darling-gdb/sim/erc32/erc32.c
Stu Grossman b7b3111471 * erc32.c (mec_reset mec_read mec_write memory_read memory_write),
sis.h:  Get rid of all uses of long long's.
	* (close_port read_uart write_uart uarta_tx):  Don't seg fault
	when can't open pty's.
	* exec.c:  Add two new instructions: smul, and divscc.
	* interf.c (flush_windows):  New routine to flush the register
	windows out to the stack just before returning to GDB.  Makes
	backtraces work much better.
1996-07-04 00:51:22 +00:00

1496 lines
28 KiB
C

/*
* This file is part of SIS.
*
* SIS, SPARC instruction simulator V1.8 Copyright (C) 1995 Jiri Gaisler,
* European Space Agency
*
* This program is free software; you can redistribute it and/or modify it under
* the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc., 675
* Mass Ave, Cambridge, MA 02139, USA.
*
*/
/* The control space devices */
#include <sys/types.h>
#include <stdio.h>
#include <sys/ioctl.h>
#include <sys/fcntl.h>
#include <sys/file.h>
#include "sis.h"
#include "end.h"
extern int32 sis_verbose;
extern int mecrev0;
extern char uart_dev1[], uart_dev2[];
#define MEC_WS 0 /* Waitstates per MEC access (0 ws) */
#define MOK 0
/* MEC register addresses */
#define MEC_UARTA 0x0E0
#define MEC_UARTB 0x0E4
#define MEC_UART_CTRL 0x0E8
#define MEC_TIMER_CTRL 0x098
#define MEC_RTC_COUNTER 0x080
#define MEC_RTC_RELOAD 0x080
#define MEC_RTC_SCALER 0x084
#define MEC_GPT_COUNTER 0x088
#define MEC_GPT_RELOAD 0x088
#define MEC_GPT_SCALER 0x08C
#define MEC_DBG 0x0C0
#define MEC_BRK 0x0C4
#define MEC_WPR 0x0C8
#define MEC_SFSR 0x0A0
#define MEC_FFAR 0x0A4
#define MEC_IPR 0x048
#define MEC_IMR 0x04C
#define MEC_ICR 0x050
#define MEC_IFR 0x054
#define MEC_MCR 0x000
#define MEC_MEMCFG 0x010
#define MEC_WCR 0x018
#define MEC_MAR0 0x020
#define MEC_MAR1 0x024
#define MEC_SFR 0x004
#define MEC_WDOG 0x060
#define MEC_TRAPD 0x064
#define MEC_PWDR 0x008
#define SIM_LOAD 0x0F0
/* Memory exception causes */
#define PROT_EXC 0x3
#define UIMP_ACC 0x4
#define MEC_ACC 0x6
#define WATCH_EXC 0xa
#define BREAK_EXC 0xb
/* Size of UART buffers (bytes) */
#define UARTBUF 1024
/* Number of simulator ticks between flushing the UARTS. */
/* For good performance, keep above 1000 */
#define UART_FLUSH_TIME 3000
/* MEC timer control register bits */
#define TCR_GACR 1
#define TCR_GACL 2
#define TCR_GASE 4
#define TCR_GASL 8
#define TCR_TCRCR 0x100
#define TCR_TCRCL 0x200
#define TCR_TCRSE 0x400
#define TCR_TCRSL 0x800
/* New uart defines */
#define UART_TX_TIME 1000
#define UART_RX_TIME 1000
#define UARTA_DR 0x1
#define UARTA_SRE 0x2
#define UARTA_HRE 0x4
#define UARTA_OR 0x40
#define UARTA_CLR 0x80
#define UARTB_DR 0x10000
#define UARTB_SRE 0x20000
#define UARTB_HRE 0x40000
#define UARTB_OR 0x400000
#define UARTB_CLR 0x800000
#define UART_DR 0x100
#define UART_TSE 0x200
#define UART_THE 0x400
/* MEC registers */
static char fname[256];
static uint32 find = 0;
static char simfn[] = "simload";
static uint32 brk_point = 0;
static uint32 watch_point = 0;
static uint32 mec_dbg = 0;
static uint32 mec_sfsr = 0x078;
static uint32 mec_ffar = 0;
static uint32 mec_ipr = 0;
