mirror of
https://github.com/darlinghq/darling-gdb.git
synced 2025-01-09 21:50:35 +00:00
8c73afb353
* basic_blocks.h (bb_min_calls): Change to unsigned long. * call_graph.h (cg_tally): Change count parameter to unsigned long. * cg_arcs.h (Arc): Change count field to unsigned long. (arc_add): Change count parameter to unsigned long. * source.h (Source_File): Change ncalls field to unsigned long. * symtab.h (Sym): Change fields ncalls, bb_calls, and cg.self_calls to unsigned long. * Many files: Update accordingly.
597 lines
15 KiB
C
597 lines
15 KiB
C
/*
|
|
* Histogram related operations.
|
|
*/
|
|
#include <stdio.h>
|
|
#include "libiberty.h"
|
|
#include "gprof.h"
|
|
#include "corefile.h"
|
|
#include "gmon_io.h"
|
|
#include "gmon_out.h"
|
|
#include "hist.h"
|
|
#include "symtab.h"
|
|
#include "sym_ids.h"
|
|
#include "utils.h"
|
|
|
|
#define UNITS_TO_CODE (offset_to_code / sizeof(UNIT))
|
|
|
|
static void scale_and_align_entries PARAMS ((void));
|
|
|
|
/* declarations of automatically generated functions to output blurbs: */
|
|
extern void flat_blurb PARAMS ((FILE * fp));
|
|
|
|
bfd_vma s_lowpc; /* lowest address in .text */
|
|
bfd_vma s_highpc = 0; /* highest address in .text */
|
|
bfd_vma lowpc, highpc; /* same, but expressed in UNITs */
|
|
int hist_num_bins = 0; /* number of histogram samples */
|
|
int *hist_sample = 0; /* histogram samples (shorts in the file!) */
|
|
double hist_scale;
|
|
char hist_dimension[sizeof (((struct gmon_hist_hdr *) 0)->dimen) + 1] =
|
|
"seconds";
|
|
char hist_dimension_abbrev = 's';
|
|
|
|
static double accum_time; /* accumulated time so far for print_line() */
|
|
static double total_time; /* total time for all routines */
|
|
/*
|
|
* Table of SI prefixes for powers of 10 (used to automatically
|
|
* scale some of the values in the flat profile).
|
|
*/
|
|
const struct
|
|
{
|
|
char prefix;
|
|
double scale;
|
|
}
|
|
SItab[] =
|
|
{
|
|
{
|
|
'T', 1e-12
|
|
}
|
|
, /* tera */
|
|
{
|
|
'G', 1e-09
|
|
}
|
|
, /* giga */
|
|
{
|
|
'M', 1e-06
|
|
}
|
|
, /* mega */
|
|
{
|
|
'K', 1e-03
|
|
}
|
|
, /* kilo */
|
|
{
|
|
' ', 1e-00
|
|
}
|
|
,
|
|
{
|
|
'm', 1e+03
|
|
}
|
|
, /* milli */
|
|
{
|
|
'u', 1e+06
|
|
}
|
|
, /* micro */
|
|
{
|
|
'n', 1e+09
|
|
}
|
|
, /* nano */
|
|
{
|
|
'p', 1e+12
|
|
}
|
|
, /* pico */
|
|
{
|
|
'f', 1e+15
|
|
}
|
|
, /* femto */
|
|
{
|
|
'a', 1e+18
|
|
}
|
|
, /* ato */
|
|
};
|
|
|
|
/*
|
|
* Read the histogram from file IFP. FILENAME is the name of IFP and
|
|
* is provided for formatting error messages only.
