG (rn, t);
SET_MEMORY_L (t, n);
break;
case X (OP_DISP, SB):
t = GET_L_REG (rn) + abs;
t &= cpu.mask;
SET_MEMORY_B (t, n);
break;
case X (OP_DISP, SW):
t = GET_L_REG (rn) + abs;
t &= cpu.mask;
SET_MEMORY_W (t, n);
break;
case X (OP_DISP, SL):
t = GET_L_REG (rn) + abs;
t &= cpu.mask;
SET_MEMORY_L (t, n);
break;
default:
abort ();
}
}
static union
{
short int i;
struct
{
char low;
char high;
}
u;
}
littleendian;
static
void
init_pointers ()
{
static int init;
if (!init)
{
int i;
init = 1;
littleendian.i = 1;
if (h8300hmode)
memory_size = H8300H_MSIZE;
else
memory_size = H8300_MSIZE;
cpu.memory = (unsigned char *) calloc (sizeof (char), memory_size);
cpu.cache_idx = (unsigned short *) calloc (sizeof (short), memory_size);
/* `msize' must be a power of two */
if ((memory_size & (memory_size - 1)) != 0)
abort ();
cpu.mask = memory_size - 1;
for (i = 0; i < 9; i++)
{
cpu.regs[i] = 0;
}
for (i = 0; i < 8; i++)
{
unsigned char *p = (unsigned char *) (cpu.regs + i);
unsigned char *e = (unsigned char *) (cpu.regs + i + 1);
unsigned short *q = (unsigned short *) (cpu.regs + i);
unsigned short *u = (unsigned short *) (cpu.regs + i + 1);
cpu.regs[i] = 0x00112233;
while (p < e)
{
if (*p == 0x22)
{
breg[i] = p;
}
if (*p == 0x33)
{
breg[i + 8] = p;
}
p++;
}
while (q < u)
{
if (*q == 0x2233)
{
wreg[i] = q;
}
if (*q == 0x0011)
{
wreg[i + 8] = q;
}
q++;
}
cpu.regs[i] = 0;
lreg[i] = &cpu.regs[i];
}
lreg[8] = &cpu.regs[8];
/* initialize the seg registers */
if (!cpu.cache)
sim_csize (CSIZE);
}
}
static void
control_c (sig, code, scp, addr)
int sig;
int code;
char *scp;
char *addr;
{
cpu.exception = SIGINT;
}
#define C (c != 0)
#define Z (nz == 0)
#define V (v != 0)
#define N (n != 0)
static int
mop (code, bsize, sign)
decoded_inst *code;
int bsize;
int sign;
{
int multiplier;
int multiplicand;
int result;
int n, nz;
if (sign)
{
multiplicand =
bsize ? SEXTCHAR (GET_W_REG (code->dst.reg)) :
SEXTSHORT (GET_W_REG (code->dst.reg));
multiplier =
bsize ? SEXTCHAR (GET_B_REG (code->src.reg)) :
SEXTSHORT (GET_W_REG (code->src.reg));
}
else
{
multiplicand = bsize ? UEXTCHAR (GET_W_REG (code->dst.reg)) :
UEXTSHORT (GET_W_REG (code->dst.reg));
multiplier =
bsize ? UEXTCHAR (GET_B_REG (code->src.reg)) :
UEXTSHORT (GET_W_REG (code->src.reg));
}
result = multiplier * multiplicand;
if (sign)
{
n = result & (bsize ? 0x8000 : 0x80000000);
nz = result & (bsize ? 0xffff : 0xffffffff);
}
if (bsize)
{