static uint32 mec_imr = 0x3fff;
static uint32 mec_icr = 0;
static uint32 mec_ifr = 0;
static uint32 mec_mcr; /* MEC control register */
static uint32 mec_memcfg; /* Memory control register */
static uint32 mec_wcr; /* MEC waitstate register */
static uint32 mec_mar0; /* MEC access registers (2) */
static uint32 mec_mar1; /* MEC access registers (2) */
static uint32 mec_regs[64];
static uint32 posted_irq;
static uint32 mec_ersr = 0; /* MEC error and status register */
static uint32 mec_emr = 0x60; /* MEC error mask register */
static uint32 mec_tcr = 0; /* MEC test comtrol register */
static uint32 rtc_counter = 0xffffffff;
static uint32 rtc_reload = 0xffffffff;
static uint32 rtc_scaler = 0xff;
static uint32 rtc_enabled = 0;
static uint32 rtc_cr = 0;
static uint32 rtc_se = 0;
static uint32 rtc_cont = 0;
static uint32 gpt_counter = 0xffffffff;
static uint32 gpt_reload = 0xffffffff;
static uint32 gpt_scaler = 0xffff;
static uint32 gpt_enabled = 0;
static uint32 gpt_cr = 0;
static uint32 gpt_se = 0;
static uint32 gpt_cont = 0;
static uint32 wdog_scaler;
static uint32 wdog_counter;
static uint32 wdog_rst_delay;
static uint32 wdog_rston;
#ifdef MECREV0
static uint32 gpt_irqon = 1;
static uint32 rtc_irqon = 1;
#endif
enum wdog_type {
init, disabled, enabled, stopped
};
static enum wdog_type wdog_status;
/* Memory support variables */
static uint32 mem_ramr_ws; /* RAM read waitstates */
static uint32 mem_ramw_ws; /* RAM write waitstates */
static uint32 mem_romr_ws; /* ROM read waitstates */
static uint32 mem_romw_ws; /* ROM write waitstates */
static uint32 mem_ramsz; /* RAM size */
static uint32 mem_romsz; /* RAM size */
static uint32 mem_banksz; /* RAM bank size */
static uint32 mem_accprot; /* RAM write protection enabled */
/* UART support variables */
static unsigned char Adata, Bdata;
static int32 fd1, fd2; /* file descriptor for input file */
static int32 Ucontrol; /* UART status register */
static unsigned char aq[UARTBUF], bq[UARTBUF];
static int32 res;
static int32 anum, aind = 0;
static int32 bnum, bind = 0;
static char wbufa[UARTBUF], wbufb[UARTBUF];
static unsigned wnuma;
static unsigned wnumb;
static FILE *f1 = NULL, *f2 = NULL;
static char uarta_sreg, uarta_hreg, uartb_sreg, uartb_hreg;
static uint32 uart_stat_reg;
static uint32 uarta_data, uartb_data;
void uarta_tx();
void uartb_tx();
uint32 read_uart();
void write_uart();
uint32 rtc_counter_read();
void rtc_scaler_set();
void rtc_reload_set();
uint32 gpt_counter_read();
void gpt_scaler_set();
void gpt_reload_set();
void timer_ctrl();
void port_init();
void uart_irq_start();
void mec_reset();
void wdog_start();
/* One-time init */
void
init_sim()
{
port_init();
}
/* Power-on reset init */
void
reset()
{
mec_reset();
uart_irq_start();
wdog_start();
}
/* IU error mode manager */
int
error_mode(pc)
uint32 pc;
{
if ((mec_emr & 0x1) == 0) {
if (mec_mcr & 0x20) {
sys_reset();
mec_ersr = 0x8000;
printf("Error manager reset - IU in error mode at 0x%08x\n", pc);
}
}
}
/* Check memory settings */
void
decode_memcfg()
{
mem_ramsz = (256 * 1024) << ((mec_memcfg >> 10) & 7);