|
|
*/
|
|
void
|
|
DEFUN (hist_read_rec, (ifp, filename), FILE * ifp AND const char *filename)
|
|
{
|
|
struct gmon_hist_hdr hdr;
|
|
bfd_vma n_lowpc, n_highpc;
|
|
int i, ncnt, profrate;
|
|
UNIT count;
|
|
|
|
if (fread (&hdr, sizeof (hdr), 1, ifp) != 1)
|
|
{
|
|
fprintf (stderr, _("%s: %s: unexpected end of file\n"),
|
|
whoami, filename);
|
|
done (1);
|
|
}
|
|
|
|
n_lowpc = (bfd_vma) get_vma (core_bfd, (bfd_byte *) hdr.low_pc);
|
|
n_highpc = (bfd_vma) get_vma (core_bfd, (bfd_byte *) hdr.high_pc);
|
|
ncnt = bfd_get_32 (core_bfd, (bfd_byte *) hdr.hist_size);
|
|
profrate = bfd_get_32 (core_bfd, (bfd_byte *) hdr.prof_rate);
|
|
strncpy (hist_dimension, hdr.dimen, sizeof (hdr.dimen));
|
|
hist_dimension[sizeof (hdr.dimen)] = '\0';
|
|
hist_dimension_abbrev = hdr.dimen_abbrev;
|
|
|
|
if (!s_highpc)
|
|
{
|
|
|
|
/* this is the first histogram record: */
|
|
|
|
s_lowpc = n_lowpc;
|
|
s_highpc = n_highpc;
|
|
lowpc = (bfd_vma) n_lowpc / sizeof (UNIT);
|
|
highpc = (bfd_vma) n_highpc / sizeof (UNIT);
|
|
hist_num_bins = ncnt;
|
|
hz = profrate;
|
|
}
|
|
|
|
DBG (SAMPLEDEBUG,
|
|
printf ("[hist_read_rec] n_lowpc 0x%lx n_highpc 0x%lx ncnt %d\n",
|
|
n_lowpc, n_highpc, ncnt);
|
|
printf ("[hist_read_rec] s_lowpc 0x%lx s_highpc 0x%lx nsamples %d\n",
|
|
s_lowpc, s_highpc, hist_num_bins);
|
|
printf ("[hist_read_rec] lowpc 0x%lx highpc 0x%lx\n",
|
|
lowpc, highpc));
|
|
|
|
if (n_lowpc != s_lowpc || n_highpc != s_highpc
|
|
|| ncnt != hist_num_bins || hz != profrate)
|
|
{
|
|
fprintf (stderr, _("%s: `%s' is incompatible with first gmon file\n"),
|
|
whoami, filename);
|
|
done (1);
|
|
}
|
|
|
|
if (!hist_sample)
|
|
{
|
|
hist_sample = (int *) xmalloc (hist_num_bins * sizeof (hist_sample[0]));
|
|
memset (hist_sample, 0, hist_num_bins * sizeof (hist_sample[0]));
|
|
}
|
|
|
|
for (i = 0; i < hist_num_bins; ++i)
|
|
{
|
|
if (fread (&count[0], sizeof (count), 1, ifp) != 1)
|
|
{
|
|
fprintf (stderr,
|
|
_("%s: %s: unexpected EOF after reading %d of %d samples\n"),
|
|
whoami, filename, i, hist_num_bins);
|
|
done (1);
|
|
}
|
|
hist_sample[i] += bfd_get_16 (core_bfd, (bfd_byte *) & count[0]);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Write execution histogram to file OFP. FILENAME is the name
|
|
* of OFP and is provided for formatting error-messages only.
