darling-gdb/bfd/xcofflink.c
Alan Modra 8f615d0704 * bfd.c (bfd_archive_filename): New function.
* bfd-in2.h: Regenerate.
	* aout-adobe.c: Replace bfd_get_filename with bfd_archive_filename
	in error messages where the bfd is an input bfd.
	* aout-cris.c: Likewise.
	* coff-arm.c: Likewise.
	* coff-mcore.c: Likewise.
	* coff-ppc.c: Likewise.
	* coff-rs6000.c: Likewise.
	* coff-sh.c: Likewise.
	* coff-tic54x.c: Likewise.
	* coff-tic80.c: Likewise.
	* coff64-rs6000.c: Likewise.
	* coffcode.h: Likewise.
	* coffgen.c: Likewise.
	* cofflink.c: Likewise.
	* ecofflink.c: Likewise.
	* elf-hppa.h: Likewise.
	* elf.c: Likewise.
	* elf32-arm.h: Likewise.
	* elf32-cris.c: Likewise.
	* elf32-gen.c: Likewise.
	* elf32-hppa.c: Likewise.
	* elf32-i370.c: Likewise.
	* elf32-i386.c: Likewise.
	* elf32-m32r.c: Likewise.
	* elf32-mcore.c: Likewise.
	* elf32-mips.c: Likewise.
	* elf32-ppc.c: Likewise.
	* elf32-s390.c: Likewise.
	* elf32-sh.c: Likewise.
	* elf32-sparc.c: Likewise.
	* elf32-v850.c: Likewise.
	* elf64-alpha.c: Likewise.
	* elf64-gen.c: Likewise.
	* elf64-ppc.c: Likewise.
	* elf64-s390.c: Likewise.
	* elf64-sparc.c: Likewise.
	* elf64-x86-64.c: Likewise.
	* elflink.h: Likewise.
	* elfxx-ia64.c: Likewise.
	* ieee.c: Likewise.
	* ihex.c: Likewise.
	* libbfd.c: Likewise.
	* pdp11.c: Likewise.
	* pe-mips.c: Likewise.
	* peicode.h: Likewise.
	* srec.c: Likewise.
	* xcofflink.c: Likewise.

	* elf32-arm.h: Make _bfd_error_handler calls K&R compatible.

	* elflink.c (_bfd_elf_create_linker_section): Better grammar for
	error message.

	* coff-mcore.c (coff_mcore_relocate_section): Internalionalise
	error message.

	* elf64-sparc.c (sparc64_elf_add_symbol_hook): Constify stt_types.
	Consolidate error messages, and split long messages to two lines.
2001-09-20 23:30:37 +00:00

6135 lines
174 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* POWER/PowerPC XCOFF linker support.
Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001
Free Software Foundation, Inc.
Written by Ian Lance Taylor <ian@cygnus.com>, Cygnus Support.
This file is part of BFD, the Binary File Descriptor library.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
#include "bfd.h"
#include "sysdep.h"
#include "bfdlink.h"
#include "libbfd.h"
#include "coff/internal.h"
#include "coff/xcoff.h"
#include "libcoff.h"
#include "libxcoff.h"
/* This file holds the XCOFF linker code. */
#define STRING_SIZE_SIZE (4)
/* We reuse the SEC_ROM flag as a mark flag for garbage collection.
This flag will only be used on input sections. */
#define SEC_MARK (SEC_ROM)
/* The list of import files. */
struct xcoff_import_file
{
/* The next entry in the list. */
struct xcoff_import_file *next;
/* The path. */
const char *path;
/* The file name. */
const char *file;
/* The member name. */
const char *member;
};
/* Information we keep for each section in the output file during the
final link phase. */
struct xcoff_link_section_info
{
/* The relocs to be output. */
struct internal_reloc *relocs;
/* For each reloc against a global symbol whose index was not known
when the reloc was handled, the global hash table entry. */
struct xcoff_link_hash_entry **rel_hashes;
/* If there is a TOC relative reloc against a global symbol, and the
index of the TOC symbol is not known when the reloc was handled,
an entry is added to this linked list. This is not an array,
like rel_hashes, because this case is quite uncommon. */
struct xcoff_toc_rel_hash {
struct xcoff_toc_rel_hash *next;
struct xcoff_link_hash_entry *h;
struct internal_reloc *rel;
} *toc_rel_hashes;
};
/* Information that we pass around while doing the final link step. */
struct xcoff_final_link_info
{
/* General link information. */
struct bfd_link_info *info;
/* Output BFD. */
bfd *output_bfd;
/* Hash table for long symbol names. */
struct bfd_strtab_hash *strtab;
/* Array of information kept for each output section, indexed by the
target_index field. */
struct xcoff_link_section_info *section_info;
/* Symbol index of last C_FILE symbol (-1 if none). */
long last_file_index;
/* Contents of last C_FILE symbol. */
struct internal_syment last_file;
/* Symbol index of TOC symbol. */
long toc_symindx;
/* Start of .loader symbols. */
bfd_byte *ldsym;
/* Next .loader reloc to swap out. */
bfd_byte *ldrel;
/* File position of start of line numbers. */
file_ptr line_filepos;
/* Buffer large enough to hold swapped symbols of any input file. */
struct internal_syment *internal_syms;
/* Buffer large enough to hold output indices of symbols of any
input file. */
long *sym_indices;
/* Buffer large enough to hold output symbols for any input file. */
bfd_byte *outsyms;
/* Buffer large enough to hold external line numbers for any input
section. */
bfd_byte *linenos;
/* Buffer large enough to hold any input section. */
bfd_byte *contents;
/* Buffer large enough to hold external relocs of any input section. */
bfd_byte *external_relocs;
};
static struct bfd_hash_entry *xcoff_link_hash_newfunc
PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
static boolean xcoff_get_section_contents PARAMS ((bfd *, asection *));
static struct internal_reloc *xcoff_read_internal_relocs
PARAMS ((bfd *, asection *, boolean, bfd_byte *, boolean,
struct internal_reloc *));
static boolean xcoff_link_add_object_symbols
PARAMS ((bfd *, struct bfd_link_info *));
static boolean xcoff_link_check_archive_element
PARAMS ((bfd *, struct bfd_link_info *, boolean *));
static boolean xcoff_link_check_ar_symbols
PARAMS ((bfd *, struct bfd_link_info *, boolean *));
static boolean xcoff_link_check_dynamic_ar_symbols
PARAMS ((bfd *, struct bfd_link_info *, boolean *));
static bfd_size_type xcoff_find_reloc
PARAMS ((struct internal_reloc *, bfd_size_type, bfd_vma));
static boolean xcoff_link_add_symbols PARAMS ((bfd *, struct bfd_link_info *));
static boolean xcoff_link_add_dynamic_symbols
PARAMS ((bfd *, struct bfd_link_info *));
static boolean xcoff_mark_symbol
PARAMS ((struct bfd_link_info *, struct xcoff_link_hash_entry *));
static boolean xcoff_mark PARAMS ((struct bfd_link_info *, asection *));
static void xcoff_sweep PARAMS ((struct bfd_link_info *));
static boolean xcoff_build_ldsyms
PARAMS ((struct xcoff_link_hash_entry *, PTR));
static boolean xcoff_link_input_bfd
PARAMS ((struct xcoff_final_link_info *, bfd *));
static boolean xcoff_write_global_symbol
PARAMS ((struct xcoff_link_hash_entry *, PTR));
static boolean xcoff_reloc_link_order
PARAMS ((bfd *, struct xcoff_final_link_info *, asection *,
struct bfd_link_order *));
static int xcoff_sort_relocs PARAMS ((const PTR, const PTR));
/* Routines to read XCOFF dynamic information. This don't really
belong here, but we already have the ldsym manipulation routines
here. */
/* Read the contents of a section. */
static boolean
xcoff_get_section_contents (abfd, sec)
bfd *abfd;
asection *sec;
{
if (coff_section_data (abfd, sec) == NULL)
{
bfd_size_type amt = sizeof (struct coff_section_tdata);
sec->used_by_bfd = bfd_zalloc (abfd, amt);
if (sec->used_by_bfd == NULL)
return false;
}
if (coff_section_data (abfd, sec)->contents == NULL)
{
coff_section_data (abfd, sec)->contents = ((bfd_byte *)
bfd_malloc (sec->_raw_size));
if (coff_section_data (abfd, sec)->contents == NULL)
return false;
if (! bfd_get_section_contents (abfd, sec,
coff_section_data (abfd, sec)->contents,
(file_ptr) 0, sec->_raw_size))
return false;
}
return true;
}
/* Get the size required to hold the dynamic symbols. */
long
_bfd_xcoff_get_dynamic_symtab_upper_bound (abfd)
bfd *abfd;
{
asection *lsec;
bfd_byte *contents;
struct internal_ldhdr ldhdr;
if ((abfd->flags & DYNAMIC) == 0)
{
bfd_set_error (bfd_error_invalid_operation);
return -1;
}
lsec = bfd_get_section_by_name (abfd, ".loader");
if (lsec == NULL)
{
bfd_set_error (bfd_error_no_symbols);
return -1;
}
if (! xcoff_get_section_contents (abfd, lsec))
return -1;
contents = coff_section_data (abfd, lsec)->contents;
bfd_xcoff_swap_ldhdr_in (abfd, (PTR) contents, &ldhdr);
return (ldhdr.l_nsyms + 1) * sizeof (asymbol *);
}
/* Get the dynamic symbols. */
long
_bfd_xcoff_canonicalize_dynamic_symtab (abfd, psyms)
bfd *abfd;
asymbol **psyms;
{
asection *lsec;
bfd_byte *contents;
struct internal_ldhdr ldhdr;
const char *strings;
bfd_byte *elsym, *elsymend;
coff_symbol_type *symbuf;
if ((abfd->flags & DYNAMIC) == 0)
{
bfd_set_error (bfd_error_invalid_operation);
return -1;
}
lsec = bfd_get_section_by_name (abfd, ".loader");
if (lsec == NULL)
{
bfd_set_error (bfd_error_no_symbols);
return -1;
}
if (! xcoff_get_section_contents (abfd, lsec))
return -1;
contents = coff_section_data (abfd, lsec)->contents;
coff_section_data (abfd, lsec)->keep_contents = true;
bfd_xcoff_swap_ldhdr_in (abfd, contents, &ldhdr);
strings = (char *) contents + ldhdr.l_stoff;
symbuf = ((coff_symbol_type *)
bfd_zalloc (abfd, ldhdr.l_nsyms * sizeof (coff_symbol_type)));
if (symbuf == NULL)
return -1;
elsym = contents + bfd_xcoff_loader_symbol_offset(abfd, &ldhdr);
elsymend = elsym + ldhdr.l_nsyms * bfd_xcoff_ldsymsz(abfd);
for (; elsym < elsymend; elsym += bfd_xcoff_ldsymsz(abfd), symbuf++, psyms++)
{
struct internal_ldsym ldsym;
bfd_xcoff_swap_ldsym_in (abfd, elsym, &ldsym);
symbuf->symbol.the_bfd = abfd;
if (ldsym._l._l_l._l_zeroes == 0)
symbuf->symbol.name = strings + ldsym._l._l_l._l_offset;
else
{
char *c;
c = bfd_alloc (abfd, (bfd_size_type) SYMNMLEN + 1);
if (c == NULL)
return -1;
memcpy (c, ldsym._l._l_name, SYMNMLEN);
c[SYMNMLEN] = '\0';
symbuf->symbol.name = c;
}
if (ldsym.l_smclas == XMC_XO)
symbuf->symbol.section = bfd_abs_section_ptr;
else
symbuf->symbol.section = coff_section_from_bfd_index (abfd,
ldsym.l_scnum);
symbuf->symbol.value = ldsym.l_value - symbuf->symbol.section->vma;
symbuf->symbol.flags = BSF_NO_FLAGS;
if ((ldsym.l_smtype & L_EXPORT) != 0)
symbuf->symbol.flags |= BSF_GLOBAL;
/* FIXME: We have no way to record the other information stored
with the loader symbol. */
*psyms = (asymbol *) symbuf;
}
*psyms = NULL;
return ldhdr.l_nsyms;
}
/* Get the size required to hold the dynamic relocs. */
long
_bfd_xcoff_get_dynamic_reloc_upper_bound (abfd)
bfd *abfd;
{
asection *lsec;
bfd_byte *contents;
struct internal_ldhdr ldhdr;
if ((abfd->flags & DYNAMIC) == 0)
{
bfd_set_error (bfd_error_invalid_operation);
return -1;
}
lsec = bfd_get_section_by_name (abfd, ".loader");
if (lsec == NULL)
{
bfd_set_error (bfd_error_no_symbols);
return -1;
}
if (! xcoff_get_section_contents (abfd, lsec))
return -1;
contents = coff_section_data (abfd, lsec)->contents;
bfd_xcoff_swap_ldhdr_in (abfd, (struct external_ldhdr *) contents, &ldhdr);
return (ldhdr.l_nreloc + 1) * sizeof (arelent *);
}
/* Get the dynamic relocs. */
long
_bfd_xcoff_canonicalize_dynamic_reloc (abfd, prelocs, syms)
bfd *abfd;
arelent **prelocs;
asymbol **syms;
{
asection *lsec;
bfd_byte *contents;
struct internal_ldhdr ldhdr;
arelent *relbuf;
bfd_byte *elrel, *elrelend;
if ((abfd->flags & DYNAMIC) == 0)
{
bfd_set_error (bfd_error_invalid_operation);
return -1;
}
lsec = bfd_get_section_by_name (abfd, ".loader");
if (lsec == NULL)
{
bfd_set_error (bfd_error_no_symbols);
return -1;
}
if (! xcoff_get_section_contents (abfd, lsec))
return -1;
contents = coff_section_data (abfd, lsec)->contents;
bfd_xcoff_swap_ldhdr_in (abfd, contents, &ldhdr);
relbuf = (arelent *) bfd_alloc (abfd, ldhdr.l_nreloc * sizeof (arelent));
if (relbuf == NULL)
return -1;
elrel = contents + bfd_xcoff_loader_reloc_offset(abfd, &ldhdr);
elrelend = elrel + ldhdr.l_nreloc * bfd_xcoff_ldrelsz(abfd);
for (; elrel < elrelend; elrel += bfd_xcoff_ldrelsz(abfd), relbuf++,
prelocs++)
{
struct internal_ldrel ldrel;
bfd_xcoff_swap_ldrel_in (abfd, elrel, &ldrel);
if (ldrel.l_symndx >= 3)
relbuf->sym_ptr_ptr = syms + (ldrel.l_symndx - 3);
else
{
const char *name;
asection *sec;
switch (ldrel.l_symndx)
{
case 0:
name = ".text";
break;
case 1:
name = ".data";
break;
case 2:
name = ".bss";
break;
default:
abort ();
break;
}
sec = bfd_get_section_by_name (abfd, name);
if (sec == NULL)
{
bfd_set_error (bfd_error_bad_value);
return -1;
}
relbuf->sym_ptr_ptr = sec->symbol_ptr_ptr;
}
relbuf->address = ldrel.l_vaddr;
relbuf->addend = 0;
/* Most dynamic relocs have the same type. FIXME: This is only
correct if ldrel.l_rtype == 0. In other cases, we should use
a different howto. */
relbuf->howto = bfd_xcoff_dynamic_reloc_howto(abfd);
/* FIXME: We have no way to record the l_rsecnm field. */
*prelocs = relbuf;
}
*prelocs = NULL;
return ldhdr.l_nreloc;
}
/* Routine to create an entry in an XCOFF link hash table. */
static struct bfd_hash_entry *
xcoff_link_hash_newfunc (entry, table, string)
struct bfd_hash_entry *entry;
struct bfd_hash_table *table;
const char *string;
{
struct xcoff_link_hash_entry *ret = (struct xcoff_link_hash_entry *) entry;
/* Allocate the structure if it has not already been allocated by a
subclass. */
if (ret == (struct xcoff_link_hash_entry *) NULL)
ret = ((struct xcoff_link_hash_entry *)
bfd_hash_allocate (table, sizeof (struct xcoff_link_hash_entry)));
if (ret == (struct xcoff_link_hash_entry *) NULL)
return (struct bfd_hash_entry *) ret;
/* Call the allocation method of the superclass. */
ret = ((struct xcoff_link_hash_entry *)
_bfd_link_hash_newfunc ((struct bfd_hash_entry *) ret,
table, string));
if (ret != NULL)
{
/* Set local fields. */
ret->indx = -1;
ret->toc_section = NULL;
ret->u.toc_indx = -1;
ret->descriptor = NULL;
ret->ldsym = NULL;
ret->ldindx = -1;
ret->flags = 0;
ret->smclas = XMC_UA;
}
return (struct bfd_hash_entry *) ret;
}
/* Create a XCOFF link hash table. */
struct bfd_link_hash_table *
_bfd_xcoff_bfd_link_hash_table_create (abfd)
bfd *abfd;
{
struct xcoff_link_hash_table *ret;
bfd_size_type amt = sizeof (struct xcoff_link_hash_table);
ret = (struct xcoff_link_hash_table *) bfd_alloc (abfd, amt);
if (ret == (struct xcoff_link_hash_table *) NULL)
return (struct bfd_link_hash_table *) NULL;
if (! _bfd_link_hash_table_init (&ret->root, abfd, xcoff_link_hash_newfunc))
{
bfd_release (abfd, ret);
return (struct bfd_link_hash_table *) NULL;
}
ret->debug_strtab = _bfd_xcoff_stringtab_init ();
ret->debug_section = NULL;
ret->loader_section = NULL;
ret->ldrel_count = 0;
memset (&ret->ldhdr, 0, sizeof (struct internal_ldhdr));
ret->linkage_section = NULL;
ret->toc_section = NULL;
ret->descriptor_section = NULL;
ret->imports = NULL;
ret->file_align = 0;
ret->textro = false;
ret->gc = false;
memset (ret->special_sections, 0, sizeof ret->special_sections);
/* The linker will always generate a full a.out header. We need to
record that fact now, before the sizeof_headers routine could be
called. */
xcoff_data (abfd)->full_aouthdr = true;
return &ret->root;
}
/* Read internal relocs for an XCOFF csect. This is a wrapper around
_bfd_coff_read_internal_relocs which tries to take advantage of any
relocs which may have been cached for the enclosing section. */
static struct internal_reloc *
xcoff_read_internal_relocs (abfd, sec, cache, external_relocs,
require_internal, internal_relocs)
bfd *abfd;
asection *sec;
boolean cache;
bfd_byte *external_relocs;
boolean require_internal;
struct internal_reloc *internal_relocs;
{
if (coff_section_data (abfd, sec) != NULL
&& coff_section_data (abfd, sec)->relocs == NULL
&& xcoff_section_data (abfd, sec) != NULL)
{
asection *enclosing;
enclosing = xcoff_section_data (abfd, sec)->enclosing;
if (enclosing != NULL
&& (coff_section_data (abfd, enclosing) == NULL
|| coff_section_data (abfd, enclosing)->relocs == NULL)
&& cache
&& enclosing->reloc_count > 0)
{
if (_bfd_coff_read_internal_relocs (abfd, enclosing, true,
external_relocs, false,
(struct internal_reloc *) NULL)
== NULL)
return NULL;
}
if (enclosing != NULL
&& coff_section_data (abfd, enclosing) != NULL
&& coff_section_data (abfd, enclosing)->relocs != NULL)
{
size_t off;
off = ((sec->rel_filepos - enclosing->rel_filepos)
/ bfd_coff_relsz (abfd));
if (! require_internal)
return coff_section_data (abfd, enclosing)->relocs + off;
memcpy (internal_relocs,
coff_section_data (abfd, enclosing)->relocs + off,
sec->reloc_count * sizeof (struct internal_reloc));
return internal_relocs;
}
}
return _bfd_coff_read_internal_relocs (abfd, sec, cache, external_relocs,
require_internal, internal_relocs);
}
/* Given an XCOFF BFD, add symbols to the global hash table as
appropriate. */
boolean
_bfd_xcoff_bfd_link_add_symbols (abfd, info)
bfd *abfd;
struct bfd_link_info *info;
{
switch (bfd_get_format (abfd))
{
case bfd_object:
return xcoff_link_add_object_symbols (abfd, info);
case bfd_archive:
/* If the archive has a map, do the usual search. We then need
to check the archive for stripped dynamic objects, because
they will not appear in the archive map even though they
should, perhaps, be included. If the archive has no map, we
just consider each object file in turn, since that apparently
is what the AIX native linker does. */
if (bfd_has_map (abfd))
{
if (! (_bfd_generic_link_add_archive_symbols
(abfd, info, xcoff_link_check_archive_element)))
return false;
}
{
bfd *member;
member = bfd_openr_next_archived_file (abfd, (bfd *) NULL);
while (member != NULL)
{
if (bfd_check_format (member, bfd_object)
&& (! bfd_has_map (abfd)
|| ((member->flags & DYNAMIC) != 0
&& (member->flags & HAS_SYMS) == 0)))
{
boolean needed;
if (! xcoff_link_check_archive_element (member, info, &needed))
return false;
if (needed)
member->archive_pass = -1;
}
member = bfd_openr_next_archived_file (abfd, member);
}
}
return true;
default:
bfd_set_error (bfd_error_wrong_format);
return false;
}
}
/* Add symbols from an XCOFF object file. */
static boolean
xcoff_link_add_object_symbols (abfd, info)
bfd *abfd;
struct bfd_link_info *info;
{
if (! _bfd_coff_get_external_symbols (abfd))
return false;
if (! xcoff_link_add_symbols (abfd, info))
return false;
if (! info->keep_memory)
{
if (! _bfd_coff_free_symbols (abfd))
return false;
}
return true;
}
/* Check a single archive element to see if we need to include it in
the link. *PNEEDED is set according to whether this element is
needed in the link or not. This is called via
_bfd_generic_link_add_archive_symbols. */
static boolean
xcoff_link_check_archive_element (abfd, info, pneeded)
bfd *abfd;
struct bfd_link_info *info;
boolean *pneeded;
{
if (! _bfd_coff_get_external_symbols (abfd))
return false;
if (! xcoff_link_check_ar_symbols (abfd, info, pneeded))
return false;
if (*pneeded)
{
if (! xcoff_link_add_symbols (abfd, info))
return false;
}
if (! info->keep_memory || ! *pneeded)
{
if (! _bfd_coff_free_symbols (abfd))
return false;
}
return true;
}
/* Look through the symbols to see if this object file should be
included in the link. */
static boolean
xcoff_link_check_ar_symbols (abfd, info, pneeded)
bfd *abfd;
struct bfd_link_info *info;
boolean *pneeded;
{
bfd_size_type symesz;
bfd_byte *esym;
bfd_byte *esym_end;
*pneeded = false;
if ((abfd->flags & DYNAMIC) != 0
&& ! info->static_link
&& info->hash->creator == abfd->xvec)
return xcoff_link_check_dynamic_ar_symbols (abfd, info, pneeded);
symesz = bfd_coff_symesz (abfd);
esym = (bfd_byte *) obj_coff_external_syms (abfd);
esym_end = esym + obj_raw_syment_count (abfd) * symesz;
while (esym < esym_end)
{
struct internal_syment sym;
bfd_coff_swap_sym_in (abfd, (PTR) esym, (PTR) &sym);
if (sym.n_sclass == C_EXT && sym.n_scnum != N_UNDEF)
{
const char *name;
char buf[SYMNMLEN + 1];
struct bfd_link_hash_entry *h;
/* This symbol is externally visible, and is defined by this
object file. */
name = _bfd_coff_internal_syment_name (abfd, &sym, buf);
if (name == NULL)
return false;
h = bfd_link_hash_lookup (info->hash, name, false, false, true);
/* We are only interested in symbols that are currently
undefined. If a symbol is currently known to be common,
XCOFF linkers do not bring in an object file which
defines it. We also don't bring in symbols to satisfy
undefined references in shared objects. */
if (h != (struct bfd_link_hash_entry *) NULL
&& h->type == bfd_link_hash_undefined
&& (info->hash->creator != abfd->xvec
|| (((struct xcoff_link_hash_entry *) h)->flags
& XCOFF_DEF_DYNAMIC) == 0))
{
if (! (*info->callbacks->add_archive_element) (info, abfd, name))
return false;
*pneeded = true;
return true;
}
}
esym += (sym.n_numaux + 1) * symesz;
}
/* We do not need this object file. */
return true;
}
/* Look through the loader symbols to see if this dynamic object
should be included in the link. The native linker uses the loader
symbols, not the normal symbol table, so we do too. */
static boolean
xcoff_link_check_dynamic_ar_symbols (abfd, info, pneeded)
bfd *abfd;
struct bfd_link_info *info;
boolean *pneeded;
{
asection *lsec;
bfd_byte *contents;
struct internal_ldhdr ldhdr;
const char *strings;
bfd_byte *elsym, *elsymend;
*pneeded = false;
lsec = bfd_get_section_by_name (abfd, ".loader");
if (lsec == NULL)
{
/* There are no symbols, so don't try to include it. */
return true;
}
if (! xcoff_get_section_contents (abfd, lsec))
return false;
contents = coff_section_data (abfd, lsec)->contents;
bfd_xcoff_swap_ldhdr_in (abfd, contents, &ldhdr);
strings = (char *) contents + ldhdr.l_stoff;
elsym = contents + bfd_xcoff_loader_symbol_offset(abfd, &ldhdr);
elsymend = elsym + ldhdr.l_nsyms * bfd_xcoff_ldsymsz(abfd);
for (; elsym < elsymend; elsym += bfd_xcoff_ldsymsz(abfd))
{
struct internal_ldsym ldsym;
char nambuf[SYMNMLEN + 1];
const char *name;
struct bfd_link_hash_entry *h;
bfd_xcoff_swap_ldsym_in (abfd, elsym, &ldsym);
/* We are only interested in exported symbols. */
if ((ldsym.l_smtype & L_EXPORT) == 0)
continue;
if (ldsym._l._l_l._l_zeroes == 0)
name = strings + ldsym._l._l_l._l_offset;
else
{
memcpy (nambuf, ldsym._l._l_name, SYMNMLEN);
nambuf[SYMNMLEN] = '\0';
name = nambuf;
}
h = bfd_link_hash_lookup (info->hash, name, false, false, true);
/* We are only interested in symbols that are currently
undefined. At this point we know that we are using an XCOFF
hash table. */
if (h != NULL
&& h->type == bfd_link_hash_undefined
&& (((struct xcoff_link_hash_entry *) h)->flags
& XCOFF_DEF_DYNAMIC) == 0)
{
if (! (*info->callbacks->add_archive_element) (info, abfd, name))
return false;
*pneeded = true;
return true;
}
}
/* We do not need this shared object. */
if (contents != NULL && ! coff_section_data (abfd, lsec)->keep_contents)
{
free (coff_section_data (abfd, lsec)->contents);
coff_section_data (abfd, lsec)->contents = NULL;
}
return true;
}
/* Returns the index of reloc in RELOCS with the least address greater
than or equal to ADDRESS. The relocs are sorted by address. */
static bfd_size_type
xcoff_find_reloc (relocs, count, address)
struct internal_reloc *relocs;
bfd_size_type count;
bfd_vma address;
{
bfd_size_type min, max, this;
if (count < 2)
{
if (count == 1 && relocs[0].r_vaddr < address)
return 1;
else
return 0;
}
min = 0;
max = count;
/* Do a binary search over (min,max]. */
while (min + 1 < max)
{
bfd_vma raddr;
this = (max + min) / 2;
raddr = relocs[this].r_vaddr;
if (raddr > address)
max = this;
else if (raddr < address)
min = this;
else
{
min = this;
break;
}
}
if (relocs[min].r_vaddr < address)
return min + 1;
while (min > 0
&& relocs[min - 1].r_vaddr == address)
--min;
return min;
}
/* xcoff_link_create_extra_sections
Takes care of creating the .loader, .gl, .ds, .debug and sections. */
static boolean
xcoff_link_create_extra_sections(bfd * abfd, struct bfd_link_info *info)
{
boolean return_value = false;
if (info->hash->creator == abfd->xvec)
{
/* We need to build a .loader section, so we do it here. This
won't work if we're producing an XCOFF output file with no
XCOFF input files. FIXME. */
if (xcoff_hash_table (info)->loader_section == NULL)
{
asection *lsec;
lsec = bfd_make_section_anyway (abfd, ".loader");
if (lsec == NULL)
{
goto end_return;
}
xcoff_hash_table (info)->loader_section = lsec;
lsec->flags |= SEC_HAS_CONTENTS | SEC_IN_MEMORY;
}
/* Likewise for the linkage section. */
if (xcoff_hash_table (info)->linkage_section == NULL)
{
asection *lsec;
lsec = bfd_make_section_anyway (abfd, ".gl");
if (lsec == NULL)
{
goto end_return;
}
xcoff_hash_table (info)->linkage_section = lsec;
lsec->flags |= (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
| SEC_IN_MEMORY);
lsec->alignment_power = 2;
}
/* Likewise for the TOC section. */
if (xcoff_hash_table (info)->toc_section == NULL)
{
asection *tsec;
tsec = bfd_make_section_anyway (abfd, ".tc");
if (tsec == NULL)
{
goto end_return;
}
xcoff_hash_table (info)->toc_section = tsec;
tsec->flags |= (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
| SEC_IN_MEMORY);
tsec->alignment_power = 2;
}
/* Likewise for the descriptor section. */
if (xcoff_hash_table (info)->descriptor_section == NULL)
{
asection *dsec;
dsec = bfd_make_section_anyway (abfd, ".ds");
if (dsec == NULL)
{
goto end_return;
}
xcoff_hash_table (info)->descriptor_section = dsec;
dsec->flags |= (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
| SEC_IN_MEMORY);
dsec->alignment_power = 2;
}
/* Likewise for the .debug section. */
if (xcoff_hash_table (info)->debug_section == NULL
&& info->strip != strip_all)
{
asection *dsec;
dsec = bfd_make_section_anyway (abfd, ".debug");
if (dsec == NULL)
{
goto end_return;
}
xcoff_hash_table (info)->debug_section = dsec;
dsec->flags |= SEC_HAS_CONTENTS | SEC_IN_MEMORY;
}
}
return_value = true;
end_return:
return return_value;
}
/* Add all the symbols from an object file to the hash table.
