mirror of
https://github.com/darlinghq/darling-gdb.git
synced 2024-12-05 10:57:57 +00:00
a332e59322
* parse.c (std_regs): Only declare if NO_STD_REGS is defined.
379 lines
8.1 KiB
C
379 lines
8.1 KiB
C
/* Target-machine dependent code for Zilog Z8000, for GDB.
|
|
Copyright (C) 1992 Free Software Foundation, Inc.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
|
|
|
|
/*
|
|
Contributed by Steve Chamberlain
|
|
sac@cygnus.com
|
|
*/
|
|
|
|
|
|
#include "defs.h"
|
|
#include "frame.h"
|
|
#include "obstack.h"
|
|
#include "symtab.h"
|
|
#include "gdbtypes.h"
|
|
|
|
|
|
/* Return the saved PC from this frame.
|
|
|
|
If the frame has a memory copy of SRP_REGNUM, use that. If not,
|
|
just use the register SRP_REGNUM itself. */
|
|
|
|
CORE_ADDR
|
|
frame_saved_pc (frame)
|
|
FRAME frame;
|
|
{
|
|
return ( read_memory_pointer(frame->frame+(BIG ? 4 : 2)));
|
|
}
|
|
|
|
#define IS_PUSHL(x) (BIG ? ((x & 0xfff0) == 0x91e0):((x & 0xfff0) == 0x91F0))
|
|
#define IS_PUSHW(x) (BIG ? ((x & 0xfff0) == 0x93e0):((x & 0xfff0)==0x93f0))
|
|
#define IS_MOVE_FP(x) (BIG ? x == 0xa1ea : x == 0xa1fa)
|
|
#define IS_MOV_SP_FP(x) (BIG ? x == 0x94ea : x == 0x0d76)
|
|
#define IS_SUB2_SP(x) (x==0x1b87)
|
|
#define IS_MOVK_R5(x) (x==0x7905)
|
|
#define IS_SUB_SP(x) ((x & 0xffff) == 0x020f)
|
|
#define IS_PUSH_FP(x) (BIG ? (x == 0x93ea) : (x == 0x93fa))
|
|
|
|
|
|
/* work out how much local space is on the stack and
|
|
return the pc pointing to the first push */
|
|
|
|
static
|
|
CORE_ADDR
|
|
skip_adjust(pc, size)
|
|
CORE_ADDR pc;
|
|
int *size;
|
|
{
|
|
*size = 0;
|
|
|
|
if (IS_PUSH_FP(read_memory_short(pc))
|
|
&& IS_MOV_SP_FP(read_memory_short(pc+2)))
|
|
{
|
|
/* This is a function with an explict frame pointer */
|
|
pc += 4;
|
|
*size += 2; /* remember the frame pointer */
|
|
}
|
|
|
|
/* remember any stack adjustment */
|
|
if (IS_SUB_SP(read_memory_short(pc)))
|
|
{
|
|
*size += read_memory_short(pc+2);
|
|
pc += 4;
|
|
}
|
|
return pc;
|
|
}
|
|
|
|
|
|
int
|
|
examine_frame(pc, regs, sp)
|
|
CORE_ADDR pc;
|
|
struct frame_saved_regs *regs;
|
|
CORE_ADDR sp;
|
|
{
|
|
int w = read_memory_short(pc);
|
|
int offset = 0;
|
|
int regno;
|
|
|
|
|
|
|
|
for (regno = 0; regno < NUM_REGS; regno++)
|
|
regs->regs[regno] = 0;
|
|
|
|
while (IS_PUSHW(w) || IS_PUSHL(w))
|
|
{
|
|
/* work out which register is being pushed to where */
|
|
if (IS_PUSHL(w))
|
|
{
|
|
regs->regs[w & 0xf] = offset;
|
|
regs->regs[(w & 0xf) + 1] = offset +2;
|
|
offset += 4;
|
|
}
|
|
else {
|
|
regs->regs[w & 0xf] = offset;
|
|
offset += 2;
|
|
}
|
|
pc += 2;
|
|
w = read_memory_short(pc);
|
|
}
|
|
|
|
if (IS_MOVE_FP(w))
|
|
{
|
|
/* We know the fp */
|
|
|
|
}
|
|
else if (IS_SUB_SP(w))
|
|
{
|
|
/* Subtracting a value from the sp, so were in a function
|
|
which needs stack space for locals, but has no fp. We fake up
|
|
the values as if we had an fp */
|
|
regs->regs[FP_REGNUM] = sp;
|
|
}
|
|
else
|
|
{
|
|
/* This one didn't have an fp, we'll fake it up */
|
|
regs->regs[SP_REGNUM] = sp;
|
|
}