mem_banksz = ((mec_memcfg >> 10) & 7) + 18 - 6;
mem_romsz = (4 * 1024) << ((mec_memcfg >> 18) & 7);
if (sis_verbose)
printf("RAM size: %d K, ROM size: %d K, protection bank size: %d K\n",
mem_ramsz >> 10, mem_romsz >> 10, 1 << mem_banksz);
}
void
decode_wcr()
{
mem_ramr_ws = mec_wcr & 3;
mem_ramw_ws = (mec_wcr >> 2) & 3;
mem_romr_ws = (mec_wcr >> 4) & 0x0f;
mem_romw_ws = (mec_wcr >> 8) & 0x0f;
if (sis_verbose)
printf("Waitstates = RAM read: %d, RAM write: %d, ROM read: %d, ROM write: %d\n",
mem_ramr_ws, mem_ramw_ws, mem_romr_ws, mem_romw_ws);
}
void
decode_mcr()
{
mem_accprot = (mec_mcr >> 3) & 1;
if (sis_verbose && mem_accprot)
printf("Memory access protection enabled\n");
if (sis_verbose && (mec_mcr & 2))
printf("Software reset enabled\n");
if (sis_verbose && (mec_mcr & 1))
printf("Power-down mode enabled\n");
}
/* Flush ports when simulator stops */
void
sim_stop()
{
#ifdef FAST_UART
flush_uart();
#endif
}
void
close_port()
{
if (f1)
fclose(f1);
if (f2)
fclose(f2);
}
void
exit_sim()
{
close_port();
}
void
mec_reset()
{
find = 0;
brk_point = 0;
watch_point = 0;
mec_dbg = 0;
mec_sfsr = 0x078;
mec_ffar = 0;
mec_ipr = 0;
mec_imr = 0x3fff;
mec_icr = 0;
mec_ifr = 0;
mec_memcfg = 0x10000;
mec_mcr = 0x01b50014;
mec_wcr = -1;
mec_mar0 = -1;
mec_mar1 = -1;
mec_ersr = 0; /* MEC error and status register */
mec_emr = 0x60; /* MEC error mask register */
mec_tcr = 0; /* MEC test comtrol register */
decode_memcfg();
decode_wcr();
decode_mcr();
posted_irq = 0;
wnuma = wnumb = 0;
anum = aind = bnum = bind = 0;
uart_stat_reg = UARTA_SRE | UARTA_HRE | UARTB_SRE | UARTB_HRE;
uarta_data = uartb_data = UART_THE | UART_TSE;
rtc_counter = 0xffffffff;
rtc_reload = 0xffffffff;
rtc_scaler = 0xff;
rtc_enabled = 0;
rtc_cr = 0;
rtc_se = 0;
rtc_cont = 0;
gpt_counter = 0xffffffff;
gpt_reload = 0xffffffff;
gpt_scaler = 0xffff;
gpt_enabled = 0;
gpt_cr = 0;
gpt_se = 0;
gpt_cont = 0;
wdog_scaler = 255;
wdog_rst_delay = 255;
wdog_counter = 0xffff;
wdog_rston = 0;
wdog_status = init;
#ifdef MECREV0
gpt_irqon = 1;
rtc_irqon = 1;
#endif
}
int32
mec_intack(level)
int32 level;
{
int irq_test;
if (sis_verbose)
printf("interrupt %d acknowledged\n",level);
irq_test = mec_tcr & 0x80000;
if ((irq_test) && (mec_ifr & (1 << level)))
mec_ifr &= ~(1 << level);
else
mec_ipr &= ~(1 << level);
posted_irq &= ~(1 << level);
#ifdef MECREV0
if (mecrev0) {
if (uart_stat_reg & 1)
mec_ipr |= (1 << 4);
if (uart_stat_reg & 0x100)
mec_ipr |= (1 << 5);
}
#endif
}
int32
chk_irq()
{
int32 i;
uint32 itmp;
itmp = ((mec_ipr | mec_ifr) & ~mec_imr) & 0x0fffe;
if (itmp != 0) {
for (i = 15; i > 0; i--) {
if (((itmp >> i) & 1) != 0) {
if ((posted_irq & (1 << i)) == 0) {
if (sis_verbose)
printf("interrupt %d generated\n",i);
set_int(i, mec_intack, i);
posted_irq |= (1 << i);
}
}
}
}
}
void
mec_irq(level)
int32 level;
{
mec_ipr |= (1 << level);
chk_irq();
}
void
set_sfsr(fault, addr, asi, read)
uint32 fault;
uint32 addr;
uint32 asi;
uint32 read;
{
mec_ffar = addr;
mec_sfsr = (fault << 3) | (!read << 15);
switch (asi) {
case 8:
mec_sfsr |= 0x2002;
break;
case 9:
mec_sfsr |= 0x3002;
break;
case 0xa:
mec_sfsr |= 0x0004;
break;
case 0xb:
mec_sfsr |= 0x1004;
break;
}
}
int32
chk_brk(addr, asi)
uint32 addr;
{
if ((mec_dbg & 0x80000) && (addr == brk_point) &&
((asi == 9) || (asi == 8))) {
mec_dbg |= 0x00800000;
if (mec_dbg & 0x00200000) {
set_sfsr(BREAK_EXC, addr, asi, 1);
return (1);
}
}
return (0);
}
int32
chk_watch(addr, read, asi)
uint32 addr;
uint32 read;
{
uint32 hit;
if ((mec_dbg & 0x40000) && (asi != 9) && (asi != 8) &&
(((mec_dbg & 0x10000) && (read == 0)) || ((mec_dbg & 0x20000) && read))) {
if (((addr ^ watch_point) &
(0xffff0000 | (mec_dbg & 0x0ffff))) == 0) {
mec_dbg |= 0x00400000;
if (mec_dbg & 0x100000) {
set_sfsr(WATCH_EXC, addr, asi, read);
return (1);
}
}
}
return (0);
}
int32
mec_read(addr, asi, data)
uint32 addr;
uint32 asi;
uint32 *data;
{
switch (addr & 0x0ff) {
case MEC_SFR:
case MEC_WDOG:
return (1);
break;
case MEC_DBG:
*data = mec_dbg;
break;
case MEC_UARTA:
case MEC_UARTB:
if (asi != 0xb)
return (1);
*data = read_uart(addr);
break;
case MEC_UART_CTRL:
*data = read_uart(addr);
break;
case MEC_RTC_COUNTER:
*data = rtc_counter_read();
break;
case MEC_GPT_COUNTER:
*data = gpt_counter_read();
break;
case MEC_SFSR:
*data = mec_sfsr;
break;
case MEC_FFAR:
*data = mec_ffar;
break;
case MEC_IPR:
*data = mec_ipr;
break;
case MEC_IMR:
*data = mec_imr;
break;
case MEC_IFR:
*data = mec_ifr;
break;
case SIM_LOAD:
fname[find] = 0;
if (find == 0)
strcpy(fname, "simload");
*data = bfd_load(fname);
find = 0;
break;
case MEC_MCR:
*data = mec_mcr;
break;
case MEC_MEMCFG:
*data = mec_memcfg;
break;
case MEC_WCR:
*data = mec_wcr;
break;
case MEC_MAR0:
*data = mec_mar0;
break;
case MEC_MAR1:
*data = mec_mar1;
break;
case MEC_PWDR:
return (1);
break;
default:
if (sis_verbose)
printf("Warning, read from unimplemented MEC register %x\n\r", addr);
*data = mec_regs[((addr & 0x0ff) >> 2)];
break;
}
return (MOK);
}
int
mec_write(addr, data)
uint32 addr;
uint32 data;
{
switch (addr & 0x0ff) {
case MEC_SFR:
if (mec_mcr & 0x2) {
sys_reset();
mec_ersr = 0x4000;
printf(" Software reset issued\n");
}
break;
case MEC_BRK:
brk_point = data;
break;
case MEC_DBG:
mec_dbg = data;
break;
case MEC_WPR:
watch_point = data;
break;
case MEC_UARTA:
case MEC_UARTB:
case MEC_UART_CTRL:
write_uart(addr, data);
break;
case MEC_GPT_RELOAD:
gpt_reload_set(data);
break;
case MEC_GPT_SCALER:
gpt_scaler_set(data);
break;
case MEC_TIMER_CTRL:
timer_ctrl(data);
break;
case MEC_RTC_RELOAD:
rtc_reload_set(data);
break;
case MEC_RTC_SCALER:
rtc_scaler_set(data);
break;
case MEC_SFSR:
mec_sfsr = 0;
break;
case MEC_IMR:
mec_imr = data & 0x7ffe;
chk_irq();
break;
case MEC_ICR:
mec_icr &= ~data & 0x0fffe;
break;
case MEC_IFR:
mec_ifr = data & 0xfffe;
chk_irq();
break;
case SIM_LOAD:
fname[find++] = (char) data;
break;
case MEC_MCR:
mec_mcr = data;
decode_mcr();
break;
case MEC_MEMCFG:
mec_memcfg = data & ~0xC0e08000;
decode_memcfg();
break;
case MEC_WCR:
mec_wcr = data;
decode_wcr();
break;
case MEC_MAR0:
mec_mar0 = data;
break;
case MEC_MAR1:
mec_mar1 = data;
break;
case MEC_WDOG:
wdog_scaler = (data >> 16) & 0x0ff;
wdog_counter = data & 0x0ffff;
wdog_rst_delay = data >> 24;
wdog_rston = 0;
if (wdog_status == stopped)