|
|
*/
|
|
void
|
|
DEFUN (hist_write_hist, (ofp, filename), FILE * ofp AND const char *filename)
|
|
{
|
|
struct gmon_hist_hdr hdr;
|
|
unsigned char tag;
|
|
UNIT count;
|
|
int i;
|
|
|
|
/* write header: */
|
|
|
|
tag = GMON_TAG_TIME_HIST;
|
|
put_vma (core_bfd, s_lowpc, (bfd_byte *) hdr.low_pc);
|
|
put_vma (core_bfd, s_highpc, (bfd_byte *) hdr.high_pc);
|
|
bfd_put_32 (core_bfd, hist_num_bins, (bfd_byte *) hdr.hist_size);
|
|
bfd_put_32 (core_bfd, hz, (bfd_byte *) hdr.prof_rate);
|
|
strncpy (hdr.dimen, hist_dimension, sizeof (hdr.dimen));
|
|
hdr.dimen_abbrev = hist_dimension_abbrev;
|
|
|
|
if (fwrite (&tag, sizeof (tag), 1, ofp) != 1
|
|
|| fwrite (&hdr, sizeof (hdr), 1, ofp) != 1)
|
|
{
|
|
perror (filename);
|
|
done (1);
|
|
}
|
|
|
|
for (i = 0; i < hist_num_bins; ++i)
|
|
{
|
|
bfd_put_16 (core_bfd, hist_sample[i], (bfd_byte *) & count[0]);
|
|
if (fwrite (&count[0], sizeof (count), 1, ofp) != 1)
|
|
{
|
|
perror (filename);
|
|
done (1);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Calculate scaled entry point addresses (to save time in
|
|
* hist_assign_samples), and, on architectures that have procedure
|
|
* entry masks at the start of a function, possibly push the scaled
|
|
* entry points over the procedure entry mask, if it turns out that
|
|
* the entry point is in one bin and the code for a routine is in the
|
|
* next bin.
|
|
*/
|
|
static void
|
|
scale_and_align_entries ()
|
|
{
|
|
Sym *sym;
|
|
bfd_vma bin_of_entry;
|
|
bfd_vma bin_of_code;
|
|
|
|
for (sym = symtab.base; sym < symtab.limit; sym++)
|
|
{
|
|
sym->hist.scaled_addr = sym->addr / sizeof (UNIT);
|
|
bin_of_entry = (sym->hist.scaled_addr - lowpc) / hist_scale;
|
|
bin_of_code = (sym->hist.scaled_addr + UNITS_TO_CODE - lowpc) / hist_scale;
|
|
if (bin_of_entry < bin_of_code)
|
|
{
|
|
DBG (SAMPLEDEBUG,
|
|
printf ("[scale_and_align_entries] pushing 0x%lx to 0x%lx\n",
|
|
sym->hist.scaled_addr,
|
|
sym->hist.scaled_addr + UNITS_TO_CODE));
|
|
sym->hist.scaled_addr += UNITS_TO_CODE;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Assign samples to the symbol to which they belong.
|
|
*
|
|
* Histogram bin I covers some address range [BIN_LOWPC,BIN_HIGH_PC)
|
|
* which may overlap one more symbol address ranges. If a symbol
|
|
* overlaps with the bin's address range by O percent, then O percent
|
|
* of the bin's count is credited to that symbol.
|
|
*
|
|
* There are three cases as to where BIN_LOW_PC and BIN_HIGH_PC can be
|
|
* with respect to the symbol's address range [SYM_LOW_PC,
|
|
* SYM_HIGH_PC) as shown in the following diagram. OVERLAP computes
|
|
* the distance (in UNITs) between the arrows, the fraction of the
|
|
* sample that is to be credited to the symbol which starts at
|
|
* SYM_LOW_PC.
|
|
*
|
|
* sym_low_pc sym_high_pc
|
|
* | |
|
|
* v v
|
|
*
|
|
* +-----------------------------------------------+
|
|
* | |
|
|
* | ->| |<- ->| |<- ->| |<- |
|
|
* | | | | | |
|
|
* +---------+ +---------+ +---------+
|
|
*
|
|
* ^ ^ ^ ^ ^ ^
|
|
* | | | | | |
|
|
* bin_low_pc bin_high_pc bin_low_pc bin_high_pc bin_low_pc bin_high_pc
|
|
*
|
|
* For the VAX we assert that samples will never fall in the first two
|
|
* bytes of any routine, since that is the entry mask, thus we call
|
|
* scale_and_align_entries() to adjust the entry points if the entry
|
|
* mask falls in one bin but the code for the routine doesn't start
|
|
* until the next bin. In conjunction with the alignment of routine
|
|
* addresses, this should allow us to have only one sample for every
|
|
* four bytes of text space and never have any overlap (the two end
|
|
* cases, above).
