mirror of
https://github.com/darlinghq/darling-gdb.git
synced 2024-12-13 15:05:46 +00:00
518 lines
12 KiB
C
518 lines
12 KiB
C
/* Print National Semiconductor 32000 instructions for GDB, the GNU debugger.
|
||
Copyright 1986, 1988, 1991, 1992 Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
|
||
|
||
#include "defs.h"
|
||
#include "symtab.h"
|
||
#include "ns32k-opcode.h"
|
||
#include "gdbcore.h"
|
||
|
||
/* 32000 instructions are never longer than this. */
|
||
#define MAXLEN 62
|
||
|
||
/* Number of elements in the opcode table. */
|
||
#define NOPCODES (sizeof notstrs / sizeof notstrs[0])
|
||
|
||
#define NEXT_IS_ADDR '|'
|
||
|
||
/*
|
||
* extract "count" bits starting "offset" bits
|
||
* into buffer
|
||
*/
|
||
|
||
int
|
||
bit_extract (buffer, offset, count)
|
||
char *buffer;
|
||
int offset;
|
||
int count;
|
||
{
|
||
int result;
|
||
int mask;
|
||
int bit;
|
||
|
||
buffer += offset >> 3;
|
||
offset &= 7;
|
||
bit = 1;
|
||
result = 0;
|
||
while (count--)
|
||
{
|
||
if ((*buffer & (1 << offset)))
|
||
result |= bit;
|
||
if (++offset == 8)
|
||
{
|
||
offset = 0;
|
||
buffer++;
|
||
}
|
||
bit <<= 1;
|
||
}
|
||
return result;
|
||
}
|
||
|
||
float
|
||
fbit_extract (buffer, offset, count)
|
||
{
|
||
union {
|
||
int ival;
|
||
float fval;
|
||
} foo;
|
||
|
||
foo.ival = bit_extract (buffer, offset, 32);
|
||
return foo.fval;
|
||
}
|
||
|
||
double
|
||
dbit_extract (buffer, offset, count)
|
||
{
|
||
union {
|
||
struct {int low, high; } ival;
|
||
double dval;
|
||
} foo;
|
||
|
||
foo.ival.low = bit_extract (buffer, offset, 32);
|
||
foo.ival.high = bit_extract (buffer, offset+32, 32);
|
||
return foo.dval;
|
||
}
|
||
|
||
sign_extend (value, bits)
|
||
{
|
||
value = value & ((1 << bits) - 1);
|
||
return (value & (1 << (bits-1))
|
||
? value | (~((1 << bits) - 1))
|
||
: value);
|
||
}
|
||
|
||
flip_bytes (ptr, count)
|
||
char *ptr;
|
||
int count;
|
||
{
|
||
char tmp;
|
||
|
||
while (count > 0)
|
||
{
|
||
tmp = *ptr;
|
||
ptr[0] = ptr[count-1];
|
||
ptr[count-1] = tmp;
|
||
ptr++;
|
||
count -= 2;
|
||
}
|
||
}
|
||
|
||
/* Given a character C, does it represent a general addressing mode? */
|
||
#define Is_gen(c) \
|
||
((c) == 'F' || (c) == 'L' || (c) == 'B' \
|
||
|| (c) == 'W' || (c) == 'D' || (c) == 'A')
|
||
|
||
/* Adressing modes. */
|
||
#define Adrmod_index_byte 0x1c
|
||
#define Adrmod_index_word 0x1d
|
||
#define Adrmod_index_doubleword 0x1e
|
||
#define Adrmod_index_quadword 0x1f
|
||
|
||
/* Is MODE an indexed addressing mode? */
|
||
#define Adrmod_is_index(mode) \
|
||
(mode == Adrmod_index_byte \
|
||
|| mode == Adrmod_index_word \
|
||
|| mode == Adrmod_index_doubleword \
|
||
|| mode == Adrmod_index_quadword)
|
||
|
||
|
||
/* Print the 32000 instruction at address MEMADDR in debugged memory,
|
||
on STREAM. Returns length of the instruction, in bytes. */
|
||
|
||
int
|
||
print_insn (memaddr, stream)
|
||
CORE_ADDR memaddr;
|
||
FILE *stream;
|
||
{
|
||
unsigned char buffer[MAXLEN];
|
||
register int i;
|
||
register unsigned char *p;
|
||
register char *d;
|
||
unsigned short first_word;
|
||
int gen, disp;
|
||
int ioffset; /* bits into instruction */
|
||
int aoffset; /* bits into arguments */
|
||
char arg_bufs[MAX_ARGS+1][ARG_LEN];
|
||
int argnum;
|
||
int maxarg;
|
||
|
||
read_memory (memaddr, buffer, MAXLEN);
|
||
|
||
first_word = *(unsigned short *) buffer;
|
||
for (i = 0; i < NOPCODES; i++)
|
||
if ((first_word & ((1 << notstrs[i].detail.obits) - 1))
|
||
== notstrs[i].detail.code)
|
||
break;
|
||
|
||
/* Handle undefined instructions. */
|
||
if (i == NOPCODES)
|
||
{
|
||
fprintf (stream, "0%o", buffer[0]);
|
||
return 1;
|
||
}
|
||
|
||
fprintf (stream, "%s", notstrs[i].name);
|
||
|
||
ioffset = notstrs[i].detail.ibits;
|
||
aoffset = notstrs[i].detail.ibits;
|
||
d = notstrs[i].detail.args;
|
||
|
||
if (*d)
|
||
{
|
||
/* Offset in bits of the first thing beyond each index byte.