SET_W_REG (code->dst.reg, result);
}
else
{
SET_L_REG (code->dst.reg, result);
}
/* return ((n==1) << 1) | (nz==1); */
}
#define OSHIFTS(name, how) \
case O(name, SB): \
{ \
int t; \
int hm = 0x80; \
rd = GET_B_REG (code->src.reg); \
how; \
goto shift8; \
} \
case O(name, SW): \
{ \
int t; \
int hm = 0x8000; \
rd = GET_W_REG (code->src.reg); \
how; \
goto shift16; \
} \
case O(name, SL): \
{ \
int t; \
int hm = 0x80000000; \
rd = GET_L_REG (code->src.reg); \
how; \
goto shift32; \
}
#define OBITOP(name,f, s, op) \
case O(name, SB): \
{ \
int m; \
int b; \
if (f) ea = fetch (&code->dst); \
m=1<< fetch(&code->src); \
op; \
if(s) store (&code->dst,ea); goto next; \
}
void
sim_resume (step, siggnal)
{
static int init1;
int cycles = 0;
int insts = 0;
int tick_start = get_now ();
void (*prev) ();
int poll_count = 0;
int res;
int tmp;
int rd;
int ea;
int bit;
int pc;
int c, nz, v, n;
int oldmask;
init_pointers ();
prev = signal (SIGINT, control_c);
if (step)
{
cpu.exception = SIGTRAP;
}
else
{
cpu.exception = 0;
}
pc = cpu.pc;
GETSR ();
oldmask = cpu.mask;
if (!h8300hmode)
cpu.mask = 0xffff;
do
{
int cidx;
decoded_inst *code;
top:
cidx = cpu.cache_idx[pc];
code = cpu.cache + cidx;
#define ALUOP(STORE, NAME, HOW) \
case O(NAME,SB): HOW; if(STORE)goto alu8;else goto just_flags_alu8; \
case O(NAME, SW): HOW; if(STORE)goto alu16;else goto just_flags_alu16; \
case O(NAME,SL): HOW; if(STORE)goto alu32;else goto just_flags_alu32;
#define LOGOP(NAME, HOW) \
case O(NAME,SB): HOW; goto log8;\
case O(NAME, SW): HOW; goto log16;\
case O(NAME,SL): HOW; goto log32;
#if ADEBUG
if (debug)
{
printf ("%x %d %s\n", pc, code->opcode,
code->op ? code->op->name : "**");
}
cpu.stats[code->opcode]++;
#endif
cycles += code->cycles;
insts++;
switch (code->opcode)
{
case 0:
/*
* This opcode is a fake for when we get to an
* instruction which hasnt been compiled
*/
compile (pc);
goto top;
break;
case O (O_SUBX, SB):
rd = fetch (&code->dst);
ea = fetch (&code->src);
ea = -(ea + C);
res = rd + ea;
goto alu8;
case O (O_ADDX, SB):
rd = fetch (&code->dst);
ea = fetch (&code->src);
ea = C + ea;
res = rd + ea;
goto alu8;
#define EA ea = fetch(&code->src);
#define RD_EA ea = fetch(&code->src); rd = fetch(&code->dst);
ALUOP (1, O_SUB, RD_EA;
ea = -ea;
res = rd + ea);
ALUOP (1, O_NEG, EA;
ea = -ea;
rd = 0;
res = rd + ea);
case O (O_ADD, SB):
rd = GET_B_REG (code->dst.reg);
ea = fetch (&code->src);
res = rd + ea;
goto alu8;
case O (O_ADD, SW):