XCOFF is a weird format. A normal XCOFF .o files will have three
COFF sections--.text, .data, and .bss--but each COFF section will
contain many csects. These csects are described in the symbol
table. From the linker's point of view, each csect must be
considered a section in its own right. For example, a TOC entry is
handled as a small XMC_TC csect. The linker must be able to merge
different TOC entries together, which means that it must be able to
extract the XMC_TC csects from the .data section of the input .o
file.
From the point of view of our linker, this is, of course, a hideous
nightmare. We cope by actually creating sections for each csect,
and discarding the original sections. We then have to handle the
relocation entries carefully, since the only way to tell which
csect they belong to is to examine the address. */
static boolean
xcoff_link_add_symbols (abfd, info)
bfd *abfd;
struct bfd_link_info *info;
{
unsigned int n_tmask;
unsigned int n_btshft;
boolean default_copy;
bfd_size_type symcount;
struct xcoff_link_hash_entry **sym_hash;
asection **csect_cache;
bfd_size_type linesz;
asection *o;
asection *last_real;
boolean keep_syms;
asection *csect;
unsigned int csect_index;
asection *first_csect;
bfd_size_type symesz;
bfd_byte *esym;
bfd_byte *esym_end;
struct reloc_info_struct
{
struct internal_reloc *relocs;
asection **csects;
bfd_byte *linenos;
} *reloc_info = NULL;
bfd_size_type amt;
keep_syms = obj_coff_keep_syms (abfd);
if ((abfd->flags & DYNAMIC) != 0
&& ! info->static_link)
{
if (! xcoff_link_add_dynamic_symbols (abfd, info))
{
return false;
}
}
/* create the loader, toc, gl, ds and debug sections, if needed */
if (false == xcoff_link_create_extra_sections(abfd, info))
{
goto error_return;
}
if ((abfd->flags & DYNAMIC) != 0
&& ! info->static_link)
return true;
n_tmask = coff_data (abfd)->local_n_tmask;
n_btshft = coff_data (abfd)->local_n_btshft;
/* Define macros so that ISFCN, et. al., macros work correctly. */
#define N_TMASK n_tmask
#define N_BTSHFT n_btshft
if (info->keep_memory)
default_copy = false;
else
default_copy = true;
symcount = obj_raw_syment_count (abfd);
/* We keep a list of the linker hash table entries that correspond
to each external symbol. */
amt = symcount * sizeof (struct xcoff_link_hash_entry *);
sym_hash = (struct xcoff_link_hash_entry **) bfd_alloc (abfd, amt);
if (sym_hash == NULL && symcount != 0)
goto error_return;
coff_data (abfd)->sym_hashes = (struct coff_link_hash_entry **) sym_hash;
memset (sym_hash, 0, (size_t) amt);
/* Because of the weird stuff we are doing with XCOFF csects, we can
not easily determine which section a symbol is in, so we store
the information in the tdata for the input file. */
amt = symcount * sizeof (asection *);
csect_cache = (asection **) bfd_alloc (abfd, amt);
if (csect_cache == NULL && symcount != 0)
goto error_return;
xcoff_data (abfd)->csects = csect_cache;
memset (csect_cache, 0, (size_t) amt);
/* While splitting sections into csects, we need to assign the
relocs correctly. The relocs and the csects must both be in
order by VMA within a given section, so we handle this by
scanning along the relocs as we process the csects. We index
into reloc_info using the section target_index. */
amt = abfd->section_count + 1;
amt *= sizeof (struct reloc_info_struct);
reloc_info = (struct reloc_info_struct *) bfd_malloc (amt);
if (reloc_info == NULL)
goto error_return;
memset ((PTR) reloc_info, 0, (size_t) amt);
/* Read in the relocs and line numbers for each section. */
linesz = bfd_coff_linesz (abfd);
last_real = NULL;
for (o = abfd->sections; o != NULL; o = o->next)
{
last_real = o;
if ((o->flags & SEC_RELOC) != 0)
{
reloc_info[o->target_index].relocs =
xcoff_read_internal_relocs (abfd, o, true, (bfd_byte *) NULL,
false, (struct internal_reloc *) NULL);
amt = o->reloc_count;
amt *= sizeof (asection *);
reloc_info[o->target_index].csects = (asection **) bfd_malloc (amt);
if (reloc_info[o->target_index].csects == NULL)
goto error_return;
memset (reloc_info[o->target_index].csects, 0, (size_t) amt);
}
if ((info->strip == strip_none || info->strip == strip_some)
&& o->lineno_count > 0)
{
bfd_byte *linenos;
amt = linesz * o->lineno_count;
linenos = (bfd_byte *) bfd_malloc (amt);
if (linenos == NULL)
goto error_return;
reloc_info[o->target_index].linenos = linenos;
if (bfd_seek (abfd, o->line_filepos, SEEK_SET) != 0
|| bfd_bread (linenos, amt, abfd) != amt)
goto error_return;
}
}
/* Don't let the linker relocation routines discard the symbols. */
obj_coff_keep_syms (abfd) = true;
csect = NULL;
csect_index = 0;
first_csect = NULL;
symesz = bfd_coff_symesz (abfd);
BFD_ASSERT (symesz == bfd_coff_auxesz (abfd));
esym = (bfd_byte *) obj_coff_external_syms (abfd);
esym_end = esym + symcount * symesz;
while (esym < esym_end)
{
struct internal_syment sym;
union internal_auxent aux;
const char *name;
char buf[SYMNMLEN + 1];
int smtyp;
flagword flags;
asection *section;
bfd_vma value;
struct xcoff_link_hash_entry *set_toc;
bfd_coff_swap_sym_in (abfd, (PTR) esym, (PTR) &sym);
/* In this pass we are only interested in symbols with csect
information. */
if (sym.n_sclass != C_EXT && sym.n_sclass != C_HIDEXT)
{
/* Set csect_cache,
Normally csect is a .pr, .rw etc. created in the loop
If C_FILE or first time, handle special
Advance esym, sym_hash, csect_hash ptr's
Keep track of the last_symndx for the current file. */
if (sym.n_sclass == C_FILE && csect != NULL)
{
xcoff_section_data (abfd, csect)->last_symndx =
((esym
- (bfd_byte *) obj_coff_external_syms (abfd))
/ symesz);
csect = NULL;
}
if (csect != NULL)
*csect_cache = csect;
else if (first_csect == NULL || sym.n_sclass == C_FILE)
*csect_cache = coff_section_from_bfd_index (abfd, sym.n_scnum);
else
*csect_cache = NULL;
esym += (sym.n_numaux + 1) * symesz;
sym_hash += sym.n_numaux + 1;
csect_cache += sym.n_numaux + 1;
continue;
}
name = _bfd_coff_internal_syment_name (abfd, &sym, buf);
if (name == NULL)
goto error_return;
/* If this symbol has line number information attached to it,
and we're not stripping it, count the number of entries and
add them to the count for this csect. In the final link pass
we are going to attach line number information by symbol,
rather than by section, in order to more easily handle
garbage collection. */
if ((info->strip == strip_none || info->strip == strip_some)
&& sym.n_numaux > 1
&& csect != NULL
&& ISFCN (sym.n_type))
{
union internal_auxent auxlin;
bfd_coff_swap_aux_in (abfd, (PTR) (esym + symesz),
sym.n_type, sym.n_sclass,
0, sym.n_numaux, (PTR) &auxlin);
if (auxlin.x_sym.x_fcnary.x_fcn.x_lnnoptr != 0)
{
asection *enclosing;
bfd_signed_vma linoff;
enclosing = xcoff_section_data (abfd, csect)->enclosing;
if (enclosing == NULL)
{
(*_bfd_error_handler)
(_("%s: `%s' has line numbers but no enclosing section"),
bfd_archive_filename (abfd), name);
bfd_set_error (bfd_error_bad_value);
goto error_return;
}
linoff = (auxlin.x_sym.x_fcnary.x_fcn.x_lnnoptr
- enclosing->line_filepos);
/* explict cast to bfd_signed_vma for compiler */
if (linoff < (bfd_signed_vma) (enclosing->lineno_count * linesz))
{
struct internal_lineno lin;
bfd_byte *linpstart;
linpstart = (reloc_info[enclosing->target_index].linenos
+ linoff);
bfd_coff_swap_lineno_in (abfd, (PTR) linpstart, (PTR) &lin);
if (lin.l_lnno == 0
&& ((bfd_size_type) lin.l_addr.l_symndx
== ((esym
- (bfd_byte *) obj_coff_external_syms (abfd))
/ symesz)))
{
bfd_byte *linpend, *linp;
linpend = (reloc_info[enclosing->target_index].linenos
+ enclosing->lineno_count * linesz);
for (linp = linpstart + linesz;
linp < linpend;
linp += linesz)
{
bfd_coff_swap_lineno_in (abfd, (PTR) linp,
(PTR) &lin);
if (lin.l_lnno == 0)
break;
}
csect->lineno_count += (linp - linpstart) / linesz;
/* The setting of line_filepos will only be
useful if all the line number entries for a
csect are contiguous; this only matters for
error reporting. */
if (csect->line_filepos == 0)
csect->line_filepos =
auxlin.x_sym.x_fcnary.x_fcn.x_lnnoptr;
}
}
}
}
/* Pick up the csect auxiliary information. */
if (sym.n_numaux == 0)
{
(*_bfd_error_handler)
(_("%s: class %d symbol `%s' has no aux entries"),
bfd_archive_filename (abfd), sym.n_sclass, name);
bfd_set_error (bfd_error_bad_value);
goto error_return;
}
bfd_coff_swap_aux_in (abfd,
(PTR) (esym + symesz * sym.n_numaux),
sym.n_type, sym.n_sclass,
sym.n_numaux - 1, sym.n_numaux,
(PTR) &aux);
smtyp = SMTYP_SMTYP (aux.x_csect.x_smtyp);
flags = BSF_GLOBAL;
section = NULL;
value = 0;
set_toc = NULL;
switch (smtyp)
{
default:
(*_bfd_error_handler)
(_("%s: symbol `%s' has unrecognized csect type %d"),
bfd_archive_filename (abfd), name, smtyp);
bfd_set_error (bfd_error_bad_value);
goto error_return;
case XTY_ER:
/* This is an external reference. */
if (sym.n_sclass == C_HIDEXT
|| sym.n_scnum != N_UNDEF
|| aux.x_csect.x_scnlen.l != 0)
{
(*_bfd_error_handler)
(_("%s: bad XTY_ER symbol `%s': class %d scnum %d scnlen %d"),
bfd_archive_filename (abfd), name, sym.n_sclass, sym.n_scnum,
aux.x_csect.x_scnlen.l);
bfd_set_error (bfd_error_bad_value);
goto error_return;
}
/* An XMC_XO external reference is actually a reference to
an absolute location. */
if (aux.x_csect.x_smclas != XMC_XO)
section = bfd_und_section_ptr;
else
{
section = bfd_abs_section_ptr;
value = sym.n_value;
}
break;
case XTY_SD:
/* This is a csect definition. */
if (csect != NULL)
{
xcoff_section_data (abfd, csect)->last_symndx =
((esym - (bfd_byte *) obj_coff_external_syms (abfd)) / symesz);
}
csect = NULL;
csect_index = -(unsigned) 1;
/* When we see a TOC anchor, we record the TOC value. */
if (aux.x_csect.x_smclas == XMC_TC0)
{
if (sym.n_sclass != C_HIDEXT
|| aux.x_csect.x_scnlen.l != 0)
{
(*_bfd_error_handler)
(_("%s: XMC_TC0 symbol `%s' is class %d scnlen %d"),
bfd_archive_filename (abfd), name, sym.n_sclass,
aux.x_csect.x_scnlen.l);
bfd_set_error (bfd_error_bad_value);
goto error_return;
}
xcoff_data (abfd)->toc = sym.n_value;
}
/* We must merge TOC entries for the same symbol. We can
merge two TOC entries if they are both C_HIDEXT, they
both have the same name, they are both 4 or 8 bytes long, and
they both have a relocation table entry for an external
symbol with the same name. Unfortunately, this means
that we must look through the relocations. Ick.
Logic for 32 bit vs 64 bit.
32 bit has a csect length of 4 for TOC
64 bit has a csect length of 8 for TOC
The conditions to get past the if-check are not that bad.
