darling-gdb/gdb/i386-linux-tdep.h
H.J. Lu be0d295484 Remove regmap from i386-linux-nat.c.
2010-04-22  H.J. Lu  <hongjiu.lu@intel.com>

	* i386-linux-nat.c (regmap): Removed.
	(fetch_register): Replace regmap with
	i386_linux_gregset_reg_offset.
	(store_register): Likewise.
	(supply_gregset): Likewise.
	(fill_gregset): Likewise.

	* i386-linux-tdep.c (i386_linux_gregset_reg_offset): Make it
	global.

	* i386-linux-tdep.h (i386_linux_gregset_reg_offset): New.
2010-04-22 20:35:28 +00:00

71 lines
2.6 KiB
C

/* Target-dependent code for GNU/Linux x86.
Copyright (C) 2002, 2003, 2007, 2008, 2009, 2010
Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#ifndef I386_LINUX_TDEP_H
#define I386_LINUX_TDEP_H
/* The Linux kernel pretends there is an additional "orig_eax"
register. Since GDB needs access to that register to be able to
properly restart system calls when necessary (see
i386-linux-tdep.c) we need our own versions of a number of
functions that deal with GDB's register cache. */
/* Register number for the "orig_eax" pseudo-register. If this
pseudo-register contains a value >= 0 it is interpreted as the
system call number that the kernel is supposed to restart. */
#define I386_LINUX_ORIG_EAX_REGNUM I386_AVX_NUM_REGS
/* Total number of registers for GNU/Linux. */
#define I386_LINUX_NUM_REGS (I386_LINUX_ORIG_EAX_REGNUM + 1)
/* Get XSAVE extended state xcr0 from core dump. */
extern uint64_t i386_linux_core_read_xcr0
(struct gdbarch *gdbarch, struct target_ops *target, bfd *abfd);
/* Linux target description. */
extern struct target_desc *tdesc_i386_linux;
extern struct target_desc *tdesc_i386_mmx_linux;
extern struct target_desc *tdesc_i386_avx_linux;
/* Format of XSAVE extended state is:
struct
{
fxsave_bytes[0..463]
sw_usable_bytes[464..511]
xstate_hdr_bytes[512..575]
avx_bytes[576..831]
future_state etc
};
Same memory layout will be used for the coredump NT_X86_XSTATE
representing the XSAVE extended state registers.
The first 8 bytes of the sw_usable_bytes[464..467] is the OS enabled
extended state mask, which is the same as the extended control register
0 (the XFEATURE_ENABLED_MASK register), XCR0. We can use this mask
together with the mask saved in the xstate_hdr_bytes to determine what
states the processor/OS supports and what state, used or initialized,
the process/thread is in. */
#define I386_LINUX_XSAVE_XCR0_OFFSET 464
extern int i386_linux_gregset_reg_offset[];
#endif /* i386-linux-tdep.h */