wdog_start();
wdog_status = enabled;
break;
case MEC_TRAPD:
if (wdog_status == init) {
wdog_status = disabled;
if (sis_verbose)
printf("Watchdog disabled\n");
}
break;
case MEC_PWDR:
if (mec_mcr & 1)
wait_for_irq();
break;
default:
if (sis_verbose)
printf("Warning, write to unimplemented MEC register %x\n\r",
addr);
mec_regs[((addr & 0x0ffc) >> 2)] = data;
break;
}
return (MOK);
}
/* MEC UARTS */
void
port_init()
{
int32 pty_remote = 1;
if ((fd1 = open(uart_dev1, O_RDWR | O_NDELAY | O_NONBLOCK)) < 0) {
printf("Warning, couldn't open output device %s\n", uart_dev1);
} else {
printf("serial port A on %s\n", uart_dev1);
f1 = fdopen(fd1, "r+");
setbuf(f1, NULL);
}
if ((fd2 = open(uart_dev2, O_RDWR | O_NDELAY | O_NONBLOCK)) < 0) {
printf("Warning, couldn't open output device %s\n", uart_dev2);
} else {
printf("serial port B on %s\n", uart_dev2);
f2 = fdopen(fd2, "r+");
setbuf(f2, NULL);
}
wnuma = wnumb = 0;
}
uint32
read_uart(addr)
uint32 addr;
{
unsigned tmp;
switch (addr & 0xff) {
case 0xE0: /* UART 1 */
#ifdef FAST_UART
if (aind < anum) {
if ((aind + 1) < anum)
mec_irq(4);
return (0x700 | (uint32) aq[aind++]);
} else {
if (f1)
anum = fread(aq, 1, UARTBUF, f1);
else
anum = 0;
if (anum > 0) {
aind = 0;
if ((aind + 1) < anum)
mec_irq(4);
return (0x700 | (uint32) aq[aind++]);
} else {
return (0x600 | (uint32) aq[aind]);
}
}
#else
tmp = uarta_data;
uarta_data &= ~UART_DR;
uart_stat_reg &= ~UARTA_DR;
return tmp;
#endif
break;
case 0xE4: /* UART 2 */
#ifdef FAST_UART
if (bind < bnum) {
if ((bind + 1) < bnum)
mec_irq(5);
return (0x700 | (uint32) bq[bind++]);
} else {
if (f2)
bnum = fread(bq, 1, UARTBUF, f2);
else
bnum = 0;
if (bnum > 0) {
bind = 0;
if ((bind + 1) < bnum)
mec_irq(5);
return (0x700 | (uint32) bq[bind++]);
} else {
return (0x600 | (uint32) bq[bind]);
}
}
#else
tmp = uartb_data;
uartb_data &= ~UART_DR;
uart_stat_reg &= ~UARTB_DR;
return tmp;
#endif
break;
case 0xE8: /* UART status register */
#ifdef FAST_UART
Ucontrol = 0;
if (aind < anum) {
Ucontrol |= 0x00000001;
} else {
if (f1)
anum = fread(aq, 1, UARTBUF, f1);
else
anum = 0;
if (anum > 0) {
Ucontrol |= 0x00000001;
aind = 0;
mec_irq(4);
}
}
if (bind < bnum) {
Ucontrol |= 0x00010000;
} else {
if (f2)
bnum = fread(bq, 1, UARTBUF, f2);
else
bnum = 0;
if (bnum > 0) {
Ucontrol |= 0x00010000;
bind = 0;
mec_irq(5);
}
}
Ucontrol |= 0x00060006;
return (Ucontrol);
#else
return (uart_stat_reg);
#endif
break;
default:
if (sis_verbose)
printf("Read from unimplemented MEC register (%x)\n", addr);
}
return (0);
}
void
write_uart(addr, data)
uint32 addr;
uint32 data;
{
int32 wnum = 0;
unsigned char c;
c = (unsigned char) data;
switch (addr & 0xff) {
case 0xE0: /* UART A */
#ifdef FAST_UART
if (wnuma < UARTBUF)
wbufa[wnuma++] = c;
else {
while (wnuma)
if (f1)
wnuma -= fwrite(wbufa, 1, wnuma, f1);
else
wnuma--;
wbufa[wnuma++] = c;
}
mec_irq(4);
#else
if (uart_stat_reg & UARTA_SRE) {
uarta_sreg = c;
uart_stat_reg &= ~UARTA_SRE;
event(uarta_tx, 0, UART_TX_TIME);
} else {
uarta_hreg = c;
uart_stat_reg &= ~UARTA_HRE;
}
#endif
break;
case 0xE4: /* UART B */
#ifdef FAST_UART
if (wnumb < UARTBUF)