|
|
*/
|
|
void
|
|
DEFUN_VOID (hist_assign_samples)
|
|
{
|
|
bfd_vma bin_low_pc, bin_high_pc;
|
|
bfd_vma sym_low_pc, sym_high_pc;
|
|
bfd_vma overlap, addr;
|
|
int bin_count, i;
|
|
unsigned int j;
|
|
double time, credit;
|
|
|
|
/* read samples and assign to symbols: */
|
|
hist_scale = highpc - lowpc;
|
|
hist_scale /= hist_num_bins;
|
|
scale_and_align_entries ();
|
|
|
|
/* iterate over all sample bins: */
|
|
|
|
for (i = 0, j = 1; i < hist_num_bins; ++i)
|
|
{
|
|
bin_count = hist_sample[i];
|
|
if (!bin_count)
|
|
{
|
|
continue;
|
|
}
|
|
bin_low_pc = lowpc + (bfd_vma) (hist_scale * i);
|
|
bin_high_pc = lowpc + (bfd_vma) (hist_scale * (i + 1));
|
|
time = bin_count;
|
|
DBG (SAMPLEDEBUG,
|
|
printf (
|
|
"[assign_samples] bin_low_pc=0x%lx, bin_high_pc=0x%lx, bin_count=%d\n",
|
|
sizeof (UNIT) * bin_low_pc, sizeof (UNIT) * bin_high_pc,
|
|
bin_count));
|
|
total_time += time;
|
|
|
|
/* credit all symbols that are covered by bin I: */
|
|
|
|
for (j = j - 1; j < symtab.len; ++j)
|
|
{
|
|
sym_low_pc = symtab.base[j].hist.scaled_addr;
|
|
sym_high_pc = symtab.base[j + 1].hist.scaled_addr;
|
|
/*
|
|
* If high end of bin is below entry address, go for next
|
|
* bin:
|
|
*/
|
|
if (bin_high_pc < sym_low_pc)
|
|
{
|
|
break;
|
|
}
|
|
/*
|
|
* If low end of bin is above high end of symbol, go for
|
|
* next symbol.
|
|
*/
|
|
if (bin_low_pc >= sym_high_pc)
|
|
{
|
|
continue;
|
|
}
|
|
overlap =
|
|
MIN (bin_high_pc, sym_high_pc) - MAX (bin_low_pc, sym_low_pc);
|
|
if (overlap > 0)
|
|
{
|
|
DBG (SAMPLEDEBUG,
|
|
printf (
|
|
"[assign_samples] [0x%lx,0x%lx) %s gets %f ticks %ld overlap\n",
|
|
symtab.base[j].addr, sizeof (UNIT) * sym_high_pc,
|
|
symtab.base[j].name, overlap * time / hist_scale,
|
|
overlap));
|
|
addr = symtab.base[j].addr;
|
|
credit = overlap * time / hist_scale;
|
|
/*
|
|
* Credit symbol if it appears in INCL_FLAT or that
|
|
* table is empty and it does not appear it in
|
|
* EXCL_FLAT.