rd = GET_W_REG (code->dst.reg);
ea = fetch (&code->src);
res = rd + ea;
goto alu16;
case O (O_ADD, SL):
rd = GET_L_REG (code->dst.reg);
ea = fetch (&code->src);
res = rd + ea;
goto alu32;
LOGOP (O_AND, RD_EA;
res = rd & ea);
LOGOP (O_OR, RD_EA;
res = rd | ea);
LOGOP (O_XOR, RD_EA;
res = rd ^ ea);
case O (O_MOV_TO_MEM, SB):
res = GET_B_REG (code->src.reg);
goto log8;
case O (O_MOV_TO_MEM, SW):
res = GET_W_REG (code->src.reg);
goto log16;
case O (O_MOV_TO_MEM, SL):
res = GET_L_REG (code->src.reg);
goto log32;
case O (O_MOV_TO_REG, SB):
res = fetch (&code->src);
SET_B_REG (code->dst.reg, res);
goto just_flags_log8;
case O (O_MOV_TO_REG, SW):
res = fetch (&code->src);
SET_W_REG (code->dst.reg, res);
goto just_flags_log16;
case O (O_MOV_TO_REG, SL):
res = fetch (&code->src);
SET_L_REG (code->dst.reg, res);
goto just_flags_log32;
case O (O_ADDS, SL):
SET_L_REG (code->dst.reg,
GET_L_REG (code->dst.reg)
+ code->src.literal);
goto next;
case O (O_SUBS, SL):
SET_L_REG (code->dst.reg,
GET_L_REG (code->dst.reg)
- code->src.literal);
goto next;
case O (O_CMP, SB):
rd = fetch (&code->dst);
ea = fetch (&code->src);
ea = -ea;
res = rd + ea;
goto just_flags_alu8;
case O (O_CMP, SW):
rd = fetch (&code->dst);
ea = fetch (&code->src);
ea = -ea;
res = rd + ea;
goto just_flags_alu16;
case O (O_CMP, SL):
rd = fetch (&code->dst);
ea = fetch (&code->src);
ea = -ea;
res = rd + ea;
goto just_flags_alu32;
case O (O_DEC, SB):
rd = GET_B_REG (code->src.reg);
ea = -1;
res = rd + ea;
SET_B_REG (code->src.reg, res);
goto just_flags_inc8;
case O (O_DEC, SW):
rd = GET_W_REG (code->dst.reg);
ea = -code->src.literal;
res = rd + ea;
SET_W_REG (code->dst.reg, res);
goto just_flags_inc16;
case O (O_DEC, SL):
rd = GET_L_REG (code->dst.reg);
ea = -code->src.literal;
res = rd + ea;
SET_L_REG (code->dst.reg, res);
goto just_flags_inc32;
case O (O_INC, SB):
rd = GET_B_REG (code->src.reg);
ea = 1;
res = rd + ea;
SET_B_REG (code->src.reg, res);
goto just_flags_inc8;
case O (O_INC, SW):
rd = GET_W_REG (code->dst.reg);
ea = code->src.literal;
res = rd + ea;
SET_W_REG (code->dst.reg, res);
goto just_flags_inc16;
case O (O_INC, SL):
rd = GET_L_REG (code->dst.reg);
ea = code->src.literal;
res = rd + ea;
SET_L_REG (code->dst.reg, res);
goto just_flags_inc32;
#define GET_CCR(x) BUILDSR();x = cpu.ccr
case O (O_ANDC, SB):
GET_CCR (rd);
ea = code->src.literal;
res = rd & ea;
goto setc;
case O (O_ORC, SB):
GET_CCR (rd);
