mirror of
https://github.com/darlinghq/darling-gdb.git
synced 2024-11-24 20:49:43 +00:00
161 lines
4.6 KiB
C
161 lines
4.6 KiB
C
/* Native support for MIPS running SVR4, for GDB.
|
|
Copyright 1994, 1995, 2000, 2001 Free Software Foundation, Inc.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 59 Temple Place - Suite 330,
|
|
Boston, MA 02111-1307, USA. */
|
|
|
|
#include "defs.h"
|
|
#include "inferior.h"
|
|
#include "gdbcore.h"
|
|
#include "target.h"
|
|
#include "regcache.h"
|
|
|
|
#include <sys/time.h>
|
|
#include <sys/procfs.h>
|
|
#include <setjmp.h> /* For JB_XXX. */
|
|
|
|
/* Prototypes for supply_gregset etc. */
|
|
#include "gregset.h"
|
|
|
|
/* Size of elements in jmpbuf */
|
|
|
|
#define JB_ELEMENT_SIZE 4
|
|
|
|
/*
|
|
* See the comment in m68k-tdep.c regarding the utility of these functions.
|
|
*
|
|
* These definitions are from the MIPS SVR4 ABI, so they may work for
|
|
* any MIPS SVR4 target.
|
|
*/
|
|
|
|
void
|
|
supply_gregset (gregset_t *gregsetp)
|
|
{
|
|
register int regi;
|
|
register greg_t *regp = &(*gregsetp)[0];
|
|
static char zerobuf[MAX_REGISTER_RAW_SIZE] =
|
|
{0};
|
|
|
|
for (regi = 0; regi <= CXT_RA; regi++)
|
|
supply_register (regi, (char *) (regp + regi));
|
|
|
|
supply_register (PC_REGNUM, (char *) (regp + CXT_EPC));
|
|
supply_register (HI_REGNUM, (char *) (regp + CXT_MDHI));
|
|
supply_register (LO_REGNUM, (char *) (regp + CXT_MDLO));
|
|
supply_register (CAUSE_REGNUM, (char *) (regp + CXT_CAUSE));
|
|
|
|
/* Fill inaccessible registers with zero. */
|
|
supply_register (PS_REGNUM, zerobuf);
|
|
supply_register (BADVADDR_REGNUM, zerobuf);
|
|
supply_register (FP_REGNUM, zerobuf);
|
|
supply_register (UNUSED_REGNUM, zerobuf);
|
|
for (regi = FIRST_EMBED_REGNUM; regi <= LAST_EMBED_REGNUM; regi++)
|
|
supply_register (regi, zerobuf);
|
|
}
|
|
|
|
void
|
|
fill_gregset (gregset_t *gregsetp, int regno)
|
|
{
|
|
int regi;
|
|
register greg_t *regp = &(*gregsetp)[0];
|
|
|
|
for (regi = 0; regi <= 32; regi++)
|
|
if ((regno == -1) || (regno == regi))
|
|
*(regp + regi) = *(greg_t *) & registers[REGISTER_BYTE (regi)];
|
|
|
|
if ((regno == -1) || (regno == PC_REGNUM))
|
|
*(regp + CXT_EPC) = *(greg_t *) & registers[REGISTER_BYTE (PC_REGNUM)];
|
|
|
|
if ((regno == -1) || (regno == CAUSE_REGNUM))
|
|
*(regp + CXT_CAUSE) = *(greg_t *) & registers[REGISTER_BYTE (CAUSE_REGNUM)];
|
|
|
|
if ((regno == -1) || (regno == HI_REGNUM))
|
|
*(regp + CXT_MDHI) = *(greg_t *) & registers[REGISTER_BYTE (HI_REGNUM)];
|
|
|
|
if ((regno == -1) || (regno == LO_REGNUM))
|
|
*(regp + CXT_MDLO) = *(greg_t *) & registers[REGISTER_BYTE (LO_REGNUM)];
|
|
}
|
|
|
|
/*
|
|
* Now we do the same thing for floating-point registers.
|
|
* We don't bother to condition on FP0_REGNUM since any
|
|
* reasonable MIPS configuration has an R3010 in it.
|
|
*
|
|
* Again, see the comments in m68k-tdep.c.
|
|
*/
|
|
|
|
void
|
|
supply_fpregset (fpregset_t *fpregsetp)
|
|
{
|
|
register int regi;
|
|
static char zerobuf[MAX_REGISTER_RAW_SIZE] =
|
|
{0};
|
|
|
|
for (regi = 0; regi < 32; regi++)
|
|
supply_register (FP0_REGNUM + regi,
|
|
(char *) &fpregsetp->fp_r.fp_regs[regi]);
|
|
|
|
supply_register (FCRCS_REGNUM, (char *) &fpregsetp->fp_csr);
|
|
|
|
/* FIXME: how can we supply FCRIR_REGNUM? The ABI doesn't tell us. */
|
|
supply_register (FCRIR_REGNUM, zerobuf);
|
|
}
|
|
|
|
void
|
|
fill_fpregset (fpregset_t *fpregsetp, int regno)
|
|
{
|
|
int regi;
|
|
char *from, *to;
|
|
|
|
for (regi = FP0_REGNUM; regi < FP0_REGNUM + 32; regi++)
|
|
{
|
|
if ((regno == -1) || (regno == regi))
|
|
{
|
|
from = (char *) ®isters[REGISTER_BYTE (regi)];
|
|
to = (char *) &(fpregsetp->fp_r.fp_regs[regi - FP0_REGNUM]);
|
|
memcpy (to, from, REGISTER_RAW_SIZE (regi));
|
|
}
|
|
}
|
|
|
|
if ((regno == -1) || (regno == FCRCS_REGNUM))
|
|
fpregsetp->fp_csr = *(unsigned *) ®isters[REGISTER_BYTE (FCRCS_REGNUM)];
|
|
}
|
|
|
|
|
|
/* Figure out where the longjmp will land.
|
|
We expect the first arg to be a pointer to the jmp_buf structure from which
|
|
we extract the pc (_JB_PC) that we will land at. The pc is copied into PC.
|
|
This routine returns true on success. */
|
|
|
|
int
|
|
get_longjmp_target (CORE_ADDR *pc)
|
|
{
|
|
char *buf;
|
|
CORE_ADDR jb_addr;
|
|
|
|
buf = alloca (TARGET_PTR_BIT / TARGET_CHAR_BIT);
|
|
jb_addr = read_register (A0_REGNUM);
|
|
|
|
if (target_read_memory (jb_addr + _JB_PC * JB_ELEMENT_SIZE, buf,
|
|
TARGET_PTR_BIT / TARGET_CHAR_BIT))
|
|
return 0;
|
|
|
|
*pc = extract_address (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
|
|
|
|
return 1;
|
|
}
|