|
|
*/
|
|
if (sym_lookup (&syms[INCL_FLAT], addr)
|
|
|| (syms[INCL_FLAT].len == 0
|
|
&& !sym_lookup (&syms[EXCL_FLAT], addr)))
|
|
{
|
|
symtab.base[j].hist.time += credit;
|
|
}
|
|
else
|
|
{
|
|
total_time -= credit;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
DBG (SAMPLEDEBUG, printf ("[assign_samples] total_time %f\n",
|
|
total_time));
|
|
}
|
|
|
|
|
|
/*
|
|
* Print header for flag histogram profile:
|
|
*/
|
|
static void
|
|
DEFUN (print_header, (prefix), const char prefix)
|
|
{
|
|
char unit[64];
|
|
|
|
sprintf (unit, _("%c%c/call"), prefix, hist_dimension_abbrev);
|
|
|
|
if (bsd_style_output)
|
|
{
|
|
printf (_("\ngranularity: each sample hit covers %ld byte(s)"),
|
|
(long) hist_scale * sizeof (UNIT));
|
|
if (total_time > 0.0)
|
|
{
|
|
printf (_(" for %.2f%% of %.2f %s\n\n"),
|
|
100.0 / total_time, total_time / hz, hist_dimension);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
printf (_("\nEach sample counts as %g %s.\n"), 1.0 / hz, hist_dimension);
|
|
}
|
|
|
|
if (total_time <= 0.0)
|
|
{
|
|
printf (_(" no time accumulated\n\n"));
|
|
/* this doesn't hurt since all the numerators will be zero: */
|
|
total_time = 1.0;
|
|
}
|
|
|
|
printf ("%5.5s %10.10s %8.8s %8.8s %8.8s %8.8s %-8.8s\n",
|
|
"% ", _("cumulative"), _("self "), "", _("self "), _("total "), "");
|
|
printf ("%5.5s %9.9s %8.8s %8.8s %8.8s %8.8s %-8.8s\n",
|
|
_("time"), hist_dimension, hist_dimension, _("calls"), unit, unit,
|
|
_("name"));
|
|
}
|
|
|
|
|
|
static void
|
|
DEFUN (print_line, (sym, scale), Sym * sym AND double scale)
|
|
{
|
|
if (ignore_zeros && sym->ncalls == 0 && sym->hist.time == 0)
|
|
{
|
|
return;
|
|
}
|
|
|
|
accum_time += sym->hist.time;
|
|
if (bsd_style_output)
|
|
{
|
|
printf ("%5.1f %10.2f %8.2f",
|
|
total_time > 0.0 ? 100 * sym->hist.time / total_time : 0.0,
|
|
accum_time / hz, sym->hist.time / hz);
|
|
}
|
|
else
|
|
{
|
|
printf ("%6.2f %9.2f %8.2f",
|
|
total_time > 0.0 ? 100 * sym->hist.time / total_time : 0.0,
|
|
accum_time / hz, sym->hist.time / hz);
|
|
}
|
|
if (sym->ncalls != 0)
|
|
{
|
|
printf (" %8lu %8.2f %8.2f ",
|
|
sym->ncalls, scale * sym->hist.time / hz / sym->ncalls,
|
|
scale * (sym->hist.time + sym->cg.child_time) / hz / sym->ncalls);
|
|
}
|
|
else
|
|
{
|
|
printf (" %8.8s %8.8s %8.8s ", "", "", "");
|
|
}
|
|
if (bsd_style_output)
|
|
{
|
|
print_name (sym);
|
|
}
|
|
else
|
|
{
|
|
print_name_only (sym);
|
|
}
|
|
printf ("\n");
|
|
}
|
|
|
|
|
|
/*
|
|
* Compare LP and RP. The primary comparison key is execution time,
|
|
* the secondary is number of invocation, and the tertiary is the
|
|
* lexicographic order of the function names.
|
|
*/
|
|
static int
|
|
DEFUN (cmp_time, (lp, rp), const PTR lp AND const PTR rp)
|
|
{
|
|
const Sym *left = *(const Sym **) lp;
|
|
const Sym *right = *(const Sym **) rp;
|
|
double time_diff;
|
|
|
|
time_diff = right->hist.time - left->hist.time;
|
|
if (time_diff > 0.0)
|
|
{
|
|
return 1;
|
|
}
|
|
if (time_diff < 0.0)
|
|
{
|
|
return -1;
|
|
}
|
|
|
|
if (right->ncalls > left->ncalls)
|
|
{
|
|
return 1;
|
|
}
|
|
if (right->ncalls < left->ncalls)
|
|
{
|
|
return -1;
|
|
}
|
|
|
|
return strcmp (left->name, right->name);
|
|
}
|
|
|
|
|
|
/*
|
|
* Print the flat histogram profile.