wbufb[wnumb++] = c;
else {
while (wnumb)
if (f2)
wnumb -= fwrite(wbufb, 1, wnumb, f2);
else
wnumb--;
wbufb[wnumb++] = c;
}
mec_irq(5);
#else
if (uart_stat_reg & UARTB_SRE) {
uartb_sreg = c;
uart_stat_reg &= ~UARTB_SRE;
event(uartb_tx, 0, UART_TX_TIME);
} else {
uartb_hreg = c;
uart_stat_reg &= ~UARTB_HRE;
}
#endif
break;
case 0xE8: /* UART status register */
#ifndef FAST_UART
if (data & UARTA_CLR) {
uart_stat_reg &= 0xFFFF0000;
uart_stat_reg |= UARTA_SRE | UARTA_HRE;
}
if (data & UARTB_CLR) {
uart_stat_reg &= 0x0000FFFF;
uart_stat_reg |= UARTB_SRE | UARTB_HRE;
}
#endif
break;
default:
if (sis_verbose)
printf("Write to unimplemented MEC register (%x)\n", addr);
}
}
flush_uart()
{
while (wnuma)
if (f1)
wnuma -= fwrite(wbufa, 1, wnuma, f1);
else
wnuma = 0;
while (wnumb)
if (f2)
wnumb -= fwrite(wbufb, 1, wnumb, f2);
else
wnumb = 0;
}
void
uarta_tx()
{
while ((f1 ? fwrite(&uarta_sreg, 1, 1, f1) : 1) != 1);
if (uart_stat_reg & UARTA_HRE) {
uart_stat_reg |= UARTA_SRE;
} else {
uarta_sreg = uarta_hreg;
uart_stat_reg |= UARTA_HRE;
event(uarta_tx, 0, UART_TX_TIME);
}
mec_irq(4);
}
void
uartb_tx()
{
while (fwrite(&uartb_sreg, 1, 1, f2) != 1);
if (uart_stat_reg & UARTB_HRE) {
uart_stat_reg |= UARTB_SRE;
} else {
uartb_sreg = uartb_hreg;
uart_stat_reg |= UARTB_HRE;
event(uartb_tx, 0, UART_TX_TIME);
}
mec_irq(5);
}
void
uart_rx(arg)
caddr_t arg;
{
int32 rsize;
char rxd;
rsize = fread(&rxd, 1, 1, f1);
if (rsize) {
uarta_data = UART_DR | rxd;
if (uart_stat_reg & UARTA_HRE)
uarta_data |= UART_THE;
if (uart_stat_reg & UARTA_SRE)
uarta_data |= UART_TSE;
if (uart_stat_reg & UARTA_DR) {
uart_stat_reg |= UARTA_OR;
mec_irq(7); /* UART error interrupt */
}
uart_stat_reg |= UARTA_DR;
mec_irq(4);
}
rsize = fread(&rxd, 1, 1, f2);
if (rsize) {
uartb_data = UART_DR | rxd;
if (uart_stat_reg & UARTB_HRE)
uartb_data |= UART_THE;
if (uart_stat_reg & UARTB_SRE)
uartb_data |= UART_TSE;
if (uart_stat_reg & UARTB_DR) {
uart_stat_reg |= UARTB_OR;
mec_irq(7); /* UART error interrupt */
}
uart_stat_reg |= UARTB_DR;
mec_irq(5);
}
event(uart_rx, 0, UART_RX_TIME);
}
void
uart_intr(arg)
caddr_t arg;
{
read_uart(0xE8); /* Check for UART interrupts every 1000 clk */
flush_uart(); /* Flush UART ports */
event(uart_intr, 0, UART_FLUSH_TIME);
}
void
uart_irq_start()
{
#ifdef FAST_UART
event(uart_intr, 0, UART_FLUSH_TIME);
#else
event(uart_rx, 0, UART_RX_TIME);
#endif
}
/* Watch-dog */
void
wdog_intr(arg)
caddr_t arg;
{
if (wdog_status == disabled) {
wdog_status = stopped;
} else {
if (wdog_counter) {
wdog_counter--;
event(wdog_intr, 0, wdog_scaler + 1);
} else {
if (wdog_rston) {
printf("Watchdog reset!\n");
sys_reset();
mec_ersr = 0xC000;
} else {
mec_irq(15);
wdog_rston = 1;
wdog_counter = wdog_rst_delay;
event(wdog_intr, 0, wdog_scaler + 1);
}
}
}
}
void
wdog_start()
{
event(wdog_intr, 0, wdog_scaler + 1);
if (sis_verbose)
printf("Watchdog started, scaler = %d, counter = %d\n",
wdog_scaler, wdog_counter);
}
/* MEC timers */
void
rtc_intr(arg)
caddr_t arg;
{
if (rtc_counter == 0) {
#ifdef MECREV0
if (mecrev0) {
if (rtc_cr) {
rtc_counter = rtc_reload;
mec_irq(13);
} else {
rtc_cont = 0;