ea = code->src.literal;
res = rd | ea;
goto setc;
case O (O_XORC, SB):
GET_CCR (rd);
ea = code->src.literal;
res = rd ^ ea;
goto setc;
case O (O_BRA, SB):
if (1)
goto condtrue;
goto next;
case O (O_BRN, SB):
if (0)
goto condtrue;
goto next;
case O (O_BHI, SB):
if ((C || Z) == 0)
goto condtrue;
goto next;
case O (O_BLS, SB):
if ((C || Z))
goto condtrue;
goto next;
case O (O_BCS, SB):
if ((C == 1))
goto condtrue;
goto next;
case O (O_BCC, SB):
if ((C == 0))
goto condtrue;
goto next;
case O (O_BEQ, SB):
if (Z)
goto condtrue;
goto next;
case O (O_BGT, SB):
if (((Z || (N ^ V)) == 0))
goto condtrue;
goto next;
case O (O_BLE, SB):
if (((Z || (N ^ V)) == 1))
goto condtrue;
goto next;
case O (O_BGE, SB):
if ((N ^ V) == 0)
goto condtrue;
goto next;
case O (O_BLT, SB):
if ((N ^ V))
goto condtrue;
goto next;
case O (O_BMI, SB):
if ((N))
goto condtrue;
goto next;
case O (O_BNE, SB):
if ((Z == 0))
goto condtrue;
goto next;
case O (O_BPL, SB):
if (N == 0)
goto condtrue;
goto next;
case O (O_BVC, SB):
if ((V == 0))
goto condtrue;
goto next;
case O (O_BVS, SB):
if ((V == 1))
goto condtrue;
goto next;
case O (O_SYSCALL, SB):
printf ("%c", cpu.regs[2]);
goto next;
OSHIFTS (O_NOT, rd = ~rd; v = 0;);
OSHIFTS (O_SHLL, c = rd & hm; v = 0;
rd <<= 1);
OSHIFTS (O_SHLR, c = rd & 1; v = 0;
rd = (unsigned int) rd >> 1);
OSHIFTS (O_SHAL, c = rd & hm;
v = (rd & hm) != ((rd & (hm >> 1)) << 1);
rd <<= 1);
OSHIFTS (O_SHAR, t = rd & hm;
c = rd & 1;
v = 0;
rd >>= 1;
rd |= t;
);
OSHIFTS (O_ROTL, c = rd & hm;
v = 0;
rd <<= 1;
rd |= C);
OSHIFTS (O_ROTR, c = rd & 1;
v = 0;
rd = (unsigned int) rd >> 1;
if (c) rd |= hm;);
OSHIFTS (O_ROTXL, t = rd & hm;
rd <<= 1;
rd |= C;
c = t;
v = 0;
);
OSHIFTS (O_ROTXR, t = rd & 1;
rd = (unsigned int) rd >> 1;
if (C) rd |= hm; c = t;
v = 0;);
case O (O_JMP, SB):
{
pc = fetch (&code->src);
goto end;
}
case O (O_JSR, SB):
{
int tmp;
pc = fetch (&code->src);
call:
tmp = cpu.regs[7];
if (h8300hmode)
{
tmp -= 4;
SET_MEMORY_L (tmp, code->next_pc);
}
else
{
tmp -= 2;
SET_MEMORY_W (tmp, code->next_pc);
}
cpu.regs[7] = tmp;
goto end;
}
case O (O_BSR, SB):
pc = code->src.literal;
goto call;
case O (O_RTS, SB):
{
int tmp;
tmp = cpu.regs[7];
if (h8300hmode)
{
pc = GET_MEMORY_L (tmp);
tmp += 4;
}
else
{
pc = GET_MEMORY_W (tmp);
tmp += 2;
}
cpu.regs[7] = tmp;
goto end;
}
case O (O_ILL, SB):
cpu.exception = SIGILL;
goto end;
case O (O_SLEEP, SB):
/* The format of r0 is defined by devo/include/wait.h.