|
|
*/
|
|
void
|
|
DEFUN_VOID (hist_print)
|
|
{
|
|
Sym **time_sorted_syms, *top_dog, *sym;
|
|
unsigned int index;
|
|
int log_scale;
|
|
double top_time, time;
|
|
bfd_vma addr;
|
|
|
|
if (first_output)
|
|
{
|
|
first_output = FALSE;
|
|
}
|
|
else
|
|
{
|
|
printf ("\f\n");
|
|
}
|
|
|
|
accum_time = 0.0;
|
|
if (bsd_style_output)
|
|
{
|
|
if (print_descriptions)
|
|
{
|
|
printf (_("\n\n\nflat profile:\n"));
|
|
flat_blurb (stdout);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
printf (_("Flat profile:\n"));
|
|
}
|
|
/*
|
|
* Sort the symbol table by time (call-count and name as secondary
|
|
* and tertiary keys):
|
|
*/
|
|
time_sorted_syms = (Sym **) xmalloc (symtab.len * sizeof (Sym *));
|
|
for (index = 0; index < symtab.len; ++index)
|
|
{
|
|
time_sorted_syms[index] = &symtab.base[index];
|
|
}
|
|
qsort (time_sorted_syms, symtab.len, sizeof (Sym *), cmp_time);
|
|
|
|
if (bsd_style_output)
|
|
{
|
|
log_scale = 5; /* milli-seconds is BSD-default */
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
* Search for symbol with highest per-call execution time and
|
|
* scale accordingly:
|
|
*/
|
|
log_scale = 0;
|
|
top_dog = 0;
|
|
top_time = 0.0;
|
|
for (index = 0; index < symtab.len; ++index)
|
|
{
|
|
sym = time_sorted_syms[index];
|
|
if (sym->ncalls != 0)
|
|
{
|
|
time = (sym->hist.time + sym->cg.child_time) / sym->ncalls;
|
|
if (time > top_time)
|
|
{
|
|
top_dog = sym;
|
|
top_time = time;
|
|
}
|
|
}
|
|
}
|
|
if (top_dog && top_dog->ncalls != 0 && top_time > 0.0)
|
|
{
|
|
top_time /= hz;
|
|
while (SItab[log_scale].scale * top_time < 1000.0
|
|
&& ((size_t) log_scale
|
|
< sizeof (SItab) / sizeof (SItab[0]) - 1))
|
|
{
|
|
++log_scale;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* For now, the dimension is always seconds. In the future, we
|
|
* may also want to support other (pseudo-)dimensions (such as
|
|
* I-cache misses etc.).
|
|
*/
|
|
print_header (SItab[log_scale].prefix);
|
|
for (index = 0; index < symtab.len; ++index)
|
|
{
|
|
addr = time_sorted_syms[index]->addr;
|
|
/*
|
|
* Print symbol if its in INCL_FLAT table or that table
|
|
* is empty and the symbol is not in EXCL_FLAT.
|
|
*/
|
|
if (sym_lookup (&syms[INCL_FLAT], addr)
|
|
|| (syms[INCL_FLAT].len == 0
|
|
&& !sym_lookup (&syms[EXCL_FLAT], addr)))
|
|
{
|
|
print_line (time_sorted_syms[index], SItab[log_scale].scale);
|
|
}
|
|
}
|
|
free (time_sorted_syms);
|
|
|
|
if (print_descriptions && !bsd_style_output)
|
|
{
|
|
flat_blurb (stdout);
|
|
}
|
|
}
|