They are what is used to create the TOC csects in the first
place. */
if (aux.x_csect.x_smclas == XMC_TC
&& sym.n_sclass == C_HIDEXT
&& info->hash->creator == abfd->xvec
&& ((bfd_xcoff_is_xcoff32 (abfd)
&& aux.x_csect.x_scnlen.l == 4)
|| (bfd_xcoff_is_xcoff64 (abfd)
&& aux.x_csect.x_scnlen.l == 8)))
{
asection *enclosing;
struct internal_reloc *relocs;
bfd_size_type relindx;
struct internal_reloc *rel;
enclosing = coff_section_from_bfd_index (abfd, sym.n_scnum);
if (enclosing == NULL)
goto error_return;
relocs = reloc_info[enclosing->target_index].relocs;
amt = enclosing->reloc_count;
relindx = xcoff_find_reloc (relocs, amt, sym.n_value);
rel = relocs + relindx;
/* 32 bit R_POS r_size is 31
64 bit R_POS r_size is 63 */
if (relindx < enclosing->reloc_count
&& rel->r_vaddr == (bfd_vma) sym.n_value
&& rel->r_type == R_POS
&& ((bfd_xcoff_is_xcoff32 (abfd)
&& rel->r_size == 31)
|| (bfd_xcoff_is_xcoff64 (abfd)
&& rel->r_size == 63)))
{
bfd_byte *erelsym;
struct internal_syment relsym;
erelsym = ((bfd_byte *) obj_coff_external_syms (abfd)
+ rel->r_symndx * symesz);
bfd_coff_swap_sym_in (abfd, (PTR) erelsym, (PTR) &relsym);
if (relsym.n_sclass == C_EXT)
{
const char *relname;
char relbuf[SYMNMLEN + 1];
boolean copy;
struct xcoff_link_hash_entry *h;
/* At this point we know that the TOC entry is
for an externally visible symbol. */
relname = _bfd_coff_internal_syment_name (abfd, &relsym,
relbuf);
if (relname == NULL)
goto error_return;
/* We only merge TOC entries if the TC name is
the same as the symbol name. This handles
the normal case, but not common cases like
SYM.P4 which gcc generates to store SYM + 4
in the TOC. FIXME. */
if (strcmp (name, relname) == 0)
{
copy = (! info->keep_memory
|| relsym._n._n_n._n_zeroes != 0
|| relsym._n._n_n._n_offset == 0);
h = xcoff_link_hash_lookup (xcoff_hash_table (info),
relname, true, copy,
false);
if (h == NULL)
goto error_return;
/* At this point h->root.type could be
bfd_link_hash_new. That should be OK,
since we know for sure that we will come
across this symbol as we step through the
file. */
/* We store h in *sym_hash for the
convenience of the relocate_section
function. */
*sym_hash = h;
if (h->toc_section != NULL)
{
asection **rel_csects;
/* We already have a TOC entry for this
symbol, so we can just ignore this
one. */
rel_csects =
reloc_info[enclosing->target_index].csects;
rel_csects[relindx] = bfd_und_section_ptr;
break;
}
/* We are about to create a TOC entry for
this symbol. */
set_toc = h;
} /* merge toc reloc */
} /* c_ext */
} /* reloc */
} /* merge toc */
{
asection *enclosing;
/* We need to create a new section. We get the name from
the csect storage mapping class, so that the linker can
accumulate similar csects together. */
csect = bfd_xcoff_create_csect_from_smclas(abfd, &aux, name);
if (NULL == csect)
{
goto error_return;
}
/* The enclosing section is the main section : .data, .text
or .bss that the csect is coming from. */
enclosing = coff_section_from_bfd_index (abfd, sym.n_scnum);
if (enclosing == NULL)
goto error_return;
if (! bfd_is_abs_section (enclosing)
&& ((bfd_vma) sym.n_value < enclosing->vma
|| ((bfd_vma) sym.n_value + aux.x_csect.x_scnlen.l
> enclosing->vma + enclosing->_raw_size)))
{
(*_bfd_error_handler)
(_("%s: csect `%s' not in enclosing section"),
bfd_archive_filename (abfd), name);
bfd_set_error (bfd_error_bad_value);
goto error_return;
}
csect->vma = sym.n_value;
csect->filepos = (enclosing->filepos
+ sym.n_value
- enclosing->vma);
csect->_raw_size = aux.x_csect.x_scnlen.l;
csect->flags |= SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS;
csect->alignment_power = SMTYP_ALIGN (aux.x_csect.x_smtyp);
/* Record the enclosing section in the tdata for this new
section. */
amt = sizeof (struct coff_section_tdata);
csect->used_by_bfd = (PTR) bfd_zalloc (abfd, amt);
if (csect->used_by_bfd == NULL)
goto error_return;
amt = sizeof (struct xcoff_section_tdata);
coff_section_data (abfd, csect)->tdata = bfd_zalloc (abfd, amt);
if (coff_section_data (abfd, csect)->tdata == NULL)
goto error_return;
xcoff_section_data (abfd, csect)->enclosing = enclosing;
xcoff_section_data (abfd, csect)->lineno_count =
enclosing->lineno_count;
if (enclosing->owner == abfd)
{
struct internal_reloc *relocs;
bfd_size_type relindx;
struct internal_reloc *rel;
asection **rel_csect;
relocs = reloc_info[enclosing->target_index].relocs;
amt = enclosing->reloc_count;
relindx = xcoff_find_reloc (relocs, amt, csect->vma);
rel = relocs + relindx;
rel_csect = (reloc_info[enclosing->target_index].csects
+ relindx);
csect->rel_filepos = (enclosing->rel_filepos
+ relindx * bfd_coff_relsz (abfd));
while (relindx < enclosing->reloc_count
&& *rel_csect == NULL
&& rel->r_vaddr < csect->vma + csect->_raw_size)
{
*rel_csect = csect;
csect->flags |= SEC_RELOC;
++csect->reloc_count;
++relindx;
++rel;
++rel_csect;
}
}
/* There are a number of other fields and section flags
which we do not bother to set. */
csect_index = ((esym
- (bfd_byte *) obj_coff_external_syms (abfd))
/ symesz);
xcoff_section_data (abfd, csect)->first_symndx = csect_index;
if (first_csect == NULL)
first_csect = csect;
/* If this symbol is C_EXT, we treat it as starting at the
beginning of the newly created section. */
if (sym.n_sclass == C_EXT)
{
section = csect;
value = 0;
}
/* If this is a TOC section for a symbol, record it. */
if (set_toc != NULL)
set_toc->toc_section = csect;
}
break;
case XTY_LD:
/* This is a label definition. The x_scnlen field is the
symbol index of the csect. Usually the XTY_LD symbol will
follow its appropriate XTY_SD symbol. The .set pseudo op can
cause the XTY_LD to not follow the XTY_SD symbol. */
{
boolean bad;
bad = false;
if (aux.x_csect.x_scnlen.l < 0
|| (aux.x_csect.x_scnlen.l
>= esym - (bfd_byte *) obj_coff_external_syms (abfd)))
bad = true;
if (! bad)
{
section = xcoff_data (abfd)->csects[aux.x_csect.x_scnlen.l];
if (section == NULL
|| (section->flags & SEC_HAS_CONTENTS) == 0)
bad = true;
}
if (bad)
{
(*_bfd_error_handler)
(_("%s: misplaced XTY_LD `%s'"),
bfd_archive_filename (abfd), name);
bfd_set_error (bfd_error_bad_value);
goto error_return;
}
csect = section;
value = sym.n_value - csect->vma;
}
break;
case XTY_CM:
/* This is an unitialized csect. We could base the name on
the storage mapping class, but we don't bother except for
an XMC_TD symbol. If this csect is externally visible,
it is a common symbol. We put XMC_TD symbols in sections
named .tocbss, and rely on the linker script to put that
in the TOC area. */
if (csect != NULL)
{
xcoff_section_data (abfd, csect)->last_symndx =
((esym
- (bfd_byte *) obj_coff_external_syms (abfd))
/ symesz);
}
if (aux.x_csect.x_smclas == XMC_TD)
{
/* The linker script puts the .td section in the data
section after the .tc section. */
csect = bfd_make_section_anyway (abfd, ".td");
}
else
{
csect = bfd_make_section_anyway (abfd, ".bss");
}
if (csect == NULL)
goto error_return;
csect->vma = sym.n_value;
csect->_raw_size = aux.x_csect.x_scnlen.l;
csect->flags |= SEC_ALLOC;
csect->alignment_power = SMTYP_ALIGN (aux.x_csect.x_smtyp);
/* There are a number of other fields and section flags
which we do not bother to set. */
csect_index = ((esym
- (bfd_byte *) obj_coff_external_syms (abfd))
/ symesz);
amt = sizeof (struct coff_section_tdata);
csect->used_by_bfd = (PTR) bfd_zalloc (abfd, amt);
if (csect->used_by_bfd == NULL)
goto error_return;
amt = sizeof (struct xcoff_section_tdata);
coff_section_data (abfd, csect)->tdata = bfd_zalloc (abfd, amt);
if (coff_section_data (abfd, csect)->tdata == NULL)
goto error_return;
xcoff_section_data (abfd, csect)->first_symndx = csect_index;
if (first_csect == NULL)
first_csect = csect;
if (sym.n_sclass == C_EXT)
{
csect->flags |= SEC_IS_COMMON;
csect->_raw_size = 0;
section = csect;
value = aux.x_csect.x_scnlen.l;
}
break;
}
/* Check for magic symbol names. */
if ((smtyp == XTY_SD || smtyp == XTY_CM)
&& aux.x_csect.x_smclas != XMC_TC
&& aux.x_csect.x_smclas != XMC_TD)
{
int i = -1;
if (name[0] == '_')
{
if (strcmp (name, "_text") == 0)
i = XCOFF_SPECIAL_SECTION_TEXT;
else if (strcmp (name, "_etext") == 0)
i = XCOFF_SPECIAL_SECTION_ETEXT;
else if (strcmp (name, "_data") == 0)
i = XCOFF_SPECIAL_SECTION_DATA;
else if (strcmp (name, "_edata") == 0)
i = XCOFF_SPECIAL_SECTION_EDATA;
else if (strcmp (name, "_end") == 0)
i = XCOFF_SPECIAL_SECTION_END;
}
else if (name[0] == 'e' && strcmp (name, "end") == 0)
{
i = XCOFF_SPECIAL_SECTION_END2;
}
if (i != -1)
{
xcoff_hash_table (info)->special_sections[i] = csect;
}
}
/* Now we have enough information to add the symbol to the
linker hash table. */
if (sym.n_sclass == C_EXT)
{
boolean copy;
BFD_ASSERT (section != NULL);
/* We must copy the name into memory if we got it from the
syment itself, rather than the string table. */
copy = default_copy;
if (sym._n._n_n._n_zeroes != 0
|| sym._n._n_n._n_offset == 0)
copy = true;
/* The AIX linker appears to only detect multiple symbol
definitions when there is a reference to the symbol. If
a symbol is defined multiple times, and the only
references are from the same object file, the AIX linker
appears to permit it. It does not merge the different
definitions, but handles them independently. On the
other hand, if there is a reference, the linker reports
an error.
This matters because the AIX <net/net_globals.h> header
file actually defines an initialized array, so we have to
actually permit that to work.
Just to make matters even more confusing, the AIX linker
appears to permit multiple symbol definitions whenever
the second definition is in an archive rather than an
object file. This may be a consequence of the manner in
which it handles archives: I think it may load the entire
archive in as separate csects, and then let garbage
collection discard symbols.
We also have to handle the case of statically linking a
shared object, which will cause symbol redefinitions,
although this is an easier case to detect. */
if (info->hash->creator == abfd->xvec)
{
if (! bfd_is_und_section (section))
*sym_hash = xcoff_link_hash_lookup (xcoff_hash_table (info),
name, true, copy, false);
else
*sym_hash = ((struct xcoff_link_hash_entry *)
bfd_wrapped_link_hash_lookup (abfd, info, name,
true, copy, false));
if (*sym_hash == NULL)
goto error_return;
if (((*sym_hash)->root.type == bfd_link_hash_defined
|| (*sym_hash)->root.type == bfd_link_hash_defweak)
&& ! bfd_is_und_section (section)
&& ! bfd_is_com_section (section))
{
/* This is a second definition of a defined symbol. */
if ((abfd->flags & DYNAMIC) != 0
&& ((*sym_hash)->smclas != XMC_GL
|| aux.x_csect.x_smclas == XMC_GL
|| ((*sym_hash)->root.u.def.section->owner->flags
& DYNAMIC) == 0))
{
/* The new symbol is from a shared library, and
either the existing symbol is not global
linkage code or this symbol is global linkage
code. If the existing symbol is global
linkage code and the new symbol is not, then
we want to use the new symbol. */
section = bfd_und_section_ptr;
value = 0;
}
else if (((*sym_hash)->root.u.def.section->owner->flags
& DYNAMIC) != 0)
{
/* The existing symbol is from a shared library.
Replace it. */
(*sym_hash)->root.type = bfd_link_hash_undefined;
(*sym_hash)->root.u.undef.abfd =
(*sym_hash)->root.u.def.section->owner;
}
else if (abfd->my_archive != NULL)
{
/* This is a redefinition in an object contained
in an archive. Just ignore it. See the
comment above. */
section = bfd_und_section_ptr;
value = 0;
}
else if ((*sym_hash)->root.next != NULL
|| info->hash->undefs_tail == &(*sym_hash)->root)
{
/* This symbol has been referenced. In this
case, we just continue and permit the
multiple definition error. See the comment
above about the behaviour of the AIX linker. */
}
else if ((*sym_hash)->smclas == aux.x_csect.x_smclas)
{
/* The symbols are both csects of the same
class. There is at least a chance that this
is a semi-legitimate redefinition. */
section = bfd_und_section_ptr;
value = 0;
(*sym_hash)->flags |= XCOFF_MULTIPLY_DEFINED;
}
}
else if (((*sym_hash)->flags & XCOFF_MULTIPLY_DEFINED) != 0
&& ((*sym_hash)->root.type == bfd_link_hash_defined
|| (*sym_hash)->root.type == bfd_link_hash_defweak)
&& (bfd_is_und_section (section)
|| bfd_is_com_section (section)))
{
/* This is a reference to a multiply defined symbol.
Report the error now. See the comment above
about the behaviour of the AIX linker. We could
also do this with warning symbols, but I'm not
sure the XCOFF linker is wholly prepared to
handle them, and that would only be a warning,
not an error. */
if (! ((*info->callbacks->multiple_definition)
(info, (*sym_hash)->root.root.string,
(bfd *) NULL, (asection *) NULL, (bfd_vma) 0,
(*sym_hash)->root.u.def.section->owner,
(*sym_hash)->root.u.def.section,
(*sym_hash)->root.u.def.value)))
goto error_return;
/* Try not to give this error too many times. */
(*sym_hash)->flags &= ~XCOFF_MULTIPLY_DEFINED;
}
}
/* _bfd_generic_link_add_one_symbol may call the linker to
generate an error message, and the linker may try to read
the symbol table to give a good error. Right now, the
line numbers are in an inconsistent state, since they are
counted both in the real sections and in the new csects.
We need to leave the count in the real sections so that
the linker can report the line number of the error
correctly, so temporarily clobber the link to the csects
so that the linker will not try to read the line numbers
a second time from the csects. */
BFD_ASSERT (last_real->next == first_csect);
last_real->next = NULL;
if (! (_bfd_generic_link_add_one_symbol
(info, abfd, name, flags, section, value,
(const char *) NULL, copy, true,
(struct bfd_link_hash_entry **) sym_hash)))
goto error_return;
last_real->next = first_csect;
if (smtyp == XTY_CM)
{
if ((*sym_hash)->root.type != bfd_link_hash_common
|| (*sym_hash)->root.u.c.p->section != csect)
{
/* We don't need the common csect we just created. */
csect->_raw_size = 0;
}
else
{
(*sym_hash)->root.u.c.p->alignment_power
= csect->alignment_power;
}
}
if (info->hash->creator == abfd->xvec)
{
int flag;
if (smtyp == XTY_ER || smtyp == XTY_CM)
flag = XCOFF_REF_REGULAR;
else
flag = XCOFF_DEF_REGULAR;
(*sym_hash)->flags |= flag;
if ((*sym_hash)->smclas == XMC_UA
|| flag == XCOFF_DEF_REGULAR)
(*sym_hash)->smclas = aux.x_csect.x_smclas;
}
}
*csect_cache = csect;
esym += (sym.n_numaux + 1) * symesz;
sym_hash += sym.n_numaux + 1;
csect_cache += sym.n_numaux + 1;
}
BFD_ASSERT (last_real == NULL || last_real->next == first_csect);
/* Make sure that we have seen all the relocs. */
for (o = abfd->sections; o != first_csect; o = o->next)
{
/* Reset the section size and the line number count, since the
data is now attached to the csects. Don't reset the size of
the .debug section, since we need to read it below in
bfd_xcoff_size_dynamic_sections. */
if (strcmp (bfd_get_section_name (abfd, o), ".debug") != 0)
o->_raw_size = 0;
o->lineno_count = 0;
if ((o->flags & SEC_RELOC) != 0)
{
bfd_size_type i;
struct internal_reloc *rel;
asection **rel_csect;
rel = reloc_info[o->target_index].relocs;
rel_csect = reloc_info[o->target_index].csects;
for (i = 0; i < o->reloc_count; i++, rel++, rel_csect++)
{
if (*rel_csect == NULL)
{
(*_bfd_error_handler)
(_("%s: reloc %s:%d not in csect"),
bfd_archive_filename (abfd), o->name, i);
bfd_set_error (bfd_error_bad_value);
goto error_return;
}
/* We identify all symbols which are called, so that we
can create glue code for calls to functions imported
from dynamic objects. */
if (info->hash->creator == abfd->xvec
&& *rel_csect != bfd_und_section_ptr
&& (rel->r_type == R_BR
|| rel->r_type == R_RBR)
&& obj_xcoff_sym_hashes (abfd)[rel->r_symndx] != NULL)
{
struct xcoff_link_hash_entry *h;
h = obj_xcoff_sym_hashes (abfd)[rel->r_symndx];
h->flags |= XCOFF_CALLED;
/* If the symbol name starts with a period, it is
the code of a function. If the symbol is
currently undefined, then add an undefined symbol
for the function descriptor. This should do no
harm, because any regular object that defines the
function should also define the function
descriptor. It helps, because it means that we
will identify the function descriptor with a
dynamic object if a dynamic object defines it. */
if (h->root.root.string[0] == '.'
&& h->descriptor == NULL)
{
struct xcoff_link_hash_entry *hds;
hds = xcoff_link_hash_lookup (xcoff_hash_table (info),
h->root.root.string + 1,
true, false, true);
if (hds == NULL)
goto error_return;
if (hds->root.type == bfd_link_hash_new)
{
if (! (_bfd_generic_link_add_one_symbol
(info, abfd, hds->root.root.string,
(flagword) 0, bfd_und_section_ptr,
(bfd_vma) 0, (const char *) NULL, false,
true,
(struct bfd_link_hash_entry **) &hds)))
goto error_return;
}
hds->flags |= XCOFF_DESCRIPTOR;
BFD_ASSERT ((hds->flags & XCOFF_CALLED) == 0
&& (h->flags & XCOFF_DESCRIPTOR) == 0);
hds->descriptor = h;
h->descriptor = hds;
}
}
}
free (reloc_info[o->target_index].csects);
reloc_info[o->target_index].csects = NULL;
/* Reset SEC_RELOC and the reloc_count, since the reloc
information is now attached to the csects. */
o->flags &=~ SEC_RELOC;
o->reloc_count = 0;
/* If we are not keeping memory, free the reloc information. */
if (! info->keep_memory
&& coff_section_data (abfd, o) != NULL
&& coff_section_data (abfd, o)->relocs != NULL
&& ! coff_section_data (abfd, o)->keep_relocs)
{
free (coff_section_data (abfd, o)->relocs);
coff_section_data (abfd, o)->relocs = NULL;
}
}
/* Free up the line numbers. FIXME: We could cache these
somewhere for the final link, to avoid reading them again. */
if (reloc_info[o->target_index].linenos != NULL)
{
free (reloc_info[o->target_index].linenos);
reloc_info[o->target_index].linenos = NULL;
}
}
free (reloc_info);
obj_coff_keep_syms (abfd) = keep_syms;
return true;
error_return:
if (reloc_info != NULL)
{
for (o = abfd->sections; o != NULL; o = o->next)
{
if (reloc_info[o->target_index].csects != NULL)
free (reloc_info[o->target_index].csects);
if (reloc_info[o->target_index].linenos != NULL)
free (reloc_info[o->target_index].linenos);
}
free (reloc_info);
}
obj_coff_keep_syms (abfd) = keep_syms;
return false;
}
#undef N_TMASK
#undef N_BTSHFT
/* This function is used to add symbols from a dynamic object to the
global symbol table. */
static boolean
xcoff_link_add_dynamic_symbols (abfd, info)
bfd *abfd;
struct bfd_link_info *info;
{
asection *lsec;
bfd_byte *contents;
struct internal_ldhdr ldhdr;
const char *strings;
bfd_byte *elsym, *elsymend;
struct xcoff_import_file *n;
const char *bname;
const char *mname;
const char *s;
unsigned int c;
struct xcoff_import_file **pp;
/* We can only handle a dynamic object if we are generating an XCOFF
output file. */
if (info->hash->creator != abfd->xvec)
{
(*_bfd_error_handler)
(_("%s: XCOFF shared object when not producing XCOFF output"),
bfd_get_filename (abfd));
bfd_set_error (bfd_error_invalid_operation);
return false;
}
/* The symbols we use from a dynamic object are not the symbols in
the normal symbol table, but, rather, the symbols in the export
table. If there is a global symbol in a dynamic object which is
not in the export table, the loader will not be able to find it,
so we don't want to find it either. Also, on AIX 4.1.3, shr.o in
libc.a has symbols in the export table which are not in the
symbol table. */
/* Read in the .loader section. FIXME: We should really use the
o_snloader field in the a.out header, rather than grabbing the
section by name. */
lsec = bfd_get_section_by_name (abfd, ".loader");
if (lsec == NULL)
{
(*_bfd_error_handler)
(_("%s: dynamic object with no .loader section"),
bfd_get_filename (abfd));
bfd_set_error (bfd_error_no_symbols);
return false;
}
if (! xcoff_get_section_contents (abfd, lsec))
return false;
contents = coff_section_data (abfd, lsec)->contents;
/* Remove the sections from this object, so that they do not get
included in the link. */
abfd->sections = NULL;
bfd_xcoff_swap_ldhdr_in (abfd, contents, &ldhdr);
strings = (char *) contents + ldhdr.l_stoff;
elsym = contents + bfd_xcoff_loader_symbol_offset(abfd, &ldhdr);
elsymend = elsym + ldhdr.l_nsyms * bfd_xcoff_ldsymsz(abfd);
for (; elsym < elsymend; elsym += bfd_xcoff_ldsymsz(abfd))
{
struct internal_ldsym ldsym;
char nambuf[SYMNMLEN + 1];
const char *name;
struct xcoff_link_hash_entry *h;
bfd_xcoff_swap_ldsym_in (abfd, elsym, &ldsym);
/* We are only interested in exported symbols. */
if ((ldsym.l_smtype & L_EXPORT) == 0)
continue;
if (ldsym._l._l_l._l_zeroes == 0)
name = strings + ldsym._l._l_l._l_offset;
else
{
memcpy (nambuf, ldsym._l._l_name, SYMNMLEN);
nambuf[SYMNMLEN] = '\0';
name = nambuf;
}
/* Normally we could not call xcoff_link_hash_lookup in an add
symbols routine, since we might not be using an XCOFF hash
table. However, we verified above that we are using an XCOFF
hash table. */
h = xcoff_link_hash_lookup (xcoff_hash_table (info), name, true,
true, true);
if (h == NULL)
return false;
h->flags |= XCOFF_DEF_DYNAMIC;
/* If the symbol is undefined, and the BFD it was found in is
not a dynamic object, change the BFD to this dynamic object,
so that we can get the correct import file ID. */
if ((h->root.type == bfd_link_hash_undefined
|| h->root.type == bfd_link_hash_undefweak)
&& (h->root.u.undef.abfd == NULL
|| (h->root.u.undef.abfd->flags & DYNAMIC) == 0))
h->root.u.undef.abfd = abfd;
if (h->root.type == bfd_link_hash_new)
{
h->root.type = bfd_link_hash_undefined;
h->root.u.undef.abfd = abfd;
/* We do not want to add this to the undefined symbol list. */
}
if (h->smclas == XMC_UA
|| h->root.type == bfd_link_hash_undefined
|| h->root.type == bfd_link_hash_undefweak)
h->smclas = ldsym.l_smclas;
/* Unless this is an XMC_XO symbol, we don't bother to actually
define it, since we don't have a section to put it in anyhow.
Instead, the relocation routines handle the DEF_DYNAMIC flag
correctly. */
if (h->smclas == XMC_XO
&& (h->root.type == bfd_link_hash_undefined
|| h->root.type == bfd_link_hash_undefweak))
{
/* This symbol has an absolute value. */
h->root.type = bfd_link_hash_defined;
h->root.u.def.section = bfd_abs_section_ptr;
h->root.u.def.value = ldsym.l_value;
}
/* If this symbol defines a function descriptor, then it
implicitly defines the function code as well. */
if (h->smclas == XMC_DS
|| (h->smclas == XMC_XO && name[0] != '.'))
h->flags |= XCOFF_DESCRIPTOR;
if ((h->flags & XCOFF_DESCRIPTOR) != 0)
{
struct xcoff_link_hash_entry *hds;
hds = h->descriptor;
if (hds == NULL)
{
char *dsnm;
dsnm = bfd_malloc ((bfd_size_type) strlen (name) + 2);
if (dsnm == NULL)
return false;
dsnm[0] = '.';
strcpy (dsnm + 1, name);
hds = xcoff_link_hash_lookup (xcoff_hash_table (info), dsnm,
true, true, true);
free (dsnm);
if (hds == NULL)
return false;
if (hds->root.type == bfd_link_hash_new)
{
hds->root.type = bfd_link_hash_undefined;
hds->root.u.undef.abfd = abfd;
/* We do not want to add this to the undefined
symbol list. */
}
hds->descriptor = h;
h->descriptor = hds;
}
hds->flags |= XCOFF_DEF_DYNAMIC;
if (hds->smclas == XMC_UA)
hds->smclas = XMC_PR;
/* An absolute symbol appears to actually define code, not a
function descriptor. This is how some math functions are
implemented on AIX 4.1. */
if (h->smclas == XMC_XO
&& (hds->root.type == bfd_link_hash_undefined
|| hds->root.type == bfd_link_hash_undefweak))
{
hds->smclas = XMC_XO;
hds->root.type = bfd_link_hash_defined;
hds->root.u.def.section = bfd_abs_section_ptr;
hds->root.u.def.value = ldsym.l_value;
}
}
}
if (contents != NULL && ! coff_section_data (abfd, lsec)->keep_contents)
{
free (coff_section_data (abfd, lsec)->contents);
coff_section_data (abfd, lsec)->contents = NULL;
}
/* Record this file in the import files. */
n = ((struct xcoff_import_file *)
bfd_alloc (abfd, (bfd_size_type) sizeof (struct xcoff_import_file)));
if (n == NULL)
return false;
n->next = NULL;
/* For some reason, the path entry in the import file list for a
shared object appears to always be empty. The file name is the
base name. */
n->path = "";
if (abfd->my_archive == NULL)
{
bname = bfd_get_filename (abfd);
mname = "";
}
else
{
bname = bfd_get_filename (abfd->my_archive);
mname = bfd_get_filename (abfd);
}
s = strrchr (bname, '/');
if (s != NULL)
bname = s + 1;
n->file = bname;
n->member = mname;
/* We start c at 1 because the first import file number is reserved
for LIBPATH. */
for (pp = &xcoff_hash_table (info)->imports, c = 1;
*pp != NULL;
pp = &(*pp)->next, ++c)
;
*pp = n;
xcoff_data (abfd)->import_file_id = c;
return true;
}
/* Routines that are called after all the input files have been
handled, but before the sections are laid out in memory. */
/* Mark a symbol as not being garbage, including the section in which
it is defined. */
static INLINE boolean
xcoff_mark_symbol (info, h)
struct bfd_link_info *info;
struct xcoff_link_hash_entry *h;
{
if ((h->flags & XCOFF_MARK) != 0)
return true;
h->flags |= XCOFF_MARK;
if (h->root.type == bfd_link_hash_defined
|| h->root.type == bfd_link_hash_defweak)
{
asection *hsec;
hsec = h->root.u.def.section;
if (! bfd_is_abs_section (hsec)
&& (hsec->flags & SEC_MARK) == 0)
{
if (! xcoff_mark (info, hsec))
return false;
}
}
if (h->toc_section != NULL
&& (h->toc_section->flags & SEC_MARK) == 0)
{
if (! xcoff_mark (info, h->toc_section))
return false;
}
return true;
}
/* The mark phase of garbage collection. For a given section, mark
it, and all the sections which define symbols to which it refers.