cpu.exception handling needs some cleanup: we need to make the
the handling of normal exits vs signals, etc. more sensible. */
if (! WIFEXITED (cpu.regs[0]) && WIFSIGNALED (cpu.regs[0]))
cpu.exception = SIGILL;
else
cpu.exception = SIGTRAP;
goto end;
case O (O_BPT, SB):
cpu.exception = SIGTRAP;
goto end;
OBITOP (O_BNOT, 1, 1, ea ^= m);
OBITOP (O_BTST, 1, 0, nz = ea & m);
OBITOP (O_BCLR, 1, 1, ea &= ~m);
OBITOP (O_BSET, 1, 1, ea |= m);
OBITOP (O_BLD, 1, 0, c = ea & m);
OBITOP (O_BILD, 1, 0, c = !(ea & m));
OBITOP (O_BST, 1, 1, ea &= ~m;
if (C) ea |= m);
OBITOP (O_BIST, 1, 1, ea &= ~m;
if (!C) ea |= m);
OBITOP (O_BAND, 1, 0, c = (ea & m) && C);
OBITOP (O_BIAND, 1, 0, c = !(ea & m) && C);
OBITOP (O_BOR, 1, 0, c = (ea & m) || C);
OBITOP (O_BIOR, 1, 0, c = !(ea & m) || C);
OBITOP (O_BXOR, 1, 0, c = (ea & m) != C);
OBITOP (O_BIXOR, 1, 0, c = !(ea & m) != C);
#define MOP(bsize, signed) mop(code, bsize,signed); goto next;
case O (O_MULS, SB):
MOP (1, 1);
break;
case O (O_MULS, SW):
MOP (0, 1);
break;
case O (O_MULU, SB):
MOP (1, 0);
break;
case O (O_MULU, SW):
MOP (0, 0);
break;
case O (O_DIVU, SB):
{
rd = GET_W_REG (code->dst.reg);
ea = GET_B_REG (code->src.reg);
if (ea)
{
tmp = rd % ea;
rd = rd / ea;
}
SET_W_REG (code->dst.reg, (rd & 0xff) | (tmp << 8));
n = ea & 0x80;
nz = ea & 0xff;
goto next;
}
case O (O_DIVU, SW):
{
rd = GET_L_REG (code->dst.reg);
ea = GET_W_REG (code->src.reg);
n = ea & 0x8000;
nz = ea & 0xffff;
if (ea)
{
tmp = rd % ea;
rd = rd / ea;
}
SET_L_REG (code->dst.reg, (rd & 0xffff) | (tmp << 16));
goto next;
}
case O (O_DIVS, SB):
{
rd = SEXTSHORT (GET_W_REG (code->dst.reg));
ea = SEXTCHAR (GET_B_REG (code->src.reg));
if (ea)
{
tmp = (int) rd % (int) ea;
rd = (int) rd / (int) ea;
n = rd & 0x8000;
nz = 1;
}
else
nz = 0;
SET_W_REG (code->dst.reg, (rd & 0xff) | (tmp << 8));
goto next;
}
case O (O_DIVS, SW):
{
rd = GET_L_REG (code->dst.reg);
ea = SEXTSHORT (GET_W_REG (code->src.reg));
if (ea)
{
tmp = (int) rd % (int) ea;
rd = (int) rd / (int) ea;
n = rd & 0x80000000;
nz = 1;
}
else
nz = 0;
SET_L_REG (code->dst.reg, (rd & 0xffff) | (tmp << 16));
goto next;
}
case O (O_EXTS, SW):
rd = GET_B_REG (code->src.reg + 8) & 0xff; /* Yes, src, not dst. */
ea = rd & 0x80 ? -256 : 0;
res = rd + ea;
goto log16;
case O (O_EXTS, SL):
rd = GET_W_REG (code->src.reg) & 0xffff;
ea = rd & 0x8000 ? -65536 : 0;
res = rd + ea;
goto log32;
case O (O_EXTU, SW):
rd = GET_B_REG (code->src.reg + 8) & 0xff;
ea = 0;
res = rd + ea;
goto log16;
case O (O_EXTU, SL):
rd = GET_W_REG (code->src.reg) & 0xffff;
ea = 0;
res = rd + ea;
goto log32;
case O (O_NOP, SB):
goto next;
default:
cpu.exception = SIGILL;
goto end;
}
abort ();
setc:
cpu.ccr = res;
GETSR ();
goto next;
condtrue:
/* When a branch works */
pc = code->src.literal;
goto end;
/* Set the cond codes from res */
bitop:
/* Set the flags after an 8 bit inc/dec operation */
just_flags_inc8:
n = res & 0x80;
nz = res & 0xff;
v = (rd & 0x7f) == 0x7f;
goto next;
/* Set the flags after an 16 bit inc/dec operation */
just_flags_inc16:
n = res & 0x8000;
nz = res & 0xffff;
v = (rd & 0x7fff) == 0x7fff;
goto next;
/* Set the flags after an 32 bit inc/dec operation */
just_flags_inc32:
n = res & 0x80000000;
nz = res & 0xffffffff;
v = (rd & 0x7fffffff) == 0x7fffffff;
goto next;
shift8:
/* Set flags after an 8 bit shift op, carry,overflow set in insn */
n = (rd & 0x80);
nz = rd & 0xff;
SET_B_REG (code->src.reg, rd);
goto next;
shift16:
/* Set flags after an 16 bit shift op, carry,overflow set in insn */
n = (rd & 0x8000);
nz = rd & 0xffff;
SET_W_REG (code->src.reg, rd);
goto next;
shift32:
/* Set flags after an 32 bit shift op, carry,overflow set in insn */
n = (rd & 0x80000000);
nz = rd & 0xffffffff;
SET_L_REG (code->src.reg, rd);
goto next;
log32:
store (&code->dst, res);
just_flags_log32:
/* flags after a 32bit logical operation */
n = res & 0x80000000;
nz = res & 0xffffffff;
v = 0;
goto next;
log16:
store (&code->dst, res);
just_flags_log16:
/* flags after a 16bit logical operation */
n = res & 0x8000;
nz = res & 0xffff;
v = 0;
goto next;
log8:
store (&code->dst, res);
just_flags_log8:
n = res & 0x80;
nz = res & 0xff;
v = 0;
goto next;
alu8:
SET_B_REG (code->dst.reg, res);
just_flags_alu8:
n = res & 0x80;
nz = res & 0xff;
c = (res & 0x100);
switch (code->opcode / 4)
{
case O_ADD:
v = ((rd & 0x80) == (ea & 0x80)
&& (rd & 0x80) != (res & 0x80));
break;
case O_SUB:
case O_CMP:
v = ((rd & 0x80) != (-ea & 0x80)
&& (rd & 0x80) != (res & 0x80));
break;
case O_NEG:
v = (rd == 0x80);
break;
}
goto next;
alu16:
SET_W_REG (code->dst.reg, res);
just_flags_alu16:
n = res & 0x8000;
nz = res & 0xffff;
c = (res & 0x10000);
switch (code->opcode / 4)
{
case O_ADD:
v = ((rd & 0x8000) == (ea & 0x8000)
&& (rd & 0x8000) != (res & 0x8000));
break;
case O_SUB:
case O_CMP:
v = ((rd & 0x8000) != (-ea & 0x8000)
&& (rd & 0x8000) != (res & 0x8000));
break;
case O_NEG:
v = (rd == 0x8000);
break;
}
goto next;
alu32:
SET_L_REG (code->dst.reg, res);
just_flags_alu32:
n = res & 0x80000000;
nz = res & 0xffffffff;
switch (code->opcode / 4)
{
case O_ADD:
v = ((rd & 0x80000000) == (ea & 0x80000000)
&& (rd & 0x80000000) != (res & 0x80000000));
c = ((unsigned) res < (unsigned) rd) || ((unsigned) res < (unsigned) ea);
break;
case O_SUB:
case O_CMP:
v = ((rd & 0x80000000) != (-ea & 0x80000000)
&& (rd & 0x80000000) != (res & 0x80000000));
c = (unsigned) rd < (unsigned) -ea;
break;
case O_NEG:
v = (rd == 0x80000000);
c = res != 0;
break;
}
goto next;
next:;
pc = code->next_pc;
end:
;
/* if (cpu.regs[8] ) abort(); */
#if defined (WIN32)
/* Poll after every 100th insn, */
if (poll_count++ > 100)
{
poll_count = 0;
if (win32pollquit())
{
control_c();
}
}
#endif
#if defined(__GO32__)
/* Poll after every 100th insn, */
if (poll_count++ > 100)
{
poll_count = 0;