if (rtc_irqon) {
mec_irq(13);
rtc_irqon = 0;
} else {
if (sis_verbose)
printf("RTC interrupt lost (MEC rev.0)\n");
}
}
} else {
mec_irq(13);
if (rtc_cr)
rtc_counter = rtc_reload;
else
rtc_cont = 0;
}
#else
mec_irq(13);
if (rtc_cr)
rtc_counter = rtc_reload;
else
rtc_cont = 0;
#endif
} else
rtc_counter -= 1;
if (rtc_se && rtc_cont) {
event(rtc_intr, 0, rtc_scaler + 1);
rtc_enabled = 1;
} else {
if (sis_verbose)
printf("RTC stopped\n\r");
rtc_enabled = 0;
}
}
void
rtc_start()
{
if (sis_verbose)
printf("RTC started (period %d)\n\r", rtc_scaler + 1);
event(rtc_intr, 0, rtc_scaler + 1);
rtc_enabled = 1;
}
uint32
rtc_counter_read()
{
return (rtc_counter);
}
void
rtc_scaler_set(val)
uint32 val;
{
rtc_scaler = val & 0x0ff; /* eight-bit scaler only */
}
void
rtc_reload_set(val)
uint32 val;
{
rtc_reload = val;
}
void
gpt_intr(arg)
caddr_t arg;
{
if (gpt_counter == 0) {
#ifdef MECREV0
if (mecrev0) {
if (gpt_cr) {
gpt_counter = gpt_reload;
mec_irq(12);
} else {
gpt_cont = 0;
if (gpt_irqon) {
mec_irq(12);
gpt_irqon = 0;
} else {
if (sis_verbose)
printf("GPT interrupt lost (MEC rev.0)\n");
}
}
} else {
mec_irq(12);
if (gpt_cr)
gpt_counter = gpt_reload;
else
gpt_cont = 0;
}
#else
mec_irq(12);
if (gpt_cr)
gpt_counter = gpt_reload;
else
gpt_cont = 0;
#endif
} else
gpt_counter -= 1;
if (gpt_se && gpt_cont) {
event(gpt_intr, 0, gpt_scaler + 1);
gpt_enabled = 1;
} else {
if (sis_verbose)
printf("GPT stopped\n\r");
gpt_enabled = 0;
}
}
void
gpt_start()
{
if (sis_verbose)
printf("GPT started (period %d)\n\r", gpt_scaler + 1);
event(gpt_intr, 0, gpt_scaler + 1);
gpt_enabled = 1;
}
uint32
gpt_counter_read()
{
return (gpt_counter);
}
void
gpt_scaler_set(val)
uint32 val;
{
gpt_scaler = val & 0x0ffff; /* 16-bit scaler */
}
void
gpt_reload_set(val)
uint32 val;
{
gpt_reload = val;
}
void
timer_ctrl(val)
uint32 val;
{
#ifdef MECREV0
if ((mecrev0) && (val & 0x500))
rtc_irqon = 1;
#endif
rtc_cr = ((val & TCR_TCRCR) != 0);
if (val & TCR_TCRCL) {
rtc_counter = rtc_reload;
rtc_cont = 1;
}
if (val & TCR_TCRSL) {
rtc_cont = 1;
}
rtc_se = ((val & TCR_TCRSE) != 0);
if (rtc_cont && rtc_se && (rtc_enabled == 0))
rtc_start();
#ifdef MECREV0
if ((mecrev0) && (val & 0x5))
gpt_irqon = 1;
#endif
gpt_cr = (val & TCR_GACR);
if (val & TCR_GACL) {
gpt_counter = gpt_reload;
gpt_cont = 1;
}
if (val & TCR_GACL) {
gpt_cont = 1;
}
gpt_se = (val & TCR_GASE) >> 2;
if (gpt_cont && gpt_se && (gpt_enabled == 0))
gpt_start();
}
/* Memory emulation */
/* ROM size 512 Kbyte */
#define ROM_SZ 0x080000
/* RAM size 4 Mbyte */
#define RAM_START 0x02000000
#define RAM_END 0x02400000
#define RAM_MASK 0x003fffff
/* MEC registers */
#define MEC_START 0x01f80000
#define MEC_END 0x01f80100
/* Memory exception waitstates */
#define MEM_EX_WS 1
/* ERC32 always adds one waitstate during ldd/std */
#define LDD_WS 1
#define STD_WS 1
extern int32 sis_verbose;
static uint32 romb[ROM_SZ / 4];
static uint32 ramb[(RAM_END - RAM_START) / 4];
int
memory_read(asi, addr, data, ws)
int32 asi;
uint32 addr;
uint32 *data;
int32 *ws;
{
int32 mexc;
uint32 *mem;
#ifdef MECBRK
if (mec_dbg & 0x80000) {
if (chk_brk(addr, asi)) {
*ws = MEM_EX_WS;