Because this function needs to look at the relocs, we also count
the number of relocs which need to be copied into the .loader
section. */
static boolean
xcoff_mark (info, sec)
struct bfd_link_info *info;
asection *sec;
{
if (bfd_is_abs_section (sec)
|| (sec->flags & SEC_MARK) != 0)
return true;
sec->flags |= SEC_MARK;
if (sec->owner->xvec == info->hash->creator
&& coff_section_data (sec->owner, sec) != NULL
&& xcoff_section_data (sec->owner, sec) != NULL)
{
register struct xcoff_link_hash_entry **hp, **hpend;
struct internal_reloc *rel, *relend;
/* Mark all the symbols in this section. */
hp = (obj_xcoff_sym_hashes (sec->owner)
+ xcoff_section_data (sec->owner, sec)->first_symndx);
hpend = (obj_xcoff_sym_hashes (sec->owner)
+ xcoff_section_data (sec->owner, sec)->last_symndx);
for (; hp < hpend; hp++)
{
register struct xcoff_link_hash_entry *h;
h = *hp;
if (h != NULL
&& (h->flags & XCOFF_MARK) == 0)
{
if (! xcoff_mark_symbol (info, h))
return false;
}
}
/* Look through the section relocs. */
if ((sec->flags & SEC_RELOC) != 0
&& sec->reloc_count > 0)
{
rel = xcoff_read_internal_relocs (sec->owner, sec, true,
(bfd_byte *) NULL, false,
(struct internal_reloc *) NULL);
if (rel == NULL)
return false;
relend = rel + sec->reloc_count;
for (; rel < relend; rel++)
{
asection *rsec;
struct xcoff_link_hash_entry *h;
if ((unsigned int) rel->r_symndx
> obj_raw_syment_count (sec->owner))
continue;
h = obj_xcoff_sym_hashes (sec->owner)[rel->r_symndx];
if (h != NULL
&& (h->flags & XCOFF_MARK) == 0)
{
if (! xcoff_mark_symbol (info, h))
return false;
}
rsec = xcoff_data (sec->owner)->csects[rel->r_symndx];
if (rsec != NULL
&& (rsec->flags & SEC_MARK) == 0)
{
if (! xcoff_mark (info, rsec))
return false;
}
/* See if this reloc needs to be copied into the .loader
section. */
switch (rel->r_type)
{
default:
if (h == NULL
|| h->root.type == bfd_link_hash_defined
|| h->root.type == bfd_link_hash_defweak
|| h->root.type == bfd_link_hash_common
|| ((h->flags & XCOFF_CALLED) != 0
&& (h->root.type == bfd_link_hash_undefined
|| h->root.type == bfd_link_hash_undefweak)
&& h->root.root.string[0] == '.'
&& h->descriptor != NULL
&& ((h->descriptor->flags & XCOFF_DEF_DYNAMIC) != 0
|| ((h->descriptor->flags & XCOFF_IMPORT) != 0
&& (h->descriptor->flags
& XCOFF_DEF_REGULAR) == 0))))
break;
/* Fall through. */
case R_POS:
case R_NEG:
case R_RL:
case R_RLA:
++xcoff_hash_table (info)->ldrel_count;
if (h != NULL)
h->flags |= XCOFF_LDREL;
break;
case R_TOC:
case R_GL:
case R_TCL:
case R_TRL:
case R_TRLA:
/* We should never need a .loader reloc for a TOC
relative reloc. */
break;
}
}
if (! info->keep_memory
&& coff_section_data (sec->owner, sec) != NULL
&& coff_section_data (sec->owner, sec)->relocs != NULL
&& ! coff_section_data (sec->owner, sec)->keep_relocs)
{
free (coff_section_data (sec->owner, sec)->relocs);
coff_section_data (sec->owner, sec)->relocs = NULL;
}
}
}
return true;
}
/* The sweep phase of garbage collection. Remove all garbage
sections. */
static void
xcoff_sweep (info)
struct bfd_link_info *info;
{
bfd *sub;
for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
{
asection *o;
for (o = sub->sections; o != NULL; o = o->next)
{
if ((o->flags & SEC_MARK) == 0)
{
/* Keep all sections from non-XCOFF input files. Keep
special sections. Keep .debug sections for the
moment. */
if (sub->xvec != info->hash->creator
|| o == xcoff_hash_table (info)->debug_section
|| o == xcoff_hash_table (info)->loader_section
|| o == xcoff_hash_table (info)->linkage_section
|| o == xcoff_hash_table (info)->toc_section
|| o == xcoff_hash_table (info)->descriptor_section
|| strcmp (o->name, ".debug") == 0)
o->flags |= SEC_MARK;
else
{
o->_raw_size = 0;
o->reloc_count = 0;
o->lineno_count = 0;
}
}
}
}
}
/* Record the number of elements in a set. This is used to output the
correct csect length. */
boolean
bfd_xcoff_link_record_set (output_bfd, info, harg, size)
bfd *output_bfd;
struct bfd_link_info *info;
struct bfd_link_hash_entry *harg;
bfd_size_type size;
{
struct xcoff_link_hash_entry *h = (struct xcoff_link_hash_entry *) harg;
struct xcoff_link_size_list *n;
bfd_size_type amt;
if (bfd_get_flavour (output_bfd) != bfd_target_xcoff_flavour)
return true;
/* This will hardly ever be called. I don't want to burn four bytes
per global symbol, so instead the size is kept on a linked list
attached to the hash table. */
amt = sizeof (struct xcoff_link_size_list);
n = (struct xcoff_link_size_list *) bfd_alloc (output_bfd, amt);
if (n == NULL)
return false;
n->next = xcoff_hash_table (info)->size_list;
n->h = h;
n->size = size;
xcoff_hash_table (info)->size_list = n;
h->flags |= XCOFF_HAS_SIZE;
return true;
}
/* Import a symbol. */
boolean
bfd_xcoff_import_symbol (output_bfd, info, harg, val, imppath, impfile,
impmember, syscall_flag)
bfd *output_bfd;
struct bfd_link_info *info;
struct bfd_link_hash_entry *harg;
bfd_vma val;
const char *imppath;
const char *impfile;
const char *impmember;
unsigned int syscall_flag;
{
struct xcoff_link_hash_entry *h = (struct xcoff_link_hash_entry *) harg;
if (bfd_get_flavour (output_bfd) != bfd_target_xcoff_flavour)
return true;
/* A symbol name which starts with a period is the code for a
function. If the symbol is undefined, then add an undefined
symbol for the function descriptor, and import that instead. */
if (h->root.root.string[0] == '.'
&& h->root.type == bfd_link_hash_undefined
&& val == (bfd_vma) -1)
{
struct xcoff_link_hash_entry *hds;
hds = h->descriptor;
if (hds == NULL)
{
hds = xcoff_link_hash_lookup (xcoff_hash_table (info),
h->root.root.string + 1,
true, false, true);
if (hds == NULL)
return false;
if (hds->root.type == bfd_link_hash_new)
{
hds->root.type = bfd_link_hash_undefined;
hds->root.u.undef.abfd = h->root.u.undef.abfd;
}
hds->flags |= XCOFF_DESCRIPTOR;
BFD_ASSERT ((hds->flags & XCOFF_CALLED) == 0
&& (h->flags & XCOFF_DESCRIPTOR) == 0);
hds->descriptor = h;
h->descriptor = hds;
}
/* Now, if the descriptor is undefined, import the descriptor
rather than the symbol we were told to import. FIXME: Is
this correct in all cases? */
if (hds->root.type == bfd_link_hash_undefined)
h = hds;
}
h->flags |= (XCOFF_IMPORT | syscall_flag);
if (val != (bfd_vma) -1)
{
if (h->root.type == bfd_link_hash_defined
&& (! bfd_is_abs_section (h->root.u.def.section)
|| h->root.u.def.value != val))
{
if (! ((*info->callbacks->multiple_definition)
(info, h->root.root.string, h->root.u.def.section->owner,
h->root.u.def.section, h->root.u.def.value,
output_bfd, bfd_abs_section_ptr, val)))
return false;
}
h->root.type = bfd_link_hash_defined;
h->root.u.def.section = bfd_abs_section_ptr;
h->root.u.def.value = val;
}
/* We overload the ldindx field to hold the l_ifile value for this
symbol. */
BFD_ASSERT (h->ldsym == NULL);
BFD_ASSERT ((h->flags & XCOFF_BUILT_LDSYM) == 0);
if (imppath == NULL)
h->ldindx = -1;
else
{
unsigned int c;
struct xcoff_import_file **pp;
/* We start c at 1 because the first entry in the import list is
reserved for the library search path. */
for (pp = &xcoff_hash_table (info)->imports, c = 1;
*pp != NULL;
pp = &(*pp)->next, ++c)
{
if (strcmp ((*pp)->path, imppath) == 0
&& strcmp ((*pp)->file, impfile) == 0
&& strcmp ((*pp)->member, impmember) == 0)
break;
}
if (*pp == NULL)
{
struct xcoff_import_file *n;
bfd_size_type amt = sizeof (struct xcoff_import_file);
n = (struct xcoff_import_file *) bfd_alloc (output_bfd, amt);
if (n == NULL)
return false;
n->next = NULL;
n->path = imppath;
n->file = impfile;
n->member = impmember;
*pp = n;
}
h->ldindx = c;
}
return true;
}
/* Export a symbol. */
boolean
bfd_xcoff_export_symbol (output_bfd, info, harg)
bfd *output_bfd;
struct bfd_link_info *info;
struct bfd_link_hash_entry *harg;
{
struct xcoff_link_hash_entry *h = (struct xcoff_link_hash_entry *) harg;
if (bfd_get_flavour (output_bfd) != bfd_target_xcoff_flavour)
return true;
h->flags |= XCOFF_EXPORT;
/* FIXME: I'm not at all sure what syscall is supposed to mean, so
I'm just going to ignore it until somebody explains it. */
/* See if this is a function descriptor. It may be one even though
it is not so marked. */
if ((h->flags & XCOFF_DESCRIPTOR) == 0
&& h->root.root.string[0] != '.')
{
char *fnname;
struct xcoff_link_hash_entry *hfn;
bfd_size_type amt = strlen (h->root.root.string) + 2;
fnname = (char *) bfd_malloc (amt);
if (fnname == NULL)
return false;
fnname[0] = '.';
strcpy (fnname + 1, h->root.root.string);
hfn = xcoff_link_hash_lookup (xcoff_hash_table (info),
fnname, false, false, true);
free (fnname);
if (hfn != NULL
&& hfn->smclas == XMC_PR
&& (hfn->root.type == bfd_link_hash_defined
|| hfn->root.type == bfd_link_hash_defweak))
{
h->flags |= XCOFF_DESCRIPTOR;
h->descriptor = hfn;
hfn->descriptor = h;
}
}
/* Make sure we don't garbage collect this symbol. */
if (! xcoff_mark_symbol (info, h))
return false;
/* If this is a function descriptor, make sure we don't garbage
collect the associated function code. We normally don't have to
worry about this, because the descriptor will be attached to a
section with relocs, but if we are creating the descriptor
ourselves those relocs will not be visible to the mark code. */
if ((h->flags & XCOFF_DESCRIPTOR) != 0)
{
if (! xcoff_mark_symbol (info, h->descriptor))
return false;
}
return true;
}
/* Count a reloc against a symbol. This is called for relocs
generated by the linker script, typically for global constructors
and destructors. */
boolean
bfd_xcoff_link_count_reloc (output_bfd, info, name)
bfd *output_bfd;
struct bfd_link_info *info;
const char *name;
{
struct xcoff_link_hash_entry *h;
if (bfd_get_flavour (output_bfd) != bfd_target_xcoff_flavour)
return true;
h = ((struct xcoff_link_hash_entry *)
bfd_wrapped_link_hash_lookup (output_bfd, info, name, false, false,
false));
if (h == NULL)
{
(*_bfd_error_handler) (_("%s: no such symbol"), name);
bfd_set_error (bfd_error_no_symbols);
return false;
}
h->flags |= XCOFF_REF_REGULAR | XCOFF_LDREL;
++xcoff_hash_table (info)->ldrel_count;
/* Mark the symbol to avoid garbage collection. */
if (! xcoff_mark_symbol (info, h))
return false;
return true;
}
/* This function is called for each symbol to which the linker script
assigns a value. */
boolean
bfd_xcoff_record_link_assignment (output_bfd, info, name)
bfd *output_bfd;
struct bfd_link_info *info;
const char *name;
{
struct xcoff_link_hash_entry *h;
if (bfd_get_flavour (output_bfd) != bfd_target_xcoff_flavour)
return true;
h = xcoff_link_hash_lookup (xcoff_hash_table (info), name, true, true,
false);
if (h == NULL)
return false;
h->flags |= XCOFF_DEF_REGULAR;
return true;
}
/* Build the .loader section. This is called by the XCOFF linker
emulation before_allocation routine. We must set the size of the
.loader section before the linker lays out the output file.
LIBPATH is the library path to search for shared objects; this is
normally built from the -L arguments passed to the linker. ENTRY
is the name of the entry point symbol (the -e linker option).
FILE_ALIGN is the alignment to use for sections within the file
(the -H linker option). MAXSTACK is the maximum stack size (the
-bmaxstack linker option). MAXDATA is the maximum data size (the
-bmaxdata linker option). GC is whether to do garbage collection
(the -bgc linker option). MODTYPE is the module type (the
-bmodtype linker option). TEXTRO is whether the text section must
be read only (the -btextro linker option). EXPORT_DEFINEDS is
whether all defined symbols should be exported (the -unix linker
option). SPECIAL_SECTIONS is set by this routine to csects with
magic names like _end. */
boolean
bfd_xcoff_size_dynamic_sections (output_bfd, info, libpath, entry,
file_align, maxstack, maxdata, gc,
modtype, textro, export_defineds,
special_sections)
bfd *output_bfd;
struct bfd_link_info *info;
const char *libpath;
const char *entry;
unsigned long file_align;
unsigned long maxstack;
unsigned long maxdata;
boolean gc;
int modtype;
boolean textro;
boolean export_defineds;
asection **special_sections;
{
struct xcoff_link_hash_entry *hentry;
asection *lsec;
struct xcoff_loader_info ldinfo;
int i;
size_t impsize, impcount;
struct xcoff_import_file *fl;
struct internal_ldhdr *ldhdr;
bfd_size_type stoff;
register char *out;
asection *sec;
bfd *sub;
struct bfd_strtab_hash *debug_strtab;
bfd_byte *debug_contents = NULL;
bfd_size_type amt;
if (bfd_get_flavour (output_bfd) != bfd_target_xcoff_flavour)
{
for (i = 0; i < XCOFF_NUMBER_OF_SPECIAL_SECTIONS; i++)
special_sections[i] = NULL;
return true;
}
ldinfo.failed = false;
ldinfo.output_bfd = output_bfd;
ldinfo.info = info;
ldinfo.export_defineds = export_defineds;
ldinfo.ldsym_count = 0;
ldinfo.string_size = 0;
ldinfo.strings = NULL;
ldinfo.string_alc = 0;
xcoff_data (output_bfd)->maxstack = maxstack;
xcoff_data (output_bfd)->maxdata = maxdata;
xcoff_data (output_bfd)->modtype = modtype;
xcoff_hash_table (info)->file_align = file_align;
xcoff_hash_table (info)->textro = textro;
if (entry == NULL)
{
hentry = NULL;
}
else
{
hentry = xcoff_link_hash_lookup (xcoff_hash_table (info), entry,
false, false, true);
if (hentry != NULL)
hentry->flags |= XCOFF_ENTRY;
}
/* __rtinit */
if (info->init_function || info->fini_function) {
struct xcoff_link_hash_entry *hrtinit;
struct internal_ldsym *ldsym;
hrtinit = xcoff_link_hash_lookup (xcoff_hash_table (info),
"__rtinit",
false, false, true);
if (hrtinit != NULL)
{
xcoff_mark_symbol (info, hrtinit);
hrtinit->flags |= (XCOFF_DEF_REGULAR | XCOFF_RTINIT);
}
else
{
(*_bfd_error_handler)
(_("error: undefined symbol __rtinit"));
return false;
}
/* __rtinit initalized here
Some information, like the location of the .initfini seciton will
be filled in later.
name or offset taken care of below with bfd_xcoff_put_ldsymbol_name. */
amt = sizeof (struct internal_ldsym);
ldsym = (struct internal_ldsym *) bfd_malloc (amt);
ldsym->l_value = 0; /* will be filled in later */
ldsym->l_scnum = 2; /* data section */
ldsym->l_smtype = XTY_SD; /* csect section definition */
ldsym->l_smclas = 5; /* .rw */
ldsym->l_ifile = 0; /* special system loader symbol */
ldsym->l_parm = 0; /* NA */
/* Force __rtinit to be the first symbol in the loader symbol table
See xcoff_build_ldsyms
The first 3 symbol table indices are reserved to indicate the data,
text and bss sections. */
BFD_ASSERT (0 == ldinfo.ldsym_count);
hrtinit->ldindx = 3;
ldinfo.ldsym_count = 1;
hrtinit->ldsym = ldsym;
if (false == bfd_xcoff_put_ldsymbol_name (ldinfo.output_bfd, &ldinfo,
hrtinit->ldsym,
hrtinit->root.root.string))
{
return false;
}
/* This symbol is written out by xcoff_write_global_symbol
Set stuff up so xcoff_write_global_symbol logic works. */
hrtinit->flags |= XCOFF_DEF_REGULAR | XCOFF_MARK;
hrtinit->root.type = bfd_link_hash_defined;
hrtinit->root.u.def.value = 0;
}
/* Garbage collect unused sections. */
if (info->relocateable
|| ! gc
|| hentry == NULL
|| (hentry->root.type != bfd_link_hash_defined
&& hentry->root.type != bfd_link_hash_defweak))
{
gc = false;
xcoff_hash_table (info)->gc = false;
/* We still need to call xcoff_mark, in order to set ldrel_count
correctly. */
for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
{
asection *o;
for (o = sub->sections; o != NULL; o = o->next)
{
if ((o->flags & SEC_MARK) == 0)
{
if (! xcoff_mark (info, o))
goto error_return;
}
}
}
}
else
{
if (! xcoff_mark (info, hentry->root.u.def.section))
goto error_return;
xcoff_sweep (info);
xcoff_hash_table (info)->gc = true;
}
/* Return special sections to the caller. */
for (i = 0; i < XCOFF_NUMBER_OF_SPECIAL_SECTIONS; i++)
{
sec = xcoff_hash_table (info)->special_sections[i];
if (sec != NULL
&& gc
&& (sec->flags & SEC_MARK) == 0)
{
sec = NULL;
}
special_sections[i] = sec;
}
if (info->input_bfds == NULL)
{
/* I'm not sure what to do in this bizarre case. */
return true;
}
xcoff_link_hash_traverse (xcoff_hash_table (info), xcoff_build_ldsyms,
(PTR) &ldinfo);
if (ldinfo.failed)
goto error_return;
/* Work out the size of the import file names. Each import file ID
consists of three null terminated strings: the path, the file
name, and the archive member name. The first entry in the list
of names is the path to use to find objects, which the linker has
passed in as the libpath argument. For some reason, the path
entry in the other import file names appears to always be empty. */
impsize = strlen (libpath) + 3;
impcount = 1;
for (fl = xcoff_hash_table (info)->imports; fl != NULL; fl = fl->next)
{
++impcount;
impsize += (strlen (fl->path)
+ strlen (fl->file)
+ strlen (fl->member)
+ 3);
}
/* Set up the .loader section header. */
ldhdr = &xcoff_hash_table (info)->ldhdr;
ldhdr->l_version = bfd_xcoff_ldhdr_version(output_bfd);
ldhdr->l_nsyms = ldinfo.ldsym_count;
ldhdr->l_nreloc = xcoff_hash_table (info)->ldrel_count;
ldhdr->l_istlen = impsize;
ldhdr->l_nimpid = impcount;
ldhdr->l_impoff = (bfd_xcoff_ldhdrsz(output_bfd)
+ ldhdr->l_nsyms * bfd_xcoff_ldsymsz(output_bfd)
+ ldhdr->l_nreloc * bfd_xcoff_ldrelsz(output_bfd));
ldhdr->l_stlen = ldinfo.string_size;
stoff = ldhdr->l_impoff + impsize;
if (ldinfo.string_size == 0)
ldhdr->l_stoff = 0;
else
ldhdr->l_stoff = stoff;
/* 64 bit elements to ldhdr
The swap out routine for 32 bit will ignore them.
Nothing fancy, symbols come after the header and relocs come
after symbols. */
ldhdr->l_symoff = bfd_xcoff_ldhdrsz (output_bfd);
ldhdr->l_rldoff = (bfd_xcoff_ldhdrsz (output_bfd)
+ ldhdr->l_nsyms * bfd_xcoff_ldsymsz (output_bfd));
/* We now know the final size of the .loader section. Allocate
space for it. */
lsec = xcoff_hash_table (info)->loader_section;
lsec->_raw_size = stoff + ldhdr->l_stlen;
lsec->contents = (bfd_byte *) bfd_zalloc (output_bfd, lsec->_raw_size);
if (lsec->contents == NULL)
goto error_return;
/* Set up the header. */
bfd_xcoff_swap_ldhdr_out (output_bfd, ldhdr, lsec->contents);
/* Set up the import file names. */
out = (char *) lsec->contents + ldhdr->l_impoff;
strcpy (out, libpath);
out += strlen (libpath) + 1;
*out++ = '\0';
*out++ = '\0';
for (fl = xcoff_hash_table (info)->imports; fl != NULL; fl = fl->next)
{
register const char *s;
s = fl->path;
while ((*out++ = *s++) != '\0')
;
s = fl->file;
while ((*out++ = *s++) != '\0')
;
s = fl->member;
while ((*out++ = *s++) != '\0')
;
}
BFD_ASSERT ((bfd_size_type) ((bfd_byte *) out - lsec->contents) == stoff);
/* Set up the symbol string table. */
if (ldinfo.string_size > 0)
{
memcpy (out, ldinfo.strings, ldinfo.string_size);
free (ldinfo.strings);
ldinfo.strings = NULL;
}
/* We can't set up the symbol table or the relocs yet, because we
don't yet know the final position of the various sections. The
.loader symbols are written out when the corresponding normal
symbols are written out in xcoff_link_input_bfd or
xcoff_write_global_symbol. The .loader relocs are written out
when the corresponding normal relocs are handled in
xcoff_link_input_bfd.