if (kbhit ())
{
int c = getkey ();
control_c ();
}
}
#endif
}
while (!cpu.exception);
cpu.ticks += get_now () - tick_start;
cpu.cycles += cycles;
cpu.insts += insts;
cpu.pc = pc;
BUILDSR ();
cpu.mask = oldmask;
signal (SIGINT, prev);
}
int
sim_write (addr, buffer, size)
SIM_ADDR addr;
unsigned char *buffer;
int size;
{
int i;
init_pointers ();
if (addr < 0 || addr + size > memory_size)
return 0;
for (i = 0; i < size; i++)
{
cpu.memory[addr + i] = buffer[i];
cpu.cache_idx[addr + i] = 0;
}
return size;
}
int
sim_read (addr, buffer, size)
SIM_ADDR addr;
unsigned char *buffer;
int size;
{
init_pointers ();
if (addr < 0 || addr + size > memory_size)
return 0;
memcpy (buffer, cpu.memory + addr, size);
return size;
}
#define R0_REGNUM 0
#define R1_REGNUM 1
#define R2_REGNUM 2
#define R3_REGNUM 3
#define R4_REGNUM 4
#define R5_REGNUM 5
#define R6_REGNUM 6
#define R7_REGNUM 7
#define SP_REGNUM R7_REGNUM /* Contains address of top of stack */
#define FP_REGNUM R6_REGNUM /* Contains address of executing
* stack frame */
#define CCR_REGNUM 8 /* Contains processor status */
#define PC_REGNUM 9 /* Contains program counter */
#define CYCLE_REGNUM 10
#define INST_REGNUM 11
#define TICK_REGNUM 12
void
sim_store_register (rn, value)
int rn;
unsigned char *value;
{
int longval;
int shortval;
int intval;
longval = (value[0] << 24) | (value[1] << 16) | (value[2] << 8) | value[3];
shortval = (value[0] << 8) | (value[1]);
intval = h8300hmode ? longval : shortval;
init_pointers ();
switch (rn)
{
case PC_REGNUM:
cpu.pc = intval;
break;
default:
abort ();
case R0_REGNUM:
case R1_REGNUM:
case R2_REGNUM:
case R3_REGNUM:
case R4_REGNUM:
case R5_REGNUM:
case R6_REGNUM:
case R7_REGNUM:
cpu.regs[rn] = intval;
break;
case CCR_REGNUM:
cpu.ccr = intval;
break;
case CYCLE_REGNUM:
cpu.cycles = longval;
break;
case INST_REGNUM:
cpu.insts = longval;
break;
case TICK_REGNUM:
cpu.ticks = longval;
break;
}
}
void
sim_fetch_register (rn, buf)
int rn;
unsigned char *buf;
{
int v;
int longreg = 0;
init_pointers ();
switch (rn)
{
default:
abort ();
case 8:
v = cpu.ccr;
break;
case 9:
v = cpu.pc;
break;
case R0_REGNUM:
case R1_REGNUM:
case R2_REGNUM:
case R3_REGNUM:
case R4_REGNUM:
case R5_REGNUM:
case R6_REGNUM:
case R7_REGNUM:
v = cpu.regs[rn];
break;
case 10:
v = cpu.cycles;
longreg = 1;
break;
case 11:
v = cpu.ticks;
longreg = 1;
break;
case 12:
v = cpu.insts;
longreg = 1;
break;
}
if (h8300hmode || longreg)
{
buf[0] = v >> 24;
buf[1] = v >> 16;
buf[2] = v >> 8;
buf[3] = v >> 0;
}
else
{
buf[0] = v >> 8;
buf[1] = v;
}
}
void
sim_stop_reason (reason, sigrc)
enum sim_stop *reason;
int *sigrc;
{
*reason = sim_stopped;
*sigrc = cpu.exception;
}
sim_csize (n)
{
if (cpu.cache)
free (cpu.cache);
if (n < 2)
n = 2;
cpu.cache = (decoded_inst *) malloc (sizeof (decoded_inst) * n);
memset (cpu.cache, 0, sizeof (decoded_inst) * n);
cpu.csize = n;
}
void
sim_info (verbose)