|
|
/* stack pointer contains address of next frame */
|
|
/* regs->regs[fp_regnum()] = fp;*/
|
|
regs->regs[SP_REGNUM] = sp;
|
|
return pc;
|
|
}
|
|
|
|
CORE_ADDR z8k_skip_prologue(start_pc)
|
|
CORE_ADDR start_pc;
|
|
{
|
|
struct frame_saved_regs dummy;
|
|
return examine_frame(start_pc, &dummy, 0);
|
|
}
|
|
|
|
CORE_ADDR addr_bits_remove(x)
|
|
CORE_ADDR x;
|
|
{
|
|
return x & PTR_MASK;
|
|
}
|
|
|
|
read_memory_pointer(x)
|
|
CORE_ADDR x;
|
|
{
|
|
|
|
return read_memory_integer(ADDR_BITS_REMOVE(x), BIG ? 4 : 2);
|
|
}
|
|
|
|
FRAME_ADDR
|
|
frame_chain (thisframe)
|
|
FRAME thisframe;
|
|
{
|
|
if (thisframe->prev == 0)
|
|
{
|
|
/* This is the top of the stack, let's get the sp for real */
|
|
}
|
|
if (!inside_entry_file ((thisframe)->pc))
|
|
{
|
|
return read_memory_pointer ((thisframe)->frame);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
init_frame_pc() { abort(); }
|
|
|
|
/* Put here the code to store, into a struct frame_saved_regs,
|
|
the addresses of the saved registers of frame described by FRAME_INFO.
|
|
This includes special registers such as pc and fp saved in special
|
|
ways in the stack frame. sp is even more special:
|
|
the address we return for it IS the sp for the next frame. */
|
|
|
|
void get_frame_saved_regs(frame_info, frame_saved_regs)
|
|
struct frame_info *frame_info;
|
|
struct frame_saved_regs *frame_saved_regs;
|
|
|
|
{
|
|
CORE_ADDR pc;
|
|
int w;
|
|
bzero(frame_saved_regs, sizeof(*frame_saved_regs));
|
|
pc = get_pc_function_start(frame_info->pc);
|
|
|
|
/* wander down the instruction stream */
|
|
examine_frame(pc, frame_saved_regs, frame_info->frame);
|
|
|
|
}
|
|
|
|
|
|
extract_return_value(valtype, regbuf, valbuf)
|
|
struct type *valtype;
|
|
char regbuf[REGISTER_BYTES];
|
|
char *valbuf;
|
|
{
|
|
bcopy(regbuf + REGISTER_BYTE(2), valbuf, TYPE_LENGTH(valtype));
|
|
}
|
|
void z8k_push_dummy_frame() { abort(); }
|
|
|
|
int print_insn(memaddr, stream)
|
|
CORE_ADDR memaddr;
|
|
FILE *stream;
|
|
{
|
|
char temp[20];
|
|
read_memory (memaddr, temp, 20);
|
|
if (BIG) {
|
|
return print_insn_z8001(memaddr, temp, stream);
|
|
}
|
|
else {
|
|
return print_insn_z8002(memaddr, temp, stream);
|
|
}
|
|
}
|
|
|
|
void
|
|
store_return_value()
|
|
{
|
|
abort();
|
|
}
|
|
void
|
|
store_struct_return() { abort(); }
|
|
|
|
|
|
|
|
/* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or
|
|
is not the address of a valid instruction, the address of the next
|
|
instruction beyond ADDR otherwise. *PWORD1 receives the first word
|
|
of the instruction.*/
|
|
|
|
|
|
CORE_ADDR
|
|
NEXT_PROLOGUE_INSN(addr, lim, pword1)
|
|
CORE_ADDR addr;
|
|
CORE_ADDR lim;
|
|
short *pword1;
|
|
{
|
|
if (addr < lim+8)
|
|
{
|
|
read_memory (addr, pword1, sizeof(*pword1));
|
|
SWAP_TARGET_AND_HOST (pword1, sizeof (short));
|
|
return addr + 2;
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
/* Put here the code to store, into a struct frame_saved_regs,
|
|
the addresses of the saved registers of frame described by FRAME_INFO.