*/
/* Allocate space for the magic sections. */
sec = xcoff_hash_table (info)->linkage_section;
if (sec->_raw_size > 0)
{
sec->contents = (bfd_byte *) bfd_zalloc (output_bfd, sec->_raw_size);
if (sec->contents == NULL)
goto error_return;
}
sec = xcoff_hash_table (info)->toc_section;
if (sec->_raw_size > 0)
{
sec->contents = (bfd_byte *) bfd_zalloc (output_bfd, sec->_raw_size);
if (sec->contents == NULL)
goto error_return;
}
sec = xcoff_hash_table (info)->descriptor_section;
if (sec->_raw_size > 0)
{
sec->contents = (bfd_byte *) bfd_zalloc (output_bfd, sec->_raw_size);
if (sec->contents == NULL)
goto error_return;
}
/* Now that we've done garbage collection, figure out the contents
of the .debug section. */
debug_strtab = xcoff_hash_table (info)->debug_strtab;
for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
{
asection *subdeb;
bfd_size_type symcount;
unsigned long *debug_index;
asection **csectpp;
bfd_byte *esym, *esymend;
bfd_size_type symesz;
if (sub->xvec != info->hash->creator)
continue;
subdeb = bfd_get_section_by_name (sub, ".debug");
if (subdeb == NULL || subdeb->_raw_size == 0)
continue;
if (info->strip == strip_all
|| info->strip == strip_debugger
|| info->discard == discard_all)
{
subdeb->_raw_size = 0;
continue;
}
if (! _bfd_coff_get_external_symbols (sub))
goto error_return;
symcount = obj_raw_syment_count (sub);
debug_index = ((unsigned long *)
bfd_zalloc (sub, symcount * sizeof (unsigned long)));
if (debug_index == NULL)
goto error_return;
xcoff_data (sub)->debug_indices = debug_index;
/* Grab the contents of the .debug section. We use malloc and
copy the names into the debug stringtab, rather than
bfd_alloc, because I expect that, when linking many files
together, many of the strings will be the same. Storing the
strings in the hash table should save space in this case. */
debug_contents = (bfd_byte *) bfd_malloc (subdeb->_raw_size);
if (debug_contents == NULL)
goto error_return;
if (! bfd_get_section_contents (sub, subdeb, (PTR) debug_contents,
(file_ptr) 0, subdeb->_raw_size))
goto error_return;
csectpp = xcoff_data (sub)->csects;
symesz = bfd_coff_symesz (sub);
esym = (bfd_byte *) obj_coff_external_syms (sub);
esymend = esym + symcount * symesz;
while (esym < esymend)
{
struct internal_syment sym;
bfd_coff_swap_sym_in (sub, (PTR) esym, (PTR) &sym);
*debug_index = (unsigned long) -1;
if (sym._n._n_n._n_zeroes == 0
&& *csectpp != NULL
&& (! gc
|| ((*csectpp)->flags & SEC_MARK) != 0
|| *csectpp == bfd_abs_section_ptr)
&& bfd_coff_symname_in_debug (sub, &sym))
{
char *name;
bfd_size_type indx;
name = (char *) debug_contents + sym._n._n_n._n_offset;
indx = _bfd_stringtab_add (debug_strtab, name, true, true);
if (indx == (bfd_size_type) -1)
goto error_return;
*debug_index = indx;
}
esym += (sym.n_numaux + 1) * symesz;
csectpp += sym.n_numaux + 1;
debug_index += sym.n_numaux + 1;
}
free (debug_contents);
debug_contents = NULL;
/* Clear the size of subdeb, so that it is not included directly
in the output file. */
subdeb->_raw_size = 0;
if (! info->keep_memory)
{
if (! _bfd_coff_free_symbols (sub))
goto error_return;
}
}
if (info->strip != strip_all)
xcoff_hash_table (info)->debug_section->_raw_size =
_bfd_stringtab_size (debug_strtab);
return true;
error_return:
if (ldinfo.strings != NULL)
free (ldinfo.strings);
if (debug_contents != NULL)
free (debug_contents);
return false;
}
/* Add a symbol to the .loader symbols, if necessary. */
static boolean
xcoff_build_ldsyms (h, p)
struct xcoff_link_hash_entry *h;
PTR p;
{
struct xcoff_loader_info *ldinfo = (struct xcoff_loader_info *) p;
bfd_size_type amt;
/* __rtinit
Special handling of this symbol to make is the first symbol in
the loader symbol table. Make sure this pass through does not
undo it. */
if (h->flags & XCOFF_RTINIT)
{
return true;
}
/* If this is a final link, and the symbol was defined as a common
symbol in a regular object file, and there was no definition in
any dynamic object, then the linker will have allocated space for
the symbol in a common section but the XCOFF_DEF_REGULAR flag
will not have been set. */
if (h->root.type == bfd_link_hash_defined
&& (h->flags & XCOFF_DEF_REGULAR) == 0
&& (h->flags & XCOFF_REF_REGULAR) != 0
&& (h->flags & XCOFF_DEF_DYNAMIC) == 0
&& (bfd_is_abs_section (h->root.u.def.section)
|| (h->root.u.def.section->owner->flags & DYNAMIC) == 0))
h->flags |= XCOFF_DEF_REGULAR;
/* If all defined symbols should be exported, mark them now. We
don't want to export the actual functions, just the function
descriptors. */
if (ldinfo->export_defineds
&& (h->flags & XCOFF_DEF_REGULAR) != 0
&& h->root.root.string[0] != '.')
{
boolean export;
/* We don't export a symbol which is being defined by an object
included from an archive which contains a shared object. The
rationale is that if an archive contains both an unshared and
a shared object, then there must be some reason that the
unshared object is unshared, and we don't want to start
providing a shared version of it. In particular, this solves
a bug involving the _savefNN set of functions. gcc will call
those functions without providing a slot to restore the TOC,
so it is essential that these functions be linked in directly
and not from a shared object, which means that a shared
object which also happens to link them in must not export
them. This is confusing, but I haven't been able to think of
a different approach. Note that the symbols can, of course,
be exported explicitly. */
export = true;
if ((h->root.type == bfd_link_hash_defined
|| h->root.type == bfd_link_hash_defweak)
&& h->root.u.def.section->owner != NULL
&& h->root.u.def.section->owner->my_archive != NULL)
{
bfd *arbfd, *member;
arbfd = h->root.u.def.section->owner->my_archive;
member = bfd_openr_next_archived_file (arbfd, (bfd *) NULL);
while (member != NULL)
{
if ((member->flags & DYNAMIC) != 0)
{
export = false;
break;
}
member = bfd_openr_next_archived_file (arbfd, member);
}
}
if (export)
h->flags |= XCOFF_EXPORT;
}
/* We don't want to garbage collect symbols which are not defined in
XCOFF files. This is a convenient place to mark them. */
if (xcoff_hash_table (ldinfo->info)->gc
&& (h->flags & XCOFF_MARK) == 0
&& (h->root.type == bfd_link_hash_defined
|| h->root.type == bfd_link_hash_defweak)
&& (h->root.u.def.section->owner == NULL
|| (h->root.u.def.section->owner->xvec
!= ldinfo->info->hash->creator)))
h->flags |= XCOFF_MARK;
/* If this symbol is called and defined in a dynamic object, or it
is imported, then we need to set up global linkage code for it.
(Unless we did garbage collection and we didn't need this
symbol.) */
if ((h->flags & XCOFF_CALLED) != 0
&& (h->root.type == bfd_link_hash_undefined
|| h->root.type == bfd_link_hash_undefweak)
&& h->root.root.string[0] == '.'
&& h->descriptor != NULL
&& ((h->descriptor->flags & XCOFF_DEF_DYNAMIC) != 0
|| ((h->descriptor->flags & XCOFF_IMPORT) != 0
&& (h->descriptor->flags & XCOFF_DEF_REGULAR) == 0))
&& (! xcoff_hash_table (ldinfo->info)->gc
|| (h->flags & XCOFF_MARK) != 0))
{
asection *sec;
struct xcoff_link_hash_entry *hds;
sec = xcoff_hash_table (ldinfo->info)->linkage_section;
h->root.type = bfd_link_hash_defined;
h->root.u.def.section = sec;
h->root.u.def.value = sec->_raw_size;
h->smclas = XMC_GL;
h->flags |= XCOFF_DEF_REGULAR;
sec->_raw_size += bfd_xcoff_glink_code_size(ldinfo->output_bfd);
/* The global linkage code requires a TOC entry for the
descriptor. */
hds = h->descriptor;
BFD_ASSERT ((hds->root.type == bfd_link_hash_undefined
|| hds->root.type == bfd_link_hash_undefweak)
&& (hds->flags & XCOFF_DEF_REGULAR) == 0);
hds->flags |= XCOFF_MARK;
if (hds->toc_section == NULL)
{
int byte_size;
/* 32 vs 64
xcoff32 uses 4 bytes in the toc.
xcoff64 uses 8 bytes in the toc. */
if (bfd_xcoff_is_xcoff64 (ldinfo->output_bfd))
{
byte_size = 8;
}
else if (bfd_xcoff_is_xcoff32 (ldinfo->output_bfd))
{
byte_size = 4;
}
else
{
return false;
}
hds->toc_section = xcoff_hash_table (ldinfo->info)->toc_section;
hds->u.toc_offset = hds->toc_section->_raw_size;
hds->toc_section->_raw_size += byte_size;
++xcoff_hash_table (ldinfo->info)->ldrel_count;
++hds->toc_section->reloc_count;
hds->indx = -2;
hds->flags |= XCOFF_SET_TOC | XCOFF_LDREL;
/* We need to call xcoff_build_ldsyms recursively here,
because we may already have passed hds on the traversal. */
xcoff_build_ldsyms (hds, p);
}
}
/* If this symbol is exported, but not defined, we need to try to
define it. */
if ((h->flags & XCOFF_EXPORT) != 0
&& (h->flags & XCOFF_IMPORT) == 0
&& (h->flags & XCOFF_DEF_REGULAR) == 0
&& (h->flags & XCOFF_DEF_DYNAMIC) == 0
&& (h->root.type == bfd_link_hash_undefined
|| h->root.type == bfd_link_hash_undefweak))
{
if ((h->flags & XCOFF_DESCRIPTOR) != 0
&& (h->descriptor->root.type == bfd_link_hash_defined
|| h->descriptor->root.type == bfd_link_hash_defweak))
{
asection *sec;
/* This is an undefined function descriptor associated with
a defined entry point. We can build up a function
descriptor ourselves. Believe it or not, the AIX linker
actually does this, and there are cases where we need to
do it as well. */
sec = xcoff_hash_table (ldinfo->info)->descriptor_section;
h->root.type = bfd_link_hash_defined;
h->root.u.def.section = sec;
h->root.u.def.value = sec->_raw_size;
h->smclas = XMC_DS;
h->flags |= XCOFF_DEF_REGULAR;
/* The size of the function descriptor depends if this is an
xcoff32 (12) or xcoff64 (24). */
sec->_raw_size +=
bfd_xcoff_function_descriptor_size(ldinfo->output_bfd);
/* A function descriptor uses two relocs: one for the
associated code, and one for the TOC address. */
xcoff_hash_table (ldinfo->info)->ldrel_count += 2;
sec->reloc_count += 2;
/* We handle writing out the contents of the descriptor in
xcoff_write_global_symbol. */
}
else
{
(*_bfd_error_handler)
(_("warning: attempt to export undefined symbol `%s'"),
h->root.root.string);
h->ldsym = NULL;
return true;
}
}
/* If this is still a common symbol, and it wasn't garbage
collected, we need to actually allocate space for it in the .bss
section. */
if (h->root.type == bfd_link_hash_common
&& (! xcoff_hash_table (ldinfo->info)->gc
|| (h->flags & XCOFF_MARK) != 0)
&& h->root.u.c.p->section->_raw_size == 0)
{
BFD_ASSERT (bfd_is_com_section (h->root.u.c.p->section));
h->root.u.c.p->section->_raw_size = h->root.u.c.size;
}
/* We need to add a symbol to the .loader section if it is mentioned
in a reloc which we are copying to the .loader section and it was
not defined or common, or if it is the entry point, or if it is
being exported. */
if (((h->flags & XCOFF_LDREL) == 0
|| h->root.type == bfd_link_hash_defined
|| h->root.type == bfd_link_hash_defweak
|| h->root.type == bfd_link_hash_common)
&& (h->flags & XCOFF_ENTRY) == 0
&& (h->flags & XCOFF_EXPORT) == 0)
{
h->ldsym = NULL;
return true;
}
/* We don't need to add this symbol if we did garbage collection and
we did not mark this symbol. */
if (xcoff_hash_table (ldinfo->info)->gc
&& (h->flags & XCOFF_MARK) == 0)
{
h->ldsym = NULL;
return true;
}
/* We may have already processed this symbol due to the recursive
call above. */
if ((h->flags & XCOFF_BUILT_LDSYM) != 0)
return true;
/* We need to add this symbol to the .loader symbols. */
BFD_ASSERT (h->ldsym == NULL);
amt = sizeof (struct internal_ldsym);
h->ldsym = (struct internal_ldsym *) bfd_zalloc (ldinfo->output_bfd, amt);
if (h->ldsym == NULL)
{
ldinfo->failed = true;
return false;
}
if ((h->flags & XCOFF_IMPORT) != 0)
h->ldsym->l_ifile = h->ldindx;
/* The first 3 symbol table indices are reserved to indicate the
data, text and bss sections. */
h->ldindx = ldinfo->ldsym_count + 3;
++ldinfo->ldsym_count;
if (false == bfd_xcoff_put_ldsymbol_name (ldinfo->output_bfd, ldinfo,
h->ldsym,
h->root.root.string))
{
return false;
}
h->flags |= XCOFF_BUILT_LDSYM;
return true;
}
/* Do the final link step. */
boolean
_bfd_xcoff_bfd_final_link (abfd, info)
bfd *abfd;
struct bfd_link_info *info;
{
bfd_size_type symesz;
struct xcoff_final_link_info finfo;
asection *o;
struct bfd_link_order *p;
bfd_size_type max_contents_size;
bfd_size_type max_sym_count;
bfd_size_type max_lineno_count;
bfd_size_type max_reloc_count;
bfd_size_type max_output_reloc_count;
file_ptr rel_filepos;
unsigned int relsz;
file_ptr line_filepos;
unsigned int linesz;
bfd *sub;
bfd_byte *external_relocs = NULL;
char strbuf[STRING_SIZE_SIZE];
file_ptr pos;
bfd_size_type amt;
if (info->shared)
abfd->flags |= DYNAMIC;
symesz = bfd_coff_symesz (abfd);
finfo.info = info;
finfo.output_bfd = abfd;
finfo.strtab = NULL;
finfo.section_info = NULL;
finfo.last_file_index = -1;
finfo.toc_symindx = -1;
finfo.internal_syms = NULL;
finfo.sym_indices = NULL;
finfo.outsyms = NULL;
finfo.linenos = NULL;
finfo.contents = NULL;
finfo.external_relocs = NULL;
finfo.ldsym = (xcoff_hash_table (info)->loader_section->contents
+ bfd_xcoff_ldhdrsz (abfd));
finfo.ldrel = (xcoff_hash_table (info)->loader_section->contents
+ bfd_xcoff_ldhdrsz(abfd)
+ (xcoff_hash_table (info)->ldhdr.l_nsyms
* bfd_xcoff_ldsymsz(abfd)));
xcoff_data (abfd)->coff.link_info = info;
finfo.strtab = _bfd_stringtab_init ();
if (finfo.strtab == NULL)
goto error_return;
/* Count the line number and relocation entries required for the
output file. Determine a few maximum sizes. */
max_contents_size = 0;
max_lineno_count = 0;
max_reloc_count = 0;
for (o = abfd->sections; o != NULL; o = o->next)
{
o->reloc_count = 0;
o->lineno_count = 0;
for (p = o->link_order_head; p != NULL; p = p->next)
{
if (p->type == bfd_indirect_link_order)
{
asection *sec;
sec = p->u.indirect.section;
/* Mark all sections which are to be included in the
link. This will normally be every section. We need
to do this so that we can identify any sections which
the linker has decided to not include. */
sec->linker_mark = true;
if (info->strip == strip_none
|| info->strip == strip_some)
o->lineno_count += sec->lineno_count;
o->reloc_count += sec->reloc_count;
if (sec->_raw_size > max_contents_size)
max_contents_size = sec->_raw_size;
if (sec->lineno_count > max_lineno_count)
max_lineno_count = sec->lineno_count;
if (coff_section_data (sec->owner, sec) != NULL
&& xcoff_section_data (sec->owner, sec) != NULL
&& (xcoff_section_data (sec->owner, sec)->lineno_count
> max_lineno_count))
max_lineno_count =
xcoff_section_data (sec->owner, sec)->lineno_count;
if (sec->reloc_count > max_reloc_count)
max_reloc_count = sec->reloc_count;
}
else if (p->type == bfd_section_reloc_link_order
|| p->type == bfd_symbol_reloc_link_order)
++o->reloc_count;
}
}
/* Compute the file positions for all the sections. */
if (abfd->output_has_begun)
{
if (xcoff_hash_table (info)->file_align != 0)
abort ();
}
else
{
bfd_vma file_align;
file_align = xcoff_hash_table (info)->file_align;
if (file_align != 0)
{
boolean saw_contents;
int indx;
asection **op;
file_ptr sofar;
/* Insert .pad sections before every section which has
contents and is loaded, if it is preceded by some other
section which has contents and is loaded. */
saw_contents = true;
for (op = &abfd->sections; *op != NULL; op = &(*op)->next)
{
if (strcmp ((*op)->name, ".pad") == 0)
saw_contents = false;
else if (((*op)->flags & SEC_HAS_CONTENTS) != 0
&& ((*op)->flags & SEC_LOAD) != 0)
{
if (! saw_contents)
saw_contents = true;
else
{
asection *n, *hold;
hold = *op;
*op = NULL;
n = bfd_make_section_anyway (abfd, ".pad");
BFD_ASSERT (*op == n);
n->next = hold;
n->flags = SEC_HAS_CONTENTS;
n->alignment_power = 0;
saw_contents = false;
}
}
}
/* Reset the section indices after inserting the new
sections. */
indx = 0;
for (o = abfd->sections; o != NULL; o = o->next)
{
++indx;
o->target_index = indx;
}
BFD_ASSERT ((unsigned int) indx == abfd->section_count);
/* Work out appropriate sizes for the .pad sections to force
each section to land on a page boundary. This bit of
code knows what compute_section_file_positions is going
to do. */
sofar = bfd_coff_filhsz (abfd);
sofar += bfd_coff_aoutsz (abfd);
sofar += abfd->section_count * bfd_coff_scnhsz (abfd);
for (o = abfd->sections; o != NULL; o = o->next)
if ((bfd_xcoff_is_reloc_count_overflow
(abfd, (bfd_vma) o->reloc_count))
|| (bfd_xcoff_is_lineno_count_overflow
(abfd, (bfd_vma) o->lineno_count)))
/* 64 does not overflow, need to check if 32 does */
sofar += bfd_coff_scnhsz (abfd);
for (o = abfd->sections; o != NULL; o = o->next)
{
if (strcmp (o->name, ".pad") == 0)
{
bfd_vma pageoff;
BFD_ASSERT (o->_raw_size == 0);
pageoff = sofar & (file_align - 1);
if (pageoff != 0)
{
o->_raw_size = file_align - pageoff;
sofar += file_align - pageoff;
o->flags |= SEC_HAS_CONTENTS;
}
}
else
{
if ((o->flags & SEC_HAS_CONTENTS) != 0)
sofar += BFD_ALIGN (o->_raw_size,
1 << o->alignment_power);
}
}
}
if (! bfd_coff_compute_section_file_positions (abfd))
goto error_return;
}
/* Allocate space for the pointers we need to keep for the relocs. */
{
unsigned int i;
/* We use section_count + 1, rather than section_count, because
the target_index fields are 1 based. */
amt = abfd->section_count + 1;
amt *= sizeof (struct xcoff_link_section_info);
finfo.section_info = (struct xcoff_link_section_info *) bfd_malloc (amt);
if (finfo.section_info == NULL)
goto error_return;
for (i = 0; i <= abfd->section_count; i++)
{
finfo.section_info[i].relocs = NULL;
finfo.section_info[i].rel_hashes = NULL;
finfo.section_info[i].toc_rel_hashes = NULL;
}
}
/* Set the file positions for the relocs. */
rel_filepos = obj_relocbase (abfd);
relsz = bfd_coff_relsz (abfd);
max_output_reloc_count = 0;
for (o = abfd->sections; o != NULL; o = o->next)
{
if (o->reloc_count == 0)
o->rel_filepos = 0;
else
{
/* A stripped file has no relocs. However, we still
allocate the buffers, so that later code doesn't have to
worry about whether we are stripping or not. */
if (info->strip == strip_all)
o->rel_filepos = 0;
else
{
o->flags |= SEC_RELOC;
o->rel_filepos = rel_filepos;
rel_filepos += o->reloc_count * relsz;
}
/* We don't know the indices of global symbols until we have
written out all the local symbols. For each section in
the output file, we keep an array of pointers to hash
table entries. Each entry in the array corresponds to a
reloc. When we find a reloc against a global symbol, we
set the corresponding entry in this array so that we can
fix up the symbol index after we have written out all the
local symbols.
Because of this problem, we also keep the relocs in
memory until the end of the link. This wastes memory.