int verbose;
{
double timetaken = (double) cpu.ticks / (double) now_persec ();
double virttime = cpu.cycles / 10.0e6;
printf_filtered ("\n\n#instructions executed %10d\n", cpu.insts);
printf_filtered ("#cycles (v approximate) %10d\n", cpu.cycles);
printf_filtered ("#real time taken %10.4f\n", timetaken);
printf_filtered ("#virtual time taked %10.4f\n", virttime);
if (timetaken != 0.0)
printf_filtered ("#simulation ratio %10.4f\n", virttime / timetaken);
printf_filtered ("#compiles %10d\n", cpu.compiles);
printf_filtered ("#cache size %10d\n", cpu.csize);
#ifdef ADEBUG
if (verbose)
{
int i;
for (i = 0; i < O_LAST; i++)
{
if (cpu.stats[i])
printf_filtered ("%d: %d\n", i, cpu.stats[i]);
}
}
#endif
}
/* Indicate whether the cpu is an h8/300 or h8/300h.
FLAG is non-zero for the h8/300h. */
void
set_h8300h (flag)
int flag;
{
h8300hmode = flag;
}
void
sim_kill ()
{
/* nothing to do */
}
void
sim_open (args)
char *args;
{
/* nothing to do */
}
void
sim_close (quitting)
int quitting;
{
/* nothing to do */
}
/* Called by gdb to load a program into memory. */
int
sim_load (prog, from_tty)
char *prog;
int from_tty;
{
bfd *abfd;
/* See if the file is for the h8/300 or h8/300h. */
/* ??? This may not be the most efficient way. The z8k simulator
does this via a different mechanism (INIT_EXTRA_SYMTAB_INFO). */
if ((abfd = bfd_openr (prog, "coff-h8300")) != 0)
{
if (bfd_check_format (abfd, bfd_object))
set_h8300h (abfd->arch_info->mach == bfd_mach_h8300h);
bfd_close (abfd);
}
/* If we're using gdb attached to the simulator, then we have to
reallocate memory for the simulator.
When gdb first starts, it calls fetch_registers (among other
functions), which in turn calls init_pointers, which allocates
simulator memory.
The problem is when we do that, we don't know whether we're
debugging an h8/300 or h8/300h program.
This is the first point at which we can make that determination,
so we just reallocate memory now; this will also allow us to handle
switching between h8/300 and h8/300h programs without exiting
gdb. */
if (h8300hmode)
memory_size = H8300H_MSIZE;
else
memory_size = H8300_MSIZE;
if (cpu.memory)
free (cpu.memory);
if (cpu.cache_idx)
free (cpu.cache_idx);
cpu.memory = (unsigned char *) calloc (sizeof (char), memory_size);
cpu.cache_idx = (unsigned short *) calloc (sizeof (short), memory_size);
cpu.eightbit = (unsigned char *) calloc (sizeof (char), 256);
/* `msize' must be a power of two */
if ((memory_size & (memory_size - 1)) != 0)
abort ();
cpu.mask = memory_size - 1;
/* Return non-zero so gdb will handle it. */
return 1;
}
void
sim_create_inferior (start_address, argv, env)
SIM_ADDR start_address;
char **argv;
char **env;
{
cpu.pc = start_address;
}
void
sim_do_command (cmd)
char *cmd;
{
printf_filtered ("This simulator does not accept any commands.\n");
}
void
sim_set_callbacks (ptr)
struct host_callback_struct *ptr;
{
}