return (1);
}
}
if (mec_dbg & 0x40000) {
if (chk_watch(addr, 1, asi)) {
*ws = MEM_EX_WS;
return (1);
}
}
#endif
if (addr < mem_romsz) {
*data = romb[addr >> 2];
*ws = mem_romr_ws;
return (0);
} else if ((addr >= RAM_START) && (addr < (RAM_START + mem_ramsz))) {
*data = ramb[(addr & RAM_MASK) >> 2];
*ws = mem_ramr_ws;
return (0);
} else if ((addr >= MEC_START) && (addr < MEC_END)) {
mexc = mec_read(addr, asi, data);
if (mexc) {
set_sfsr(MEC_ACC, addr, asi, 1);
*ws = MEM_EX_WS;
} else {
*ws = 0;
}
return (mexc);
}
printf("Memory exception at %x (illegal address)\n", addr);
set_sfsr(UIMP_ACC, addr, asi, 1);
*ws = MEM_EX_WS;
return (1);
}
int
memory_write(asi, addr, data, sz, ws)
int32 asi;
uint32 addr;
uint32 *data;
int32 sz;
int32 *ws;
{
uint32 byte_addr;
uint32 byte_mask;
uint32 waddr;
uint32 bank;
int32 mexc;
#ifdef MECBRK
if (mec_dbg & 0x40000) {
if (chk_watch(addr, 0, asi)) {
*ws = MEM_EX_WS;
return (1);
}
}
#endif
if ((addr >= RAM_START) && (addr < (RAM_START + mem_ramsz))) {
if (mem_accprot) {
bank = (addr & RAM_MASK) >> mem_banksz;
if (bank < 32
? !((1 << bank) & mec_mar0)
: !((1 << (bank - 32) & mec_mar1))) {
printf("Memory access protection error at %x\n", addr);
set_sfsr(PROT_EXC, addr, asi, 0);
*ws = MEM_EX_WS;
return (1);
}
}
*ws = mem_ramw_ws;
waddr = (addr & RAM_MASK) >> 2;
switch (sz) {
case 0:
byte_addr = addr & 3;
byte_mask = 0x0ff << (24 - (8 * byte_addr));
ramb[waddr] = (ramb[waddr] & ~byte_mask)
| ((*data & 0x0ff) << (24 - (8 * byte_addr)));
break;
case 1:
byte_addr = (addr & 2) >> 1;
byte_mask = 0x0ffff << (16 - (16 * byte_addr));
ramb[waddr] = (ramb[waddr] & ~byte_mask)
| ((*data & 0x0ffff) << (16 - (16 * byte_addr)));
break;
case 2:
ramb[waddr] = *data;
break;
case 3:
ramb[waddr] = data[0];
ramb[waddr + 1] = data[1];
*ws += mem_ramw_ws + STD_WS;
break;
}
return (0);
} else if ((addr >= MEC_START) && (addr < MEC_END)) {
if ((sz != 2) || (asi != 0xb)) {
set_sfsr(MEC_ACC, addr, asi, 0);
*ws = MEM_EX_WS;
return (1);
}
mexc = mec_write(addr, *data);
if (mexc) {
set_sfsr(MEC_ACC, addr, asi, 0);
*ws = MEM_EX_WS;
} else {
*ws = 0;
}
return (mexc);
}
*ws = MEM_EX_WS;
set_sfsr(UIMP_ACC, addr, asi, 0);
return (1);
}
unsigned char *
get_mem_ptr(addr, size)
uint32 addr;
uint32 size;
{
char *bram, *brom;
brom = (char *) romb;
bram = (char *) ramb;
if ((addr + size) < ROM_SZ) {
return (&brom[addr]);
} else if ((addr >= RAM_START) && ((addr + size) < RAM_END)) {
return (&bram[(addr & RAM_MASK)]);
}
return ((char *) -1);
}
int
sis_memory_write(addr, data, length)
uint32 addr;
char *data;
uint32 length;
{
char *mem;
uint32 i;
if ((mem = get_mem_ptr(addr, length)) == ((char *) -1))
return (0);
#ifdef HOST_LITTLE_ENDIAN
for (i = 0; i < length; i++) {
mem[i ^ 0x3] = data[i];
}
#else
memcpy(mem, data, length);
#endif
return (length);
}
int
sis_memory_read(addr, data, length)
uint32 addr;
char *data;
uint32 length;
{
char *mem;
int i;
if ((mem = get_mem_ptr(addr, length)) == ((char *) -1))
return (0);
#ifdef HOST_LITTLE_ENDIAN
for (i = 0; i < length; i++) {
data[i] = mem[i ^ 0x3];
}
#else
memcpy(data, mem, length);
#endif
return (length);
}