We could backpatch the file later, I suppose, although it
would be slow. */
amt = o->reloc_count;
amt *= sizeof (struct internal_reloc);
finfo.section_info[o->target_index].relocs =
(struct internal_reloc *) bfd_malloc (amt);
amt = o->reloc_count;
amt *= sizeof (struct xcoff_link_hash_entry *);
finfo.section_info[o->target_index].rel_hashes =
(struct xcoff_link_hash_entry **) bfd_malloc (amt);
if (finfo.section_info[o->target_index].relocs == NULL
|| finfo.section_info[o->target_index].rel_hashes == NULL)
goto error_return;
if (o->reloc_count > max_output_reloc_count)
max_output_reloc_count = o->reloc_count;
}
}
/* We now know the size of the relocs, so we can determine the file
positions of the line numbers. */
line_filepos = rel_filepos;
finfo.line_filepos = line_filepos;
linesz = bfd_coff_linesz (abfd);
for (o = abfd->sections; o != NULL; o = o->next)
{
if (o->lineno_count == 0)
o->line_filepos = 0;
else
{
o->line_filepos = line_filepos;
line_filepos += o->lineno_count * linesz;
}
/* Reset the reloc and lineno counts, so that we can use them to
count the number of entries we have output so far. */
o->reloc_count = 0;
o->lineno_count = 0;
}
obj_sym_filepos (abfd) = line_filepos;
/* Figure out the largest number of symbols in an input BFD. Take
the opportunity to clear the output_has_begun fields of all the
input BFD's. We want at least 6 symbols, since that is the
number which xcoff_write_global_symbol may need. */
max_sym_count = 6;
for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
{
bfd_size_type sz;
sub->output_has_begun = false;
sz = obj_raw_syment_count (sub);
if (sz > max_sym_count)
max_sym_count = sz;
}
/* Allocate some buffers used while linking. */
amt = max_sym_count * sizeof (struct internal_syment);
finfo.internal_syms = (struct internal_syment *) bfd_malloc (amt);
amt = max_sym_count * sizeof (long);
finfo.sym_indices = (long *) bfd_malloc (amt);
amt = (max_sym_count + 1) * symesz;
finfo.outsyms = (bfd_byte *) bfd_malloc (amt);
amt = max_lineno_count * bfd_coff_linesz (abfd);
finfo.linenos = (bfd_byte *) bfd_malloc (amt);
amt = max_contents_size;
finfo.contents = (bfd_byte *) bfd_malloc (amt);
amt = max_reloc_count * relsz;
finfo.external_relocs = (bfd_byte *) bfd_malloc (amt);
if ((finfo.internal_syms == NULL && max_sym_count > 0)
|| (finfo.sym_indices == NULL && max_sym_count > 0)
|| finfo.outsyms == NULL
|| (finfo.linenos == NULL && max_lineno_count > 0)
|| (finfo.contents == NULL && max_contents_size > 0)
|| (finfo.external_relocs == NULL && max_reloc_count > 0))
goto error_return;
obj_raw_syment_count (abfd) = 0;
xcoff_data (abfd)->toc = (bfd_vma) -1;
/* We now know the position of everything in the file, except that
we don't know the size of the symbol table and therefore we don't
know where the string table starts. We just build the string
table in memory as we go along. We process all the relocations
for a single input file at once. */
for (o = abfd->sections; o != NULL; o = o->next)
{
for (p = o->link_order_head; p != NULL; p = p->next)
{
if (p->type == bfd_indirect_link_order
&& p->u.indirect.section->owner->xvec == abfd->xvec)
{
sub = p->u.indirect.section->owner;
if (! sub->output_has_begun)
{
if (! xcoff_link_input_bfd (&finfo, sub))
goto error_return;
sub->output_has_begun = true;
}
}
else if (p->type == bfd_section_reloc_link_order
|| p->type == bfd_symbol_reloc_link_order)
{
if (! xcoff_reloc_link_order (abfd, &finfo, o, p))
goto error_return;
}
else
{
if (! _bfd_default_link_order (abfd, info, o, p))
goto error_return;
}
}
}
/* Free up the buffers used by xcoff_link_input_bfd. */
if (finfo.internal_syms != NULL)
{
free (finfo.internal_syms);
finfo.internal_syms = NULL;
}
if (finfo.sym_indices != NULL)
{
free (finfo.sym_indices);
finfo.sym_indices = NULL;
}
if (finfo.linenos != NULL)
{
free (finfo.linenos);
finfo.linenos = NULL;
}
if (finfo.contents != NULL)
{
free (finfo.contents);
finfo.contents = NULL;
}
if (finfo.external_relocs != NULL)
{
free (finfo.external_relocs);
finfo.external_relocs = NULL;
}
/* The value of the last C_FILE symbol is supposed to be -1. Write
it out again. */
if (finfo.last_file_index != -1)
{
finfo.last_file.n_value = -(bfd_vma) 1;
bfd_coff_swap_sym_out (abfd, (PTR) &finfo.last_file,
(PTR) finfo.outsyms);
pos = obj_sym_filepos (abfd) + finfo.last_file_index * symesz;
if (bfd_seek (abfd, pos, SEEK_SET) != 0
|| bfd_bwrite (finfo.outsyms, symesz, abfd) != symesz)
goto error_return;
}
/* init-fini */
if (info->init_function || info->fini_function)
{
struct xcoff_link_hash_entry *hrtinit;
hrtinit = xcoff_link_hash_lookup (xcoff_hash_table (info),
"__rtinit",
false, false, true);
}
/* Write out all the global symbols which do not come from XCOFF
input files. */
xcoff_link_hash_traverse (xcoff_hash_table (info),
xcoff_write_global_symbol,
(PTR) &finfo);
if (finfo.outsyms != NULL)
{
free (finfo.outsyms);
finfo.outsyms = NULL;
}
/* Now that we have written out all the global symbols, we know the
symbol indices to use for relocs against them, and we can finally
write out the relocs. */
amt = max_output_reloc_count * relsz;
external_relocs = (bfd_byte *) bfd_malloc (amt);
if (external_relocs == NULL && max_output_reloc_count != 0)
goto error_return;
for (o = abfd->sections; o != NULL; o = o->next)
{
struct internal_reloc *irel;
struct internal_reloc *irelend;
struct xcoff_link_hash_entry **rel_hash;
struct xcoff_toc_rel_hash *toc_rel_hash;
bfd_byte *erel;
bfd_size_type rel_size;
/* A stripped file has no relocs. */
if (info->strip == strip_all)
{
o->reloc_count = 0;
continue;
}
if (o->reloc_count == 0)
continue;
irel = finfo.section_info[o->target_index].relocs;
irelend = irel + o->reloc_count;
rel_hash = finfo.section_info[o->target_index].rel_hashes;
for (; irel < irelend; irel++, rel_hash++, erel += relsz)
{
if (*rel_hash != NULL)
{
if ((*rel_hash)->indx < 0)
{
if (! ((*info->callbacks->unattached_reloc)
(info, (*rel_hash)->root.root.string,
(bfd *) NULL, o, irel->r_vaddr)))
goto error_return;
(*rel_hash)->indx = 0;
}
irel->r_symndx = (*rel_hash)->indx;
}
}
for (toc_rel_hash = finfo.section_info[o->target_index].toc_rel_hashes;
toc_rel_hash != NULL;
toc_rel_hash = toc_rel_hash->next)
{
if (toc_rel_hash->h->u.toc_indx < 0)
{
if (! ((*info->callbacks->unattached_reloc)
(info, toc_rel_hash->h->root.root.string,
(bfd *) NULL, o, toc_rel_hash->rel->r_vaddr)))
goto error_return;
toc_rel_hash->h->u.toc_indx = 0;
}
toc_rel_hash->rel->r_symndx = toc_rel_hash->h->u.toc_indx;
}
/* XCOFF requires that the relocs be sorted by address. We tend
to produce them in the order in which their containing csects
appear in the symbol table, which is not necessarily by
address. So we sort them here. There may be a better way to
do this. */
qsort ((PTR) finfo.section_info[o->target_index].relocs,
o->reloc_count, sizeof (struct internal_reloc),
xcoff_sort_relocs);
irel = finfo.section_info[o->target_index].relocs;
irelend = irel + o->reloc_count;
erel = external_relocs;
for (; irel < irelend; irel++, rel_hash++, erel += relsz)
bfd_coff_swap_reloc_out (abfd, (PTR) irel, (PTR) erel);
rel_size = relsz * o->reloc_count;
if (bfd_seek (abfd, o->rel_filepos, SEEK_SET) != 0
|| bfd_bwrite ((PTR) external_relocs, rel_size, abfd) != rel_size)
goto error_return;
}
if (external_relocs != NULL)
{
free (external_relocs);
external_relocs = NULL;
}
/* Free up the section information. */
if (finfo.section_info != NULL)
{
unsigned int i;
for (i = 0; i < abfd->section_count; i++)
{
if (finfo.section_info[i].relocs != NULL)
free (finfo.section_info[i].relocs);
if (finfo.section_info[i].rel_hashes != NULL)
free (finfo.section_info[i].rel_hashes);
}
free (finfo.section_info);
finfo.section_info = NULL;
}
/* Write out the loader section contents. */
BFD_ASSERT ((bfd_byte *) finfo.ldrel
== (xcoff_hash_table (info)->loader_section->contents
+ xcoff_hash_table (info)->ldhdr.l_impoff));
o = xcoff_hash_table (info)->loader_section;
if (! bfd_set_section_contents (abfd, o->output_section, o->contents,
(file_ptr) o->output_offset, o->_raw_size))
goto error_return;
/* Write out the magic sections. */
o = xcoff_hash_table (info)->linkage_section;
if (o->_raw_size > 0
&& ! bfd_set_section_contents (abfd, o->output_section, o->contents,
(file_ptr) o->output_offset,
o->_raw_size))
goto error_return;
o = xcoff_hash_table (info)->toc_section;
if (o->_raw_size > 0
&& ! bfd_set_section_contents (abfd, o->output_section, o->contents,
(file_ptr) o->output_offset,
o->_raw_size))
goto error_return;
o = xcoff_hash_table (info)->descriptor_section;
if (o->_raw_size > 0
&& ! bfd_set_section_contents (abfd, o->output_section, o->contents,
(file_ptr) o->output_offset,
o->_raw_size))
goto error_return;
/* Write out the string table. */
pos = obj_sym_filepos (abfd) + obj_raw_syment_count (abfd) * symesz;
if (bfd_seek (abfd, pos, SEEK_SET) != 0)
goto error_return;
H_PUT_32 (abfd,
_bfd_stringtab_size (finfo.strtab) + STRING_SIZE_SIZE,
strbuf);
amt = STRING_SIZE_SIZE;
if (bfd_bwrite (strbuf, amt, abfd) != amt)
goto error_return;
if (! _bfd_stringtab_emit (abfd, finfo.strtab))
goto error_return;
_bfd_stringtab_free (finfo.strtab);
/* Write out the debugging string table. */
o = xcoff_hash_table (info)->debug_section;
if (o != NULL)
{
struct bfd_strtab_hash *debug_strtab;
debug_strtab = xcoff_hash_table (info)->debug_strtab;
BFD_ASSERT (o->output_section->_raw_size - o->output_offset
>= _bfd_stringtab_size (debug_strtab));
pos = o->output_section->filepos + o->output_offset;
if (bfd_seek (abfd, pos, SEEK_SET) != 0)
goto error_return;
if (! _bfd_stringtab_emit (abfd, debug_strtab))
goto error_return;
}
/* Setting bfd_get_symcount to 0 will cause write_object_contents to
not try to write out the symbols. */
bfd_get_symcount (abfd) = 0;
return true;
error_return:
if (finfo.strtab != NULL)
_bfd_stringtab_free (finfo.strtab);
if (finfo.section_info != NULL)
{
unsigned int i;
for (i = 0; i < abfd->section_count; i++)
{
if (finfo.section_info[i].relocs != NULL)
free (finfo.section_info[i].relocs);
if (finfo.section_info[i].rel_hashes != NULL)
free (finfo.section_info[i].rel_hashes);
}
free (finfo.section_info);
}
if (finfo.internal_syms != NULL)
free (finfo.internal_syms);
if (finfo.sym_indices != NULL)
free (finfo.sym_indices);
if (finfo.outsyms != NULL)
free (finfo.outsyms);
if (finfo.linenos != NULL)
free (finfo.linenos);
if (finfo.contents != NULL)
free (finfo.contents);
if (finfo.external_relocs != NULL)
free (finfo.external_relocs);
if (external_relocs != NULL)
free (external_relocs);
return false;
}
/* Link an input file into the linker output file. This function
handles all the sections and relocations of the input file at once. */
static boolean
xcoff_link_input_bfd (finfo, input_bfd)
struct xcoff_final_link_info *finfo;
bfd *input_bfd;
{
bfd *output_bfd;
const char *strings;
bfd_size_type syment_base;
unsigned int n_tmask;
unsigned int n_btshft;
boolean copy, hash;
bfd_size_type isymesz;
bfd_size_type osymesz;
bfd_size_type linesz;
bfd_byte *esym;
bfd_byte *esym_end;
struct xcoff_link_hash_entry **sym_hash;
struct internal_syment *isymp;
asection **csectpp;
unsigned long *debug_index;
long *indexp;
unsigned long output_index;
bfd_byte *outsym;
unsigned int incls;
asection *oline;
boolean keep_syms;
asection *o;
/* We can just skip DYNAMIC files, unless this is a static link. */
if ((input_bfd->flags & DYNAMIC) != 0
&& ! finfo->info->static_link)
return true;
/* Move all the symbols to the output file. */
output_bfd = finfo->output_bfd;
strings = NULL;
syment_base = obj_raw_syment_count (output_bfd);
isymesz = bfd_coff_symesz (input_bfd);
osymesz = bfd_coff_symesz (output_bfd);
linesz = bfd_coff_linesz (input_bfd);
BFD_ASSERT (linesz == bfd_coff_linesz (output_bfd));
n_tmask = coff_data (input_bfd)->local_n_tmask;
n_btshft = coff_data (input_bfd)->local_n_btshft;
/* Define macros so that ISFCN, et. al., macros work correctly. */
#define N_TMASK n_tmask
#define N_BTSHFT n_btshft
copy = false;
if (! finfo->info->keep_memory)
copy = true;
hash = true;
if ((output_bfd->flags & BFD_TRADITIONAL_FORMAT) != 0)
hash = false;
if (! _bfd_coff_get_external_symbols (input_bfd))
return false;
esym = (bfd_byte *) obj_coff_external_syms (input_bfd);
esym_end = esym + obj_raw_syment_count (input_bfd) * isymesz;
sym_hash = obj_xcoff_sym_hashes (input_bfd);
csectpp = xcoff_data (input_bfd)->csects;
debug_index = xcoff_data (input_bfd)->debug_indices;
isymp = finfo->internal_syms;
indexp = finfo->sym_indices;
output_index = syment_base;
outsym = finfo->outsyms;
incls = 0;
oline = NULL;
while (esym < esym_end)
{
struct internal_syment isym;
union internal_auxent aux;
int smtyp = 0;
boolean skip;
boolean require;
int add;
bfd_coff_swap_sym_in (input_bfd, (PTR) esym, (PTR) isymp);
/* If this is a C_EXT or C_HIDEXT symbol, we need the csect
information. */
if (isymp->n_sclass == C_EXT || isymp->n_sclass == C_HIDEXT)
{
BFD_ASSERT (isymp->n_numaux > 0);
bfd_coff_swap_aux_in (input_bfd,
(PTR) (esym + isymesz * isymp->n_numaux),
isymp->n_type, isymp->n_sclass,
isymp->n_numaux - 1, isymp->n_numaux,
(PTR) &aux);
smtyp = SMTYP_SMTYP (aux.x_csect.x_smtyp);
}
/* Make a copy of *isymp so that the relocate_section function
always sees the original values. This is more reliable than
always recomputing the symbol value even if we are stripping
the symbol. */
isym = *isymp;
/* If this symbol is in the .loader section, swap out the
.loader symbol information. If this is an external symbol
reference to a defined symbol, though, then wait until we get
to the definition. */
if (isym.n_sclass == C_EXT
&& *sym_hash != NULL
&& (*sym_hash)->ldsym != NULL
&& (smtyp != XTY_ER
|| (*sym_hash)->root.type == bfd_link_hash_undefined))
{
struct xcoff_link_hash_entry *h;
struct internal_ldsym *ldsym;
h = *sym_hash;
ldsym = h->ldsym;
if (isym.n_scnum > 0)
{
ldsym->l_scnum = (*csectpp)->output_section->target_index;
ldsym->l_value = (isym.n_value
+ (*csectpp)->output_section->vma
+ (*csectpp)->output_offset
- (*csectpp)->vma);
}
else
{
ldsym->l_scnum = isym.n_scnum;
ldsym->l_value = isym.n_value;
}
ldsym->l_smtype = smtyp;
if (((h->flags & XCOFF_DEF_REGULAR) == 0
&& (h->flags & XCOFF_DEF_DYNAMIC) != 0)
|| (h->flags & XCOFF_IMPORT) != 0)
ldsym->l_smtype |= L_IMPORT;
if (((h->flags & XCOFF_DEF_REGULAR) != 0
&& (h->flags & XCOFF_DEF_DYNAMIC) != 0)
|| (h->flags & XCOFF_EXPORT) != 0)
ldsym->l_smtype |= L_EXPORT;
if ((h->flags & XCOFF_ENTRY) != 0)
ldsym->l_smtype |= L_ENTRY;
ldsym->l_smclas = aux.x_csect.x_smclas;
if (ldsym->l_ifile == (bfd_size_type) -1)
ldsym->l_ifile = 0;
else if (ldsym->l_ifile == 0)
{
if ((ldsym->l_smtype & L_IMPORT) == 0)
ldsym->l_ifile = 0;
else
{
bfd *impbfd;
if (h->root.type == bfd_link_hash_defined
|| h->root.type == bfd_link_hash_defweak)
impbfd = h->root.u.def.section->owner;
else if (h->root.type == bfd_link_hash_undefined
|| h->root.type == bfd_link_hash_undefweak)
impbfd = h->root.u.undef.abfd;
else
impbfd = NULL;
if (impbfd == NULL)
ldsym->l_ifile = 0;
else
{
BFD_ASSERT (impbfd->xvec == finfo->output_bfd->xvec);
ldsym->l_ifile = xcoff_data (impbfd)->import_file_id;
}
}
}
ldsym->l_parm = 0;
BFD_ASSERT (h->ldindx >= 0);
bfd_xcoff_swap_ldsym_out (finfo->output_bfd, ldsym,
(finfo->ldsym
+ ((h->ldindx - 3)
* bfd_xcoff_ldsymsz (finfo->output_bfd))));
h->ldsym = NULL;
/* Fill in snentry now that we know the target_index. */
if ((h->flags & XCOFF_ENTRY) != 0
&& (h->root.type == bfd_link_hash_defined
|| h->root.type == bfd_link_hash_defweak))
{
xcoff_data (output_bfd)->snentry =
h->root.u.def.section->output_section->target_index;
}
}
*indexp = -1;
skip = false;
require = false;
add = 1 + isym.n_numaux;
/* If we are skipping this csect, we want to skip this symbol. */
if (*csectpp == NULL)
skip = true;
/* If we garbage collected this csect, we want to skip this
symbol. */
if (! skip
&& xcoff_hash_table (finfo->info)->gc
&& ((*csectpp)->flags & SEC_MARK) == 0
&& *csectpp != bfd_abs_section_ptr)
skip = true;
/* An XCOFF linker always skips C_STAT symbols. */
if (! skip
&& isymp->n_sclass == C_STAT)
skip = true;
/* We skip all but the first TOC anchor. */
if (! skip
&& isymp->n_sclass == C_HIDEXT
&& aux.x_csect.x_smclas == XMC_TC0)
{
if (finfo->toc_symindx != -1)
skip = true;
else
{
bfd_vma tocval, tocend;
bfd *inp;
tocval = ((*csectpp)->output_section->vma
+ (*csectpp)->output_offset
+ isym.n_value
- (*csectpp)->vma);
/* We want to find out if tocval is a good value to use
as the TOC anchor--that is, whether we can access all
of the TOC using a 16 bit offset from tocval. This
test assumes that the TOC comes at the end of the
output section, as it does in the default linker
script. */
tocend = ((*csectpp)->output_section->vma
+ (*csectpp)->output_section->_raw_size);
for (inp = finfo->info->input_bfds;
inp != NULL;
inp = inp->link_next)
{
for (o = inp->sections; o != NULL; o = o->next)
if (strcmp (o->name, ".tocbss") == 0)
{
bfd_vma new_toc_end;
new_toc_end = (o->output_section->vma
+ o->output_offset
+ o->_cooked_size);
if (new_toc_end > tocend)
tocend = new_toc_end;
}
}
if (tocval + 0x10000 < tocend)
{
(*_bfd_error_handler)