|
||
Element 0 is for operand A and element 1 is for operand B.
|
||
The rest are irrelevant, but we put them here so we don't
|
||
index outside the array. */
|
||
int index_offset[MAX_ARGS];
|
||
|
||
/* 0 for operand A, 1 for operand B, greater for other args. */
|
||
int whicharg = 0;
|
||
|
||
fputc ('\t', stream);
|
||
|
||
maxarg = 0;
|
||
|
||
/* First we have to find and keep track of the index bytes,
|
||
if we are using scaled indexed addressing mode, since the index
|
||
bytes occur right after the basic instruction, not as part
|
||
of the addressing extension. */
|
||
if (Is_gen(d[1]))
|
||
{
|
||
int addr_mode = bit_extract (buffer, ioffset - 5, 5);
|
||
|
||
if (Adrmod_is_index (addr_mode))
|
||
{
|
||
aoffset += 8;
|
||
index_offset[0] = aoffset;
|
||
}
|
||
}
|
||
if (d[2] && Is_gen(d[3]))
|
||
{
|
||
int addr_mode = bit_extract (buffer, ioffset - 10, 5);
|
||
|
||
if (Adrmod_is_index (addr_mode))
|
||
{
|
||
aoffset += 8;
|
||
index_offset[1] = aoffset;
|
||
}
|
||
}
|
||
|
||
while (*d)
|
||
{
|
||
argnum = *d - '1';
|
||
d++;
|
||
if (argnum > maxarg && argnum < MAX_ARGS)
|
||
maxarg = argnum;
|
||
ioffset = print_insn_arg (*d, ioffset, &aoffset, buffer,
|
||
memaddr, arg_bufs[argnum],
|
||
index_offset[whicharg]);
|
||
d++;
|
||
whicharg++;
|
||
}
|
||
for (argnum = 0; argnum <= maxarg; argnum++)
|
||
{
|
||
CORE_ADDR addr;
|
||
char *ch, *index ();
|
||
for (ch = arg_bufs[argnum]; *ch;)
|
||
{
|
||
if (*ch == NEXT_IS_ADDR)
|
||
{
|
||
++ch;
|
||
addr = atoi (ch);
|
||
print_address (addr, stream);
|
||
while (*ch && *ch != NEXT_IS_ADDR)
|
||
++ch;
|
||
if (*ch)
|
||
++ch;
|
||
}
|
||
else
|
||
putc (*ch++, stream);
|
||
}
|
||
if (argnum < maxarg)
|
||
fprintf (stream, ", ");
|
||
}
|
||
}
|
||
return aoffset / 8;
|
||
}
|
||
|
||
/* Print an instruction operand of category given by d. IOFFSET is
|
||
the bit position below which small (<1 byte) parts of the operand can
|
||
be found (usually in the basic instruction, but for indexed
|
||
addressing it can be in the index byte). AOFFSETP is a pointer to the
|
||
bit position of the addressing extension. BUFFER contains the
|
||
instruction. ADDR is where BUFFER was read from. Put the disassembled
|
||
version of the operand in RESULT. INDEX_OFFSET is the bit position
|
||
of the index byte (it contains garbage if this operand is not a
|
||
general operand using scaled indexed addressing mode). */
|
||
|
||
print_insn_arg (d, ioffset, aoffsetp, buffer, addr, result, index_offset)
|
||
char d;
|
||
int ioffset, *aoffsetp;
|
||
char *buffer;
|
||
CORE_ADDR addr;
|
||
char *result;
|
||
int index_offset;
|
||
{
|
||
int addr_mode;
|
||
float Fvalue;
|
||
double Lvalue;
|
||
int Ivalue;
|
||
int disp1, disp2;
|
||
int index;
|
||
|
||
switch (d)
|
||
{
|
||
case 'F':
|
||
case 'L':
|
||
case 'B':
|
||
case 'W':
|
||
case 'D':
|
||
case 'A':
|
||
addr_mode = bit_extract (buffer, ioffset-5, 5);
|
||
ioffset -= 5;
|
||
switch (addr_mode)
|
||
{
|
||
case 0x0: case 0x1: case 0x2: case 0x3:
|
||
case 0x4: case 0x5: case 0x6: case 0x7:
|
||
switch (d)
|
||
{
|
||
case 'F':
|
||
case 'L':
|
||
sprintf (result, "f%d", addr_mode);
|
||
break;
|
||
default:
|
||
sprintf (result, "r%d", addr_mode);
|
||
}
|
||
break;
|
||
case 0x8: case 0x9: case 0xa: case 0xb:
|
||
case 0xc: case 0xd: case 0xe: case 0xf:
|
||
disp1 = get_displacement (buffer, aoffsetp);
|
||
sprintf (result, "%d(r%d)", disp1, addr_mode & 7);
|
||
break;
|
||
case 0x10:
|
||
case 0x11:
|
||
case 0x12:
|
||
disp1 = get_displacement (buffer, aoffsetp);
|
||
disp2 = get_displacement (buffer, aoffsetp);
|
||
sprintf (result, "%d(%d(%s))", disp2, disp1,
|
||
addr_mode==0x10?"fp":addr_mode==0x11?"sp":"sb");
|
||
break;
|
||
case 0x13:
|
||
sprintf (result, "reserved");
|
||
break;
|
||
case 0x14:
|
||
switch (d)
|
||
{
|
||
case 'B':
|
||
Ivalue = bit_extract (buffer, *aoffsetp, 8);
|
||
Ivalue = sign_extend (Ivalue, 8);
|
||
*aoffsetp += 8;
|
||
sprintf (result, "$%d", Ivalue);
|
||
break;
|
||
case 'W':
|
||
Ivalue = bit_extract (buffer, *aoffsetp, 16);
|
||
flip_bytes (&Ivalue, 2);
|
||
*aoffsetp += 16;
|
||
Ivalue = sign_extend (Ivalue, 16);
|
||
sprintf (result, "$%d", Ivalue);
|
||
break;
|
||
case 'D':
|
||
Ivalue = bit_extract (buffer, *aoffsetp, 32);
|
||
flip_bytes (&Ivalue, 4);
|
||
*aoffsetp += 32;
|
||
sprintf (result, "$%d", Ivalue);
|
||
break;
|
||
case 'A':
|
||
Ivalue = bit_extract (buffer, *aoffsetp, 32);
|
||
flip_bytes (&Ivalue, 4);
|
||
*aoffsetp += 32;
|
||
sprintf (result, "$|%d|", Ivalue);
|
||
break;
|
||
case 'F':
|
||
Fvalue = fbit_extract (buffer, *aoffsetp, 32);
|
||
flip_bytes (&Fvalue, 4);
|
||
*aoffsetp += 32;
|
||
sprintf (result, "$%g", Fvalue);
|
||
break;
|
||
case 'L':
|
||
Lvalue = dbit_extract (buffer, *aoffsetp, 64);
|
||
flip_bytes (&Lvalue, 8);
|
||
*aoffsetp += 64;
|
||
sprintf (result, "$%g", Lvalue);
|
||
break;
|
||
}
|
||
break;
|
||
case 0x15:
|
||
disp1 = get_displacement (buffer, aoffsetp);
|
||
sprintf (result, "@|%d|", disp1);
|
||
break;
|
||
case 0x16:
|
||
disp1 = get_displacement (buffer, aoffsetp);
|
||
disp2 = get_displacement (buffer, aoffsetp);
|
||
sprintf (result, "EXT(%d) + %d", disp1, disp2);
|
||
break;
|
||
case 0x17:
|
||
sprintf (result, "tos");
|
||
break;
|
||
case 0x18:
|
||
disp1 = get_displacement (buffer, aoffsetp);
|
||
sprintf (result, "%d(fp)", disp1);
|
||
break;
|
||
case 0x19:
|
||
disp1 = get_displacement (buffer, aoffsetp);
|
||
sprintf (result, "%d(sp)", disp1);
|
||
break;
|
||
case 0x1a:
|
||
disp1 = get_displacement (buffer, aoffsetp);
|
||
sprintf (result, "%d(sb)", disp1);
|
||
break;
|
||
case 0x1b:
|
||
disp1 = get_displacement (buffer, aoffsetp);
|
||
sprintf (result, "|%d|", addr + disp1);
|
||
break;
|
||
case 0x1c:
|
||
case 0x1d:
|
||
case 0x1e:
|
||
case 0x1f:
|
||
index = bit_extract (buffer, index_offset - 8, 3);
|
||
print_insn_arg (d, index_offset, aoffsetp, buffer, addr,
|
||
result, 0);
|
||
{
|
||
static char *ind[] = {"b", "w", "d", "q"};
|
||
char *off;
|
||
|
||
off = result + strlen (result);
|
||
sprintf (off, "[r%d:%s]", index,
|
||
ind[addr_mode & 3]);
|
||
}
|
||