|
|
This includes special registers such as pc and fp saved in special
|
|
ways in the stack frame. sp is even more special:
|
|
the address we return for it IS the sp for the next frame.
|
|
|
|
We cache the result of doing this in the frame_cache_obstack, since
|
|
it is fairly expensive. */
|
|
|
|
void
|
|
frame_find_saved_regs (fip, fsrp)
|
|
struct frame_info *fip;
|
|
struct frame_saved_regs *fsrp;
|
|
{
|
|
int locals;
|
|
CORE_ADDR pc;
|
|
CORE_ADDR adr;
|
|
int i;
|
|
|
|
memset (fsrp, 0, sizeof *fsrp);
|
|
|
|
pc = skip_adjust(get_pc_function_start (fip->pc), &locals);
|
|
|
|
{
|
|
adr = fip->frame - locals;
|
|
for (i = 0; i < 8; i++)
|
|
{
|
|
int word = read_memory_short(pc);
|
|
pc += 2 ;
|
|
if (IS_PUSHL(word)) {
|
|
fsrp->regs[word & 0xf] = adr;
|
|
fsrp->regs[(word & 0xf) + 1] = adr - 2;
|
|
adr -= 4;
|
|
}
|
|
else if (IS_PUSHW(word)) {
|
|
fsrp->regs[word & 0xf] = adr;
|
|
adr -= 2;
|
|
}
|
|
else
|
|
break;
|
|
}
|
|
|
|
}
|
|
|
|
fsrp->regs[PC_REGNUM] = fip->frame + 4;
|
|
fsrp->regs[FP_REGNUM] = fip->frame;
|
|
|
|
}
|
|
|
|
void
|
|
addr_bits_set() { abort(); }
|
|
|
|
int
|
|
saved_pc_after_call()
|
|
{
|
|
return addr_bits_remove(read_memory_integer(read_register(SP_REGNUM), PTR_SIZE));
|
|
}
|
|
|
|
void
|
|
print_register_hook(regno)
|
|
int regno;
|
|
{
|
|
|
|
if ((regno & 1)==0 && regno < 16)
|
|
{
|
|
unsigned short l[2];
|
|
read_relative_register_raw_bytes(regno, (char *)(l+0));
|
|
read_relative_register_raw_bytes(regno+1, (char *)(l+1));
|
|
printf("\t");
|
|
printf("%04x%04x", l[0],l[1]);
|
|
}
|
|
|
|
if ((regno & 3)== 0 && regno < 16)
|
|
{
|
|
unsigned short l[4];
|
|
read_relative_register_raw_bytes(regno, l+0);
|
|
read_relative_register_raw_bytes(regno+1, l+1);
|
|
read_relative_register_raw_bytes(regno+2, l+2);
|
|
read_relative_register_raw_bytes(regno+3, l+3);
|
|
|
|
printf("\t");
|
|
printf("%04x%04x%04x%04x", l[0],l[1],l[2],l[3]);
|
|
}
|
|
if (regno == 15)
|
|
{
|
|
unsigned short rval;
|
|
int i;
|
|
read_relative_register_raw_bytes(regno, (char *)(&rval));
|
|
|
|
printf("\n");
|
|
for (i = 0; i < 10; i+=2) {
|
|
printf("(sp+%d=%04x)",i, read_memory_short(rval+i));
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
|
|
void
|
|
register_convert_to_virtual(regnum, from, to)
|
|
unsigned char *from;
|
|
unsigned char *to;
|
|
{
|
|
to[0] = from[0];
|
|
to[1] = from[1];
|
|
to[2] = from[2];
|
|
to[3] = from[3];
|
|
}
|
|
|
|
void
|
|
register_convert_to_raw(regnum, to, from)
|
|
char *to;
|
|
char *from;
|
|
{
|
|
to[0] = from[0];
|
|
to[1] = from[1];
|
|
to[2] = from[2];
|
|
to[3] = from[3];
|
|
}
|
|
|
|
|
|
|
|
void z8k_pop_frame() { }
|