(_("TOC overflow: 0x%lx > 0x10000; try -mminimal-toc when compiling"),
(unsigned long) (tocend - tocval));
bfd_set_error (bfd_error_file_too_big);
return false;
}
if (tocval + 0x8000 < tocend)
{
bfd_vma tocadd;
tocadd = tocend - (tocval + 0x8000);
tocval += tocadd;
isym.n_value += tocadd;
}
finfo->toc_symindx = output_index;
xcoff_data (finfo->output_bfd)->toc = tocval;
xcoff_data (finfo->output_bfd)->sntoc =
(*csectpp)->output_section->target_index;
require = true;
}
}
/* If we are stripping all symbols, we want to skip this one. */
if (! skip
&& finfo->info->strip == strip_all)
skip = true;
/* We can skip resolved external references. */
if (! skip
&& isym.n_sclass == C_EXT
&& smtyp == XTY_ER
&& (*sym_hash)->root.type != bfd_link_hash_undefined)
skip = true;
/* We can skip common symbols if they got defined somewhere
else. */
if (! skip
&& isym.n_sclass == C_EXT
&& smtyp == XTY_CM
&& ((*sym_hash)->root.type != bfd_link_hash_common
|| (*sym_hash)->root.u.c.p->section != *csectpp)
&& ((*sym_hash)->root.type != bfd_link_hash_defined
|| (*sym_hash)->root.u.def.section != *csectpp))
skip = true;
/* Skip local symbols if we are discarding them. */
if (! skip
&& finfo->info->discard == discard_all
&& isym.n_sclass != C_EXT
&& (isym.n_sclass != C_HIDEXT
|| smtyp != XTY_SD))
skip = true;
/* If we stripping debugging symbols, and this is a debugging
symbol, then skip it. */
if (! skip
&& finfo->info->strip == strip_debugger
&& isym.n_scnum == N_DEBUG)
skip = true;
/* If some symbols are stripped based on the name, work out the
name and decide whether to skip this symbol. We don't handle
this correctly for symbols whose names are in the .debug
section; to get it right we would need a new bfd_strtab_hash
function to return the string given the index. */
if (! skip
&& (finfo->info->strip == strip_some
|| finfo->info->discard == discard_l)
&& (debug_index == NULL || *debug_index == (unsigned long) -1))
{
const char *name;
char buf[SYMNMLEN + 1];
name = _bfd_coff_internal_syment_name (input_bfd, &isym, buf);
if (name == NULL)
return false;
if ((finfo->info->strip == strip_some
&& (bfd_hash_lookup (finfo->info->keep_hash, name, false,
false) == NULL))
|| (finfo->info->discard == discard_l
&& (isym.n_sclass != C_EXT
&& (isym.n_sclass != C_HIDEXT
|| smtyp != XTY_SD))
&& bfd_is_local_label_name (input_bfd, name)))
skip = true;
}
/* We can not skip the first TOC anchor. */
if (skip
&& require
&& finfo->info->strip != strip_all)
skip = false;
/* We now know whether we are to skip this symbol or not. */
if (! skip)
{
/* Adjust the symbol in order to output it. */
if (isym._n._n_n._n_zeroes == 0
&& isym._n._n_n._n_offset != 0)
{
/* This symbol has a long name. Enter it in the string
table we are building. If *debug_index != -1, the
name has already been entered in the .debug section. */
if (debug_index != NULL && *debug_index != (unsigned long) -1)
isym._n._n_n._n_offset = *debug_index;
else
{
const char *name;
bfd_size_type indx;
name = _bfd_coff_internal_syment_name (input_bfd, &isym,
(char *) NULL);
if (name == NULL)
return false;
indx = _bfd_stringtab_add (finfo->strtab, name, hash, copy);
if (indx == (bfd_size_type) -1)
return false;
isym._n._n_n._n_offset = STRING_SIZE_SIZE + indx;
}
}
if (isym.n_sclass != C_BSTAT
&& isym.n_sclass != C_ESTAT
&& isym.n_sclass != C_DECL
&& isym.n_scnum > 0)
{
isym.n_scnum = (*csectpp)->output_section->target_index;
isym.n_value += ((*csectpp)->output_section->vma
+ (*csectpp)->output_offset
- (*csectpp)->vma);
}
/* The value of a C_FILE symbol is the symbol index of the
next C_FILE symbol. The value of the last C_FILE symbol
is -1. We try to get this right, below, just before we
write the symbols out, but in the general case we may
have to write the symbol out twice. */
if (isym.n_sclass == C_FILE)
{
if (finfo->last_file_index != -1
&& finfo->last_file.n_value != (bfd_vma) output_index)
{
/* We must correct the value of the last C_FILE entry. */
finfo->last_file.n_value = output_index;
if ((bfd_size_type) finfo->last_file_index >= syment_base)
{
/* The last C_FILE symbol is in this input file. */
bfd_coff_swap_sym_out (output_bfd,
(PTR) &finfo->last_file,
(PTR) (finfo->outsyms
+ ((finfo->last_file_index
- syment_base)
* osymesz)));
}
else
{
/* We have already written out the last C_FILE
symbol. We need to write it out again. We
borrow *outsym temporarily. */
file_ptr pos;
bfd_coff_swap_sym_out (output_bfd,
(PTR) &finfo->last_file,
(PTR) outsym);
pos = obj_sym_filepos (output_bfd);
pos += finfo->last_file_index * osymesz;
if (bfd_seek (output_bfd, pos, SEEK_SET) != 0
|| (bfd_bwrite (outsym, osymesz, output_bfd)
!= osymesz))
return false;
}
}
finfo->last_file_index = output_index;
finfo->last_file = isym;
}
/* The value of a C_BINCL or C_EINCL symbol is a file offset
into the line numbers. We update the symbol values when
we handle the line numbers. */
if (isym.n_sclass == C_BINCL
|| isym.n_sclass == C_EINCL)
{
isym.n_value = finfo->line_filepos;
++incls;
}
/* Output the symbol. */
bfd_coff_swap_sym_out (output_bfd, (PTR) &isym, (PTR) outsym);
*indexp = output_index;
if (isym.n_sclass == C_EXT)
{
long indx;
struct xcoff_link_hash_entry *h;
indx = ((esym - (bfd_byte *) obj_coff_external_syms (input_bfd))
/ isymesz);
h = obj_xcoff_sym_hashes (input_bfd)[indx];
BFD_ASSERT (h != NULL);
h->indx = output_index;
}
/* If this is a symbol in the TOC which we may have merged
(class XMC_TC), remember the symbol index of the TOC
symbol. */
if (isym.n_sclass == C_HIDEXT
&& aux.x_csect.x_smclas == XMC_TC
&& *sym_hash != NULL)
{
BFD_ASSERT (((*sym_hash)->flags & XCOFF_SET_TOC) == 0);
BFD_ASSERT ((*sym_hash)->toc_section != NULL);
(*sym_hash)->u.toc_indx = output_index;
}
output_index += add;
outsym += add * osymesz;
}
esym += add * isymesz;
isymp += add;
csectpp += add;
sym_hash += add;
if (debug_index != NULL)
debug_index += add;
++indexp;
for (--add; add > 0; --add)
*indexp++ = -1;
}
/* Fix up the aux entries and the C_BSTAT symbols. This must be
done in a separate pass, because we don't know the correct symbol
indices until we have already decided which symbols we are going
to keep. */
esym = (bfd_byte *) obj_coff_external_syms (input_bfd);
esym_end = esym + obj_raw_syment_count (input_bfd) * isymesz;
isymp = finfo->internal_syms;
indexp = finfo->sym_indices;
csectpp = xcoff_data (input_bfd)->csects;
outsym = finfo->outsyms;
while (esym < esym_end)
{
int add;
add = 1 + isymp->n_numaux;
if (*indexp < 0)
esym += add * isymesz;
else
{
int i;
if (isymp->n_sclass == C_BSTAT)
{
struct internal_syment isym;
bfd_vma indx;
/* The value of a C_BSTAT symbol is the symbol table
index of the containing csect. */
bfd_coff_swap_sym_in (output_bfd, (PTR) outsym, (PTR) &isym);
indx = isym.n_value;
if (indx < obj_raw_syment_count (input_bfd))
{
long symindx;
symindx = finfo->sym_indices[indx];
if (symindx < 0)
isym.n_value = 0;
else
isym.n_value = symindx;
bfd_coff_swap_sym_out (output_bfd, (PTR) &isym,
(PTR) outsym);
}
}
esym += isymesz;
outsym += osymesz;
for (i = 0; i < isymp->n_numaux && esym < esym_end; i++)
{
union internal_auxent aux;
bfd_coff_swap_aux_in (input_bfd, (PTR) esym, isymp->n_type,
isymp->n_sclass, i, isymp->n_numaux,
(PTR) &aux);
if (isymp->n_sclass == C_FILE)
{
/* This is the file name (or some comment put in by
the compiler). If it is long, we must put it in
the string table. */
if (aux.x_file.x_n.x_zeroes == 0
&& aux.x_file.x_n.x_offset != 0)
{
const char *filename;
bfd_size_type indx;
BFD_ASSERT (aux.x_file.x_n.x_offset
>= STRING_SIZE_SIZE);
if (strings == NULL)
{
strings = _bfd_coff_read_string_table (input_bfd);
if (strings == NULL)
return false;
}
filename = strings + aux.x_file.x_n.x_offset;
indx = _bfd_stringtab_add (finfo->strtab, filename,
hash, copy);
if (indx == (bfd_size_type) -1)
return false;
aux.x_file.x_n.x_offset = STRING_SIZE_SIZE + indx;
}
}
else if ((isymp->n_sclass == C_EXT
|| isymp->n_sclass == C_HIDEXT)
&& i + 1 == isymp->n_numaux)
{
/* We don't support type checking. I don't know if
anybody does. */
aux.x_csect.x_parmhash = 0;
/* I don't think anybody uses these fields, but we'd
better clobber them just in case. */
aux.x_csect.x_stab = 0;
aux.x_csect.x_snstab = 0;
if (SMTYP_SMTYP (aux.x_csect.x_smtyp) == XTY_LD)
{
unsigned long indx;
indx = aux.x_csect.x_scnlen.l;
if (indx < obj_raw_syment_count (input_bfd))
{
long symindx;
symindx = finfo->sym_indices[indx];
if (symindx < 0)
{
aux.x_csect.x_scnlen.l = 0;
}
else
{
aux.x_csect.x_scnlen.l = symindx;
}
}
}
}
else if (isymp->n_sclass != C_STAT || isymp->n_type != T_NULL)
{
unsigned long indx;
if (ISFCN (isymp->n_type)
|| ISTAG (isymp->n_sclass)
|| isymp->n_sclass == C_BLOCK
|| isymp->n_sclass == C_FCN)
{
indx = aux.x_sym.x_fcnary.x_fcn.x_endndx.l;
if (indx > 0
&& indx < obj_raw_syment_count (input_bfd))
{
/* We look forward through the symbol for
the index of the next symbol we are going
to include. I don't know if this is
entirely right. */
while (finfo->sym_indices[indx] < 0
&& indx < obj_raw_syment_count (input_bfd))
++indx;
if (indx >= obj_raw_syment_count (input_bfd))
indx = output_index;
else
indx = finfo->sym_indices[indx];
aux.x_sym.x_fcnary.x_fcn.x_endndx.l = indx;
}
}
indx = aux.x_sym.x_tagndx.l;
if (indx > 0 && indx < obj_raw_syment_count (input_bfd))
{
long symindx;
symindx = finfo->sym_indices[indx];
if (symindx < 0)
aux.x_sym.x_tagndx.l = 0;
else
aux.x_sym.x_tagndx.l = symindx;
}
}
/* Copy over the line numbers, unless we are stripping
them. We do this on a symbol by symbol basis in
order to more easily handle garbage collection. */
if ((isymp->n_sclass == C_EXT
|| isymp->n_sclass == C_HIDEXT)
&& i == 0
&& isymp->n_numaux > 1
&& ISFCN (isymp->n_type)
&& aux.x_sym.x_fcnary.x_fcn.x_lnnoptr != 0)
{
if (finfo->info->strip != strip_none
&& finfo->info->strip != strip_some)
aux.x_sym.x_fcnary.x_fcn.x_lnnoptr = 0;
else
{
asection *enclosing;
unsigned int enc_count;
bfd_signed_vma linoff;
struct internal_lineno lin;
o = *csectpp;
enclosing = xcoff_section_data (abfd, o)->enclosing;
enc_count = xcoff_section_data (abfd, o)->lineno_count;
if (oline != enclosing)
{
file_ptr pos = enclosing->line_filepos;
bfd_size_type amt = linesz * enc_count;
if (bfd_seek (input_bfd, pos, SEEK_SET) != 0
|| (bfd_bread (finfo->linenos, amt, input_bfd)
!= amt))
return false;
oline = enclosing;
}
linoff = (aux.x_sym.x_fcnary.x_fcn.x_lnnoptr
- enclosing->line_filepos);
bfd_coff_swap_lineno_in (input_bfd,
(PTR) (finfo->linenos + linoff),
(PTR) &lin);
if (lin.l_lnno != 0
|| ((bfd_size_type) lin.l_addr.l_symndx
!= ((esym
- isymesz
- ((bfd_byte *)
obj_coff_external_syms (input_bfd)))
/ isymesz)))
aux.x_sym.x_fcnary.x_fcn.x_lnnoptr = 0;
else
{
bfd_byte *linpend, *linp;
bfd_vma offset;
bfd_size_type count;
lin.l_addr.l_symndx = *indexp;
bfd_coff_swap_lineno_out (output_bfd, (PTR) &lin,
(PTR) (finfo->linenos
+ linoff));
linpend = (finfo->linenos
+ enc_count * linesz);
offset = (o->output_section->vma
+ o->output_offset
- o->vma);
for (linp = finfo->linenos + linoff + linesz;
linp < linpend;
linp += linesz)
{
bfd_coff_swap_lineno_in (input_bfd, (PTR) linp,
(PTR) &lin);
if (lin.l_lnno == 0)
break;
lin.l_addr.l_paddr += offset;
bfd_coff_swap_lineno_out (output_bfd,
(PTR) &lin,
(PTR) linp);
}
count = (linp - (finfo->linenos + linoff)) / linesz;
aux.x_sym.x_fcnary.x_fcn.x_lnnoptr =
(o->output_section->line_filepos
+ o->output_section->lineno_count * linesz);
if (bfd_seek (output_bfd,
aux.x_sym.x_fcnary.x_fcn.x_lnnoptr,
SEEK_SET) != 0
|| (bfd_bwrite (finfo->linenos + linoff,
linesz * count, output_bfd)
!= linesz * count))
return false;
o->output_section->lineno_count += count;
if (incls > 0)
{
struct internal_syment *iisp, *iispend;
long *iindp;
bfd_byte *oos;
int iiadd;
/* Update any C_BINCL or C_EINCL symbols
that refer to a line number in the
range we just output. */
iisp = finfo->internal_syms;
iispend = (iisp
+ obj_raw_syment_count (input_bfd));
iindp = finfo->sym_indices;
oos = finfo->outsyms;
while (iisp < iispend)
{
if (*iindp >= 0
&& (iisp->n_sclass == C_BINCL
|| iisp->n_sclass == C_EINCL)
&& ((bfd_size_type) iisp->n_value
>= (bfd_size_type)(enclosing->line_filepos + linoff))
&& ((bfd_size_type) iisp->n_value
< (enclosing->line_filepos
+ enc_count * linesz)))
{
struct internal_syment iis;
bfd_coff_swap_sym_in (output_bfd,
(PTR) oos,
(PTR) &iis);
iis.n_value =
(iisp->n_value
- enclosing->line_filepos
- linoff
+ aux.x_sym.x_fcnary.x_fcn.x_lnnoptr);
bfd_coff_swap_sym_out (output_bfd,
(PTR) &iis,
(PTR) oos);
--incls;
}
iiadd = 1 + iisp->n_numaux;
if (*iindp >= 0)
oos += iiadd * osymesz;
iisp += iiadd;
iindp += iiadd;
}
}
}
}
}
bfd_coff_swap_aux_out (output_bfd, (PTR) &aux, isymp->n_type,
isymp->n_sclass, i, isymp->n_numaux,
(PTR) outsym);
outsym += osymesz;
esym += isymesz;
}
}
indexp += add;
isymp += add;
csectpp += add;
}
/* If we swapped out a C_FILE symbol, guess that the next C_FILE
symbol will be the first symbol in the next input file. In the
normal case, this will save us from writing out the C_FILE symbol
again. */
if (finfo->last_file_index != -1
&& (bfd_size_type) finfo->last_file_index >= syment_base)
{
finfo->last_file.n_value = output_index;
bfd_coff_swap_sym_out (output_bfd, (PTR) &finfo->last_file,
(PTR) (finfo->outsyms
+ ((finfo->last_file_index - syment_base)
* osymesz)));
}
/* Write the modified symbols to the output file. */
if (outsym > finfo->outsyms)
{
file_ptr pos = obj_sym_filepos (output_bfd) + syment_base * osymesz;
bfd_size_type amt = outsym - finfo->outsyms;
if (bfd_seek (output_bfd, pos, SEEK_SET) != 0
|| bfd_bwrite (finfo->outsyms, amt, output_bfd) != amt)
return false;
BFD_ASSERT ((obj_raw_syment_count (output_bfd)
+ (outsym - finfo->outsyms) / osymesz)
== output_index);
obj_raw_syment_count (output_bfd) = output_index;
}
/* Don't let the linker relocation routines discard the symbols. */
keep_syms = obj_coff_keep_syms (input_bfd);
obj_coff_keep_syms (input_bfd) = true;
/* Relocate the contents of each section. */
for (o = input_bfd->sections; o != NULL; o = o->next)
{
bfd_byte *contents;
if (! o->linker_mark)
{
/* This section was omitted from the link. */
continue;
}
if ((o->flags & SEC_HAS_CONTENTS) == 0
|| o->_raw_size == 0
|| (o->flags & SEC_IN_MEMORY) != 0)
continue;
/* We have set filepos correctly for the sections we created to
represent csects, so bfd_get_section_contents should work. */
if (coff_section_data (input_bfd, o) != NULL
&& coff_section_data (input_bfd, o)->contents != NULL)
contents = coff_section_data (input_bfd, o)->contents;
else {
if (! bfd_get_section_contents (input_bfd, o, finfo->contents,
(file_ptr) 0, o->_raw_size))
return false;
contents = finfo->contents;
}
if ((o->flags & SEC_RELOC) != 0)
{
int target_index;
struct internal_reloc *internal_relocs;
struct internal_reloc *irel;
bfd_vma offset;
struct internal_reloc *irelend;
struct xcoff_link_hash_entry **rel_hash;
long r_symndx;
/* Read in the relocs. */
target_index = o->output_section->target_index;
internal_relocs = (xcoff_read_internal_relocs
(input_bfd, o, false, finfo->external_relocs,
true,
(finfo->section_info[target_index].relocs
+ o->output_section->reloc_count)));
if (internal_relocs == NULL)
return false;
/* Call processor specific code to relocate the section
contents. */
if (! bfd_coff_relocate_section (output_bfd, finfo->info,
input_bfd, o,
contents,
internal_relocs,
finfo->internal_syms,
xcoff_data (input_bfd)->csects))
return false;
offset = o->output_section->vma + o->output_offset - o->vma;
irel = internal_relocs;
irelend = irel + o->reloc_count;
rel_hash = (finfo->section_info[target_index].rel_hashes
+ o->output_section->reloc_count);
for (; irel < irelend; irel++, rel_hash++)
{
struct xcoff_link_hash_entry *h = NULL;
struct internal_ldrel ldrel;
boolean quiet;
*rel_hash = NULL;
/* Adjust the reloc address and symbol index. */
irel->r_vaddr += offset;
r_symndx = irel->r_symndx;
if (r_symndx == -1)
h = NULL;
else
h = obj_xcoff_sym_hashes (input_bfd)[r_symndx];
if (r_symndx != -1 && finfo->info->strip != strip_all)
{
if (h != NULL
&& h->smclas != XMC_TD
&& (irel->r_type == R_TOC
|| irel->r_type == R_GL
|| irel->r_type == R_TCL
|| irel->r_type == R_TRL
|| irel->r_type == R_TRLA))
{
/* This is a TOC relative reloc with a symbol
attached. The symbol should be the one which
this reloc is for. We want to make this
reloc against the TOC address of the symbol,
not the symbol itself. */
BFD_ASSERT (h->toc_section != NULL);
BFD_ASSERT ((h->flags & XCOFF_SET_TOC) == 0);
if (h->u.toc_indx != -1)
irel->r_symndx = h->u.toc_indx;
else
{
struct xcoff_toc_rel_hash *n;
struct xcoff_link_section_info *si;
bfd_size_type amt;
amt = sizeof (struct xcoff_toc_rel_hash);
n = ((struct xcoff_toc_rel_hash *)
bfd_alloc (finfo->output_bfd, amt));
if (n == NULL)
return false;
si = finfo->section_info + target_index;
n->next = si->toc_rel_hashes;
n->h = h;
n->rel = irel;
si->toc_rel_hashes = n;
}
}
else if (h != NULL)
{
/* This is a global symbol. */
if (h->indx >= 0)
irel->r_symndx = h->indx;
else
{
/* This symbol is being written at the end
of the file, and we do not yet know the
symbol index. We save the pointer to the
hash table entry in the rel_hash list.