break;
|
||
}
|
||
break;
|
||
case 'q':
|
||
Ivalue = bit_extract (buffer, ioffset-4, 4);
|
||
Ivalue = sign_extend (Ivalue, 4);
|
||
sprintf (result, "%d", Ivalue);
|
||
ioffset -= 4;
|
||
break;
|
||
case 'r':
|
||
Ivalue = bit_extract (buffer, ioffset-3, 3);
|
||
sprintf (result, "r%d", Ivalue&7);
|
||
ioffset -= 3;
|
||
break;
|
||
case 'd':
|
||
sprintf (result, "%d", get_displacement (buffer, aoffsetp));
|
||
break;
|
||
case 'p':
|
||
sprintf (result, "%c%d%c", NEXT_IS_ADDR,
|
||
addr + get_displacement (buffer, aoffsetp),
|
||
NEXT_IS_ADDR);
|
||
break;
|
||
case 'i':
|
||
Ivalue = bit_extract (buffer, *aoffsetp, 8);
|
||
*aoffsetp += 8;
|
||
sprintf (result, "0x%x", Ivalue);
|
||
break;
|
||
}
|
||
return ioffset;
|
||
}
|
||
|
||
get_displacement (buffer, aoffsetp)
|
||
char *buffer;
|
||
int *aoffsetp;
|
||
{
|
||
int Ivalue;
|
||
|
||
Ivalue = bit_extract (buffer, *aoffsetp, 8);
|
||
switch (Ivalue & 0xc0)
|
||
{
|
||
case 0x00:
|
||
case 0x40:
|
||
Ivalue = sign_extend (Ivalue, 7);
|
||
*aoffsetp += 8;
|
||
break;
|
||
case 0x80:
|
||
Ivalue = bit_extract (buffer, *aoffsetp, 16);
|
||
flip_bytes (&Ivalue, 2);
|
||
Ivalue = sign_extend (Ivalue, 14);
|
||
*aoffsetp += 16;
|
||
break;
|
||
case 0xc0:
|
||
Ivalue = bit_extract (buffer, *aoffsetp, 32);
|
||
flip_bytes (&Ivalue, 4);
|
||
Ivalue = sign_extend (Ivalue, 30);
|
||
*aoffsetp += 32;
|
||
break;
|
||
}
|
||
return Ivalue;
|
||
}
|
||
|
||
/* Return the number of locals in the current frame given a pc
|
||
pointing to the enter instruction. This is used in the macro
|
||
FRAME_FIND_SAVED_REGS. */
|
||
|
||
ns32k_localcount (enter_pc)
|
||
CORE_ADDR enter_pc;
|
||
{
|
||
unsigned char localtype;
|
||
int localcount;
|
||
|
||
localtype = read_memory_integer (enter_pc+2, 1);
|
||
if ((localtype & 0x80) == 0)
|
||
localcount = localtype;
|
||
else if ((localtype & 0xc0) == 0x80)
|
||
localcount = (((localtype & 0x3f) << 8)
|
||
| (read_memory_integer (enter_pc+3, 1) & 0xff));
|
||
else
|
||
localcount = (((localtype & 0x3f) << 24)
|
||
| ((read_memory_integer (enter_pc+3, 1) & 0xff) << 16)
|
||
| ((read_memory_integer (enter_pc+4, 1) & 0xff) << 8 )
|
||
| (read_memory_integer (enter_pc+5, 1) & 0xff));
|
||
return localcount;
|
||
}
|
||
|
||
/*
|
||
* Get the address of the enter opcode for the function
|
||
* containing PC, if there is an enter for the function,
|
||
* and if the pc is between the enter and exit.
|
||
* Returns positive address if pc is between enter/exit,
|
||
* 1 if pc before enter or after exit, 0 otherwise.
|
||
*/
|
||
|
||
CORE_ADDR
|
||
ns32k_get_enter_addr (pc)
|
||
CORE_ADDR pc;
|
||
{
|
||
CORE_ADDR enter_addr;
|
||
unsigned char op;
|
||
|
||
if (ABOUT_TO_RETURN (pc))
|
||
return 1; /* after exit */
|
||
|
||
enter_addr = get_pc_function_start (pc);
|
||
|
||
if (pc == enter_addr)
|
||
return 1; /* before enter */
|
||
|
||
op = read_memory_integer (enter_addr, 1);
|
||
|
||
if (op != 0x82)
|
||
return 0; /* function has no enter/exit */
|
||
|
||
return enter_addr; /* pc is between enter and exit */
|
||
}
|