We set the indx field to -2 to indicate
that this symbol must not be stripped. */
*rel_hash = h;
h->indx = -2;
}
}
else
{
long indx;
indx = finfo->sym_indices[r_symndx];
if (indx == -1)
{
struct internal_syment *is;
/* Relocations against a TC0 TOC anchor are
automatically transformed to be against
the TOC anchor in the output file. */
is = finfo->internal_syms + r_symndx;
if (is->n_sclass == C_HIDEXT
&& is->n_numaux > 0)
{
PTR auxptr;
union internal_auxent aux;
auxptr = ((PTR)
(((bfd_byte *)
obj_coff_external_syms (input_bfd))
+ ((r_symndx + is->n_numaux)
* isymesz)));
bfd_coff_swap_aux_in (input_bfd, auxptr,
is->n_type, is->n_sclass,
is->n_numaux - 1,
is->n_numaux,
(PTR) &aux);
if (SMTYP_SMTYP (aux.x_csect.x_smtyp) == XTY_SD
&& aux.x_csect.x_smclas == XMC_TC0)
indx = finfo->toc_symindx;
}
}
if (indx != -1)
irel->r_symndx = indx;
else
{
struct internal_syment *is;
const char *name;
char buf[SYMNMLEN + 1];
/* This reloc is against a symbol we are
stripping. It would be possible to handle
this case, but I don't think it's worth it. */
is = finfo->internal_syms + r_symndx;
name = (_bfd_coff_internal_syment_name
(input_bfd, is, buf));
if (name == NULL)
return false;
if (! ((*finfo->info->callbacks->unattached_reloc)
(finfo->info, name, input_bfd, o,
irel->r_vaddr)))
return false;
}
}
}
quiet = false;
switch (irel->r_type)
{
default:
if (h == NULL
|| h->root.type == bfd_link_hash_defined
|| h->root.type == bfd_link_hash_defweak
|| h->root.type == bfd_link_hash_common)
break;
/* Fall through. */
case R_POS:
case R_NEG:
case R_RL:
case R_RLA:
/* This reloc needs to be copied into the .loader
section. */
ldrel.l_vaddr = irel->r_vaddr;
if (r_symndx == -1)
ldrel.l_symndx = -(bfd_size_type ) 1;
else if (h == NULL
|| (h->root.type == bfd_link_hash_defined
|| h->root.type == bfd_link_hash_defweak
|| h->root.type == bfd_link_hash_common))
{
asection *sec;
if (h == NULL)
sec = xcoff_data (input_bfd)->csects[r_symndx];
else if (h->root.type == bfd_link_hash_common)
sec = h->root.u.c.p->section;
else
sec = h->root.u.def.section;
sec = sec->output_section;
if (strcmp (sec->name, ".text") == 0)
ldrel.l_symndx = 0;
else if (strcmp (sec->name, ".data") == 0)
ldrel.l_symndx = 1;
else if (strcmp (sec->name, ".bss") == 0)
ldrel.l_symndx = 2;
else
{
(*_bfd_error_handler)
(_("%s: loader reloc in unrecognized section `%s'"),
bfd_archive_filename (input_bfd),
sec->name);
bfd_set_error (bfd_error_nonrepresentable_section);
return false;
}
}
else
{
if (! finfo->info->relocateable
&& (h->flags & XCOFF_DEF_DYNAMIC) == 0
&& (h->flags & XCOFF_IMPORT) == 0)
{
/* We already called the undefined_symbol
callback for this relocation, in
_bfd_ppc_xcoff_relocate_section. Don't
issue any more warnings. */
quiet = true;
}
if (h->ldindx < 0 && ! quiet)
{
(*_bfd_error_handler)
(_("%s: `%s' in loader reloc but not loader sym"),
bfd_archive_filename (input_bfd),
h->root.root.string);
bfd_set_error (bfd_error_bad_value);
return false;
}
ldrel.l_symndx = h->ldindx;
}
ldrel.l_rtype = (irel->r_size << 8) | irel->r_type;
ldrel.l_rsecnm = o->output_section->target_index;
if (xcoff_hash_table (finfo->info)->textro
&& strcmp (o->output_section->name, ".text") == 0
&& ! quiet)
{
(*_bfd_error_handler)
(_("%s: loader reloc in read-only section %s"),
bfd_archive_filename (input_bfd),
bfd_get_section_name (finfo->output_bfd,
o->output_section));
bfd_set_error (bfd_error_invalid_operation);
return false;
}
bfd_xcoff_swap_ldrel_out (output_bfd, &ldrel,
finfo->ldrel);
finfo->ldrel += bfd_xcoff_ldrelsz(output_bfd);
break;
case R_TOC:
case R_GL:
case R_TCL:
case R_TRL:
case R_TRLA:
/* We should never need a .loader reloc for a TOC
relative reloc. */
break;
}
}
o->output_section->reloc_count += o->reloc_count;
}
/* Write out the modified section contents. */
if (! bfd_set_section_contents (output_bfd, o->output_section,
contents, (file_ptr) o->output_offset,
(o->_cooked_size != 0
? o->_cooked_size
: o->_raw_size)))
return false;
}
obj_coff_keep_syms (input_bfd) = keep_syms;
if (! finfo->info->keep_memory)
{
if (! _bfd_coff_free_symbols (input_bfd))
return false;
}
return true;
}
#undef N_TMASK
#undef N_BTSHFT
/* Write out a non-XCOFF global symbol. */
static boolean
xcoff_write_global_symbol (h, inf)
struct xcoff_link_hash_entry *h;
PTR inf;
{
struct xcoff_final_link_info *finfo = (struct xcoff_final_link_info *) inf;
bfd *output_bfd;
bfd_byte *outsym;
struct internal_syment isym;
union internal_auxent aux;
boolean result;
file_ptr pos;
bfd_size_type amt;
output_bfd = finfo->output_bfd;
outsym = finfo->outsyms;
/* If this symbol was garbage collected, just skip it. */
if (xcoff_hash_table (finfo->info)->gc
&& (h->flags & XCOFF_MARK) == 0)
return true;
/* If we need a .loader section entry, write it out. */
if (h->ldsym != NULL)
{
struct internal_ldsym *ldsym;
bfd *impbfd;
ldsym = h->ldsym;
if (h->root.type == bfd_link_hash_undefined
|| h->root.type == bfd_link_hash_undefweak)
{
ldsym->l_value = 0;
ldsym->l_scnum = N_UNDEF;
ldsym->l_smtype = XTY_ER;
impbfd = h->root.u.undef.abfd;
}
else if (h->root.type == bfd_link_hash_defined
|| h->root.type == bfd_link_hash_defweak)
{
asection *sec;
sec = h->root.u.def.section;
ldsym->l_value = (sec->output_section->vma
+ sec->output_offset
+ h->root.u.def.value);
ldsym->l_scnum = sec->output_section->target_index;
ldsym->l_smtype = XTY_SD;
impbfd = sec->owner;
}
else
abort ();
if (((h->flags & XCOFF_DEF_REGULAR) == 0
&& (h->flags & XCOFF_DEF_DYNAMIC) != 0)
|| (h->flags & XCOFF_IMPORT) != 0)
{
/* Clear l_smtype
Import symbols are defined so the check above will make
the l_smtype XTY_SD. But this is not correct, it should
be cleared. */
ldsym->l_smtype |= L_IMPORT;
}
if (((h->flags & XCOFF_DEF_REGULAR) != 0
&& (h->flags & XCOFF_DEF_DYNAMIC) != 0)
|| (h->flags & XCOFF_EXPORT) != 0)
{
ldsym->l_smtype |= L_EXPORT;
}
if ((h->flags & XCOFF_ENTRY) != 0)
{
ldsym->l_smtype |= L_ENTRY;
}
if ((h->flags & XCOFF_RTINIT) != 0)
{
ldsym->l_smtype = XTY_SD;
}
ldsym->l_smclas = h->smclas;
if (ldsym->l_smtype & L_IMPORT)
{
if ((h->root.type == bfd_link_hash_defined
|| h->root.type == bfd_link_hash_defweak)
&& (h->root.u.def.value != 0))
{
ldsym->l_smclas = XMC_XO;
}
else if ((h->flags & (XCOFF_SYSCALL32 | XCOFF_SYSCALL64)) ==
(XCOFF_SYSCALL32 | XCOFF_SYSCALL64))
{
ldsym->l_smclas = XMC_SV3264;
}
else if (h->flags & XCOFF_SYSCALL32)
{
ldsym->l_smclas = XMC_SV;
}
else if (h->flags & XCOFF_SYSCALL64)
{
ldsym->l_smclas = XMC_SV64;
}
}
if (ldsym->l_ifile == -(bfd_size_type) 1)
{
ldsym->l_ifile = 0;
}
else if (ldsym->l_ifile == 0)
{
if ((ldsym->l_smtype & L_IMPORT) == 0)
{
ldsym->l_ifile = 0;
}
else if (impbfd == NULL)
{
ldsym->l_ifile = 0;
}
else
{
BFD_ASSERT (impbfd->xvec == output_bfd->xvec);
ldsym->l_ifile = xcoff_data (impbfd)->import_file_id;
}
}
ldsym->l_parm = 0;
BFD_ASSERT (h->ldindx >= 0);
bfd_xcoff_swap_ldsym_out (output_bfd, ldsym,
(finfo->ldsym +
(h->ldindx - 3)
* bfd_xcoff_ldsymsz(finfo->output_bfd)));
h->ldsym = NULL;
}
/* If this symbol needs global linkage code, write it out. */
if (h->root.type == bfd_link_hash_defined
&& (h->root.u.def.section
== xcoff_hash_table (finfo->info)->linkage_section))
{
bfd_byte *p;
bfd_vma tocoff;
unsigned int i;
p = h->root.u.def.section->contents + h->root.u.def.value;
/* The first instruction in the global linkage code loads a
specific TOC element. */
tocoff = (h->descriptor->toc_section->output_section->vma
+ h->descriptor->toc_section->output_offset
- xcoff_data (output_bfd)->toc);
if ((h->descriptor->flags & XCOFF_SET_TOC) != 0)
{
tocoff += h->descriptor->u.toc_offset;
}
/* The first instruction in the glink code needs to be
cooked to to hold the correct offset in the toc. The
rest are just output raw. */
bfd_put_32 (output_bfd,
bfd_xcoff_glink_code(output_bfd, 0) | (tocoff & 0xffff), p);
/* Start with i == 1 to get past the first instruction done above
The /4 is because the glink code is in bytes and we are going
4 at a pop. */
for (i = 1; i < bfd_xcoff_glink_code_size(output_bfd) / 4; i++)
{
bfd_put_32 (output_bfd,
(bfd_vma) bfd_xcoff_glink_code(output_bfd, i),
&p[4 * i]);
}
}
/* If we created a TOC entry for this symbol, write out the required
relocs. */
if ((h->flags & XCOFF_SET_TOC) != 0)
{
asection *tocsec;
asection *osec;
int oindx;
struct internal_reloc *irel;
struct internal_ldrel ldrel;
struct internal_syment irsym;
union internal_auxent iraux;
tocsec = h->toc_section;
osec = tocsec->output_section;
oindx = osec->target_index;
irel = finfo->section_info[oindx].relocs + osec->reloc_count;
irel->r_vaddr = (osec->vma
+ tocsec->output_offset
+ h->u.toc_offset);
if (h->indx >= 0)
{
irel->r_symndx = h->indx;
}
else
{
h->indx = -2;
irel->r_symndx = obj_raw_syment_count (output_bfd);
}
BFD_ASSERT (h->ldindx >= 0);
/* Initialize the aux union here instead of closer to when it is
written out below because the length of the csect depends on
whether the output is 32 or 64 bit. */
memset (&iraux, 0, sizeof iraux);
iraux.x_csect.x_smtyp = XTY_SD;
/* iraux.x_csect.x_scnlen.l = 4 or 8, see below */
iraux.x_csect.x_smclas = XMC_TC;
/* 32 bit uses a 32 bit R_POS to do the relocations
64 bit uses a 64 bit R_POS to do the relocations
Also needs to change the csect size : 4 for 32 bit, 8 for 64 bit
Which one is determined by the backend. */
if (bfd_xcoff_is_xcoff64 (output_bfd))
{
irel->r_size = 63;
iraux.x_csect.x_scnlen.l = 8;
}
else if (bfd_xcoff_is_xcoff32 (output_bfd))
{
irel->r_size = 31;
iraux.x_csect.x_scnlen.l = 4;
}
else
{
return false;
}
irel->r_type = R_POS;
finfo->section_info[oindx].rel_hashes[osec->reloc_count] = NULL;
++osec->reloc_count;
ldrel.l_vaddr = irel->r_vaddr;
ldrel.l_symndx = h->ldindx;
ldrel.l_rtype = (irel->r_size << 8) | R_POS;
ldrel.l_rsecnm = oindx;
bfd_xcoff_swap_ldrel_out (output_bfd, &ldrel, finfo->ldrel);
finfo->ldrel += bfd_xcoff_ldrelsz(output_bfd);
/* We need to emit a symbol to define a csect which holds
the reloc. */
if (finfo->info->strip != strip_all)
{
result = bfd_xcoff_put_symbol_name (output_bfd, finfo->strtab,
&irsym, h->root.root.string);
if (false == result)
{
return false;
}
irsym.n_value = irel->r_vaddr;
irsym.n_scnum = osec->target_index;
irsym.n_sclass = C_HIDEXT;
irsym.n_type = T_NULL;
irsym.n_numaux = 1;
bfd_coff_swap_sym_out (output_bfd, (PTR) &irsym, (PTR) outsym);
outsym += bfd_coff_symesz (output_bfd);
/* note : iraux is initialized above */
bfd_coff_swap_aux_out (output_bfd, (PTR) &iraux, T_NULL, C_HIDEXT,
0, 1, (PTR) outsym);
outsym += bfd_coff_auxesz (output_bfd);
if (h->indx >= 0)
{
/* We aren't going to write out the symbols below, so we
need to write them out now. */
pos = obj_sym_filepos (output_bfd);
pos += (obj_raw_syment_count (output_bfd)
* bfd_coff_symesz (output_bfd));
amt = outsym - finfo->outsyms;
if (bfd_seek (output_bfd, pos, SEEK_SET) != 0
|| bfd_bwrite (finfo->outsyms, amt, output_bfd) != amt)
return false;
obj_raw_syment_count (output_bfd) +=
(outsym - finfo->outsyms) / bfd_coff_symesz (output_bfd);
outsym = finfo->outsyms;
}
}
}
/* If this symbol is a specially defined function descriptor, write
it out. The first word is the address of the function code
itself, the second word is the address of the TOC, and the third
word is zero.
32 bit vs 64 bit
The addresses for the 32 bit will take 4 bytes and the addresses
for 64 bit will take 8 bytes. Similar for the relocs. This type
of logic was also done above to create a TOC entry in
xcoff_write_global_symbol. */
if ((h->flags & XCOFF_DESCRIPTOR) != 0
&& h->root.type == bfd_link_hash_defined
&& (h->root.u.def.section
== xcoff_hash_table (finfo->info)->descriptor_section))
{
asection *sec;
asection *osec;
int oindx;
bfd_byte *p;
struct xcoff_link_hash_entry *hentry;
asection *esec;
struct internal_reloc *irel;
struct internal_ldrel ldrel;
asection *tsec;
unsigned int reloc_size, byte_size;
if (bfd_xcoff_is_xcoff64 (output_bfd))
{
reloc_size = 63;
byte_size = 8;
}
else if (bfd_xcoff_is_xcoff32 (output_bfd))
{
reloc_size = 31;
byte_size = 4;
}
else
{
return false;
}
sec = h->root.u.def.section;
osec = sec->output_section;
oindx = osec->target_index;
p = sec->contents + h->root.u.def.value;
hentry = h->descriptor;
BFD_ASSERT (hentry != NULL
&& (hentry->root.type == bfd_link_hash_defined
|| hentry->root.type == bfd_link_hash_defweak));
esec = hentry->root.u.def.section;
irel = finfo->section_info[oindx].relocs + osec->reloc_count;
irel->r_vaddr = (osec->vma
+ sec->output_offset
+ h->root.u.def.value);
irel->r_symndx = esec->output_section->target_index;
irel->r_type = R_POS;
irel->r_size = reloc_size;
finfo->section_info[oindx].rel_hashes[osec->reloc_count] = NULL;
++osec->reloc_count;
ldrel.l_vaddr = irel->r_vaddr;
if (strcmp (esec->output_section->name, ".text") == 0)
ldrel.l_symndx = 0;
else if (strcmp (esec->output_section->name, ".data") == 0)
ldrel.l_symndx = 1;
else if (strcmp (esec->output_section->name, ".bss") == 0)
ldrel.l_symndx = 2;
else
{
(*_bfd_error_handler)
(_("%s: loader reloc in unrecognized section `%s'"),
bfd_get_filename (output_bfd),
esec->output_section->name);
bfd_set_error (bfd_error_nonrepresentable_section);
return false;
}
ldrel.l_rtype = (reloc_size << 8) | R_POS;
ldrel.l_rsecnm = oindx;
bfd_xcoff_swap_ldrel_out (output_bfd, &ldrel, finfo->ldrel);
finfo->ldrel += bfd_xcoff_ldrelsz(output_bfd);
/* There are three items to write out,
the address of the code
the address of the toc anchor
the environment pointer.
We are ignoring the environment pointer. So set it to zero. */
if (bfd_xcoff_is_xcoff64 (output_bfd))
{
bfd_put_64 (output_bfd,
(esec->output_section->vma + esec->output_offset
+ hentry->root.u.def.value),
p);
bfd_put_64 (output_bfd, xcoff_data (output_bfd)->toc, p + 8);
bfd_put_64 (output_bfd, (bfd_vma) 0, p + 16);
}
else
{
/* 32 bit backend
This logic was already called above so the error case where
the backend is neither has already been checked. */
bfd_put_32 (output_bfd,
(esec->output_section->vma + esec->output_offset
+ hentry->root.u.def.value),
p);
bfd_put_32 (output_bfd, xcoff_data (output_bfd)->toc, p + 4);
bfd_put_32 (output_bfd, (bfd_vma) 0, p + 8);
}
tsec = coff_section_from_bfd_index (output_bfd,
xcoff_data (output_bfd)->sntoc);
++irel;
irel->r_vaddr = (osec->vma
+ sec->output_offset
+ h->root.u.def.value
+ byte_size);
irel->r_symndx = tsec->output_section->target_index;
irel->r_type = R_POS;
irel->r_size = reloc_size;
finfo->section_info[oindx].rel_hashes[osec->reloc_count] = NULL;
++osec->reloc_count;
ldrel.l_vaddr = irel->r_vaddr;
if (strcmp (tsec->output_section->name, ".text") == 0)
ldrel.l_symndx = 0;
else if (strcmp (tsec->output_section->name, ".data") == 0)
ldrel.l_symndx = 1;
else if (strcmp (tsec->output_section->name, ".bss") == 0)
ldrel.l_symndx = 2;
else
{
(*_bfd_error_handler)
(_("%s: loader reloc in unrecognized section `%s'"),
bfd_get_filename (output_bfd),
tsec->output_section->name);
bfd_set_error (bfd_error_nonrepresentable_section);
return false;
}
ldrel.l_rtype = (reloc_size << 8) | R_POS;
ldrel.l_rsecnm = oindx;
bfd_xcoff_swap_ldrel_out (output_bfd, &ldrel, finfo->ldrel);
finfo->ldrel += bfd_xcoff_ldrelsz(output_bfd);
}
if (h->indx >= 0 || finfo->info->strip == strip_all)
{
BFD_ASSERT (outsym == finfo->outsyms);
return true;
}
if (h->indx != -2
&& (finfo->info->strip == strip_all
|| (finfo->info->strip == strip_some
&& bfd_hash_lookup (finfo->info->keep_hash, h->root.root.string,
false, false) == NULL)))
{
BFD_ASSERT (outsym == finfo->outsyms);
return true;
}
if (h->indx != -2
&& (h->flags & (XCOFF_REF_REGULAR | XCOFF_DEF_REGULAR)) == 0)
{
BFD_ASSERT (outsym == finfo->outsyms);
return true;
}
memset (&aux, 0, sizeof aux);
h->indx = obj_raw_syment_count (output_bfd);
result = bfd_xcoff_put_symbol_name (output_bfd, finfo->strtab, &isym,
h->root.root.string);
if (false == result)
{
return false;
}
if (h->root.type == bfd_link_hash_undefined
|| h->root.type == bfd_link_hash_undefweak)
{
isym.n_value = 0;
isym.n_scnum = N_UNDEF;
isym.n_sclass = C_EXT;
aux.x_csect.x_smtyp = XTY_ER;
}
else if ((h->root.type == bfd_link_hash_defined
|| h->root.type == bfd_link_hash_defweak)
&& h->smclas == XMC_XO)
{
BFD_ASSERT (bfd_is_abs_section (h->root.u.def.section));
isym.n_value = h->root.u.def.value;
isym.n_scnum = N_UNDEF;
isym.n_sclass = C_EXT;
aux.x_csect.x_smtyp = XTY_ER;
}
else if (h->root.type == bfd_link_hash_defined
|| h->root.type == bfd_link_hash_defweak)
{
struct xcoff_link_size_list *l;
isym.n_value = (h->root.u.def.section->output_section->vma
+ h->root.u.def.section->output_offset
+ h->root.u.def.value);
isym.n_scnum = h->root.u.def.section->output_section->target_index;
isym.n_sclass = C_HIDEXT;
aux.x_csect.x_smtyp = XTY_SD;
if ((h->flags & XCOFF_HAS_SIZE) != 0)
{
for (l = xcoff_hash_table (finfo->info)->size_list;
l != NULL;
l = l->next)
{
if (l->h == h)
{
aux.x_csect.x_scnlen.l = l->size;
break;
}
}
}
}
else if (h->root.type == bfd_link_hash_common)
{
isym.n_value = (h->root.u.c.p->section->output_section->vma
+ h->root.u.c.p->section->output_offset);
isym.n_scnum = h->root.u.c.p->section->output_section->target_index;
isym.n_sclass = C_EXT;
aux.x_csect.x_smtyp = XTY_CM;
aux.x_csect.x_scnlen.l = h->root.u.c.size;
}
else
abort ();
isym.n_type = T_NULL;
isym.n_numaux = 1;
bfd_coff_swap_sym_out (output_bfd, (PTR) &isym, (PTR) outsym);
outsym += bfd_coff_symesz (output_bfd);
aux.x_csect.x_smclas = h->smclas;
bfd_coff_swap_aux_out (output_bfd, (PTR) &aux, T_NULL, isym.n_sclass, 0, 1,
(PTR) outsym);
outsym += bfd_coff_auxesz (output_bfd);
if ((h->root.type == bfd_link_hash_defined
|| h->root.type == bfd_link_hash_defweak)
&& h->smclas != XMC_XO)
{
/* We just output an SD symbol. Now output an LD symbol. */
h->indx += 2;
isym.n_sclass = C_EXT;
bfd_coff_swap_sym_out (output_bfd, (PTR) &isym, (PTR) outsym);
outsym += bfd_coff_symesz (output_bfd);
aux.x_csect.x_smtyp = XTY_LD;
aux.x_csect.x_scnlen.l = obj_raw_syment_count (output_bfd);
bfd_coff_swap_aux_out (output_bfd, (PTR) &aux, T_NULL, C_EXT, 0, 1,
(PTR) outsym);
outsym += bfd_coff_auxesz (output_bfd);
}
pos = obj_sym_filepos (output_bfd);
pos += obj_raw_syment_count (output_bfd) * bfd_coff_symesz (output_bfd);
amt = outsym - finfo->outsyms;
if (bfd_seek (output_bfd, pos, SEEK_SET) != 0
|| bfd_bwrite (finfo->outsyms, amt, output_bfd) != amt)
return false;
obj_raw_syment_count (output_bfd) +=
(outsym - finfo->outsyms) / bfd_coff_symesz (output_bfd);
return true;
}
/* Handle a link order which is supposed to generate a reloc. */
static boolean
xcoff_reloc_link_order (output_bfd, finfo, output_section, link_order)
bfd *output_bfd;
struct xcoff_final_link_info *finfo;
asection *output_section;
struct bfd_link_order *link_order;
{
reloc_howto_type *howto;
struct xcoff_link_hash_entry *h;
asection *hsec;
bfd_vma hval;
bfd_vma addend;
struct internal_reloc *irel;
struct xcoff_link_hash_entry **rel_hash_ptr;
struct internal_ldrel ldrel;
if (link_order->type == bfd_section_reloc_link_order)
{
/* We need to somehow locate a symbol in the right section. The
symbol must either have a value of zero, or we must adjust
the addend by the value of the symbol. FIXME: Write this
when we need it. The old linker couldn't handle this anyhow. */
abort ();
}
howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
if (howto == NULL)
{
bfd_set_error (bfd_error_bad_value);
return false;
}
h = ((struct xcoff_link_hash_entry *)
bfd_wrapped_link_hash_lookup (output_bfd, finfo->info,
link_order->u.reloc.p->u.name,
false, false, true));
if (h == NULL)
{
if (! ((*finfo->info->callbacks->unattached_reloc)
(finfo->info, link_order->u.reloc.p->u.name, (bfd *) NULL,
(asection *) NULL, (bfd_vma) 0)))
return false;
return true;
}
if (h->root.type == bfd_link_hash_common)
{
hsec = h->root.u.c.p->section;
hval = 0;
}
else if (h->root.type == bfd_link_hash_defined
|| h->root.type == bfd_link_hash_defweak)
{
hsec = h->root.u.def.section;
hval = h->root.u.def.value;
}
else
{
hsec = NULL;
hval = 0;
}
addend = link_order->u.reloc.p->addend;
if (hsec != NULL)
addend += (hsec->output_section->vma
+ hsec->output_offset
+ hval);
if (addend != 0)
{
bfd_size_type size;
bfd_byte *buf;
bfd_reloc_status_type rstat;
boolean ok;
size = bfd_get_reloc_size (howto);
buf = (bfd_byte *) bfd_zmalloc (size);
if (buf == NULL)
return false;
rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
switch (rstat)
{
case bfd_reloc_ok:
break;
default:
case bfd_reloc_outofrange:
abort ();
case bfd_reloc_overflow:
if (! ((*finfo->info->callbacks->reloc_overflow)
(finfo->info, link_order->u.reloc.p->u.name,
howto->name, addend, (bfd *) NULL, (asection *) NULL,
(bfd_vma) 0)))
{
free (buf);
return false;
}
break;
}
ok = bfd_set_section_contents (output_bfd, output_section, (PTR) buf,
(file_ptr) link_order->offset, size);
free (buf);
if (! ok)
return false;
}
/* Store the reloc information in the right place. It will get
swapped and written out at the end of the final_link routine. */
irel = (finfo->section_info[output_section->target_index].relocs
+ output_section->reloc_count);
rel_hash_ptr = (finfo->section_info[output_section->target_index].rel_hashes
+ output_section->reloc_count);
memset (irel, 0, sizeof (struct internal_reloc));
*rel_hash_ptr = NULL;
irel->r_vaddr = output_section->vma + link_order->offset;
if (h->indx >= 0)
irel->r_symndx = h->indx;
else
{
/* Set the index to -2 to force this symbol to get written out. */
h->indx = -2;
*rel_hash_ptr = h;
irel->r_symndx = 0;
}
irel->r_type = howto->type;
irel->r_size = howto->bitsize - 1;
if (howto->complain_on_overflow == complain_overflow_signed)
irel->r_size |= 0x80;
++output_section->reloc_count;
/* Now output the reloc to the .loader section. */
ldrel.l_vaddr = irel->r_vaddr;
if (hsec != NULL)
{
const char *secname;
secname = hsec->output_section->name;
if (strcmp (secname, ".text") == 0)
ldrel.l_symndx = 0;
else if (strcmp (secname, ".data") == 0)
ldrel.l_symndx = 1;
else if (strcmp (secname, ".bss") == 0)
ldrel.l_symndx = 2;
else
{
(*_bfd_error_handler)
(_("%s: loader reloc in unrecognized section `%s'"),
bfd_get_filename (output_bfd), secname);
bfd_set_error (bfd_error_nonrepresentable_section);
return false;
}
}
else
{
if (h->ldindx < 0)
{
(*_bfd_error_handler)
(_("%s: `%s' in loader reloc but not loader sym"),
bfd_get_filename (output_bfd),
h->root.root.string);
bfd_set_error (bfd_error_bad_value);
return false;
}
ldrel.l_symndx = h->ldindx;
}
ldrel.l_rtype = (irel->r_size << 8) | irel->r_type;
ldrel.l_rsecnm = output_section->target_index;
bfd_xcoff_swap_ldrel_out (output_bfd, &ldrel, finfo->ldrel);
finfo->ldrel += bfd_xcoff_ldrelsz(output_bfd);
return true;
}
/* Sort relocs by VMA. This is called via qsort. */
static int
xcoff_sort_relocs (p1, p2)
const PTR p1;
const PTR p2;
{
const struct internal_reloc *r1 = (const struct internal_reloc *) p1;
const struct internal_reloc *r2 = (const struct internal_reloc *) p2;
if (r1->r_vaddr > r2->r_vaddr)
return 1;
else if (r1->r_vaddr < r2->r_vaddr)
return -1;
else
return 0;
}