darling-gdb/opcodes/arc-opc.c
David Edelsohn edb35c135b * arc-opc.c (insertion fns): Pass pointer to value's table entry.
All uses changed.
	(extraction fns): Insn argument now array of two words.  Return pointer
	to value's table entry.  All uses changed.
	(arc_opcode_lookup_suffix): Exported for arc-dis.c.
	(insert_multshift, extract_multshift): New fns.
	(arc_operands): Add support for cache bypass suffix.  Add support for
	predefined aux regs.  Modifier bits moved to flags field.
	(arc_opcodes): Likewise.
	Add mul/mulu/shift insns.  Syntax of zero/sign extension insns changed.
	New insn rlc.  Update to syntax in programmer's manual.
	(arc_reg_names): Fix typo in lp_count.  Add predefined aux regs.
	(arc_suffixes): New synonyms lo,hs for cs,cc.  New suffix for cache
	bypass.
	(arc_opcode_init_tables): New argument to indicate cpu type.
	(insert_reg): Handle predefined aux regs.
	(extract_reg): Likewise.
	(lookup_register): New fn.
	* arc-dis.c (arc_condition_codes): Deleted.
	(print_insn_arc): Handle insns with 32 bit immediate constants better.
	Clean up modifier handling.  Handle predefined aux regs.
1994-12-19 20:55:13 +00:00

976 lines
29 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Opcode table for the ARC.
Copyright 1994 Free Software Foundation, Inc.
Contributed by Doug Evans (dje@cygnus.com).
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
#include "ansidecl.h"
#include "opcode/arc.h"
#define INSERT_FN(fn) \
static arc_insn fn PARAMS ((arc_insn, const struct arc_operand *, \
int, const struct arc_operand_value *, long, \
const char **))
#define EXTRACT_FN(fn) \
static long fn PARAMS ((arc_insn *, const struct arc_operand *, \
int, const struct arc_operand_value **, int *))
INSERT_FN (insert_reg);
INSERT_FN (insert_shimmfinish);
INSERT_FN (insert_limmfinish);
INSERT_FN (insert_shimmoffset);
INSERT_FN (insert_shimmzero);
INSERT_FN (insert_flag);
INSERT_FN (insert_flagfinish);
INSERT_FN (insert_cond);
INSERT_FN (insert_forcelimm);
INSERT_FN (insert_reladdr);
INSERT_FN (insert_unopmacro);
INSERT_FN (insert_multshift);
EXTRACT_FN (extract_reg);
EXTRACT_FN (extract_flag);
EXTRACT_FN (extract_cond);
EXTRACT_FN (extract_unopmacro);
EXTRACT_FN (extract_multshift);
/* Various types of ARC operands, including insn suffixes. */
/* Insn format values:
'a' REGA register A field
'b' REGB register B field
'c' REGC register C field
'S' SHIMMFINISH finish inserting a shimm value
'L' LIMMFINISH finish inserting a limm value
'd' SHIMMOFFSET shimm offset in ld,st insns
'0' SHIMMZERO 0 shimm value in ld,st insns
'f' FLAG F flag
'F' FLAGFINISH finish inserting the F flag
'G' FLAGINSN insert F flag in "flag" insn
'n' DELAY N field (nullify field)
'q' COND condition code field
'Q' FORCELIMM set `cond_p' to 1 to ensure a constant is a limm
'B' BRANCH branch address
'z' SIZE1 size field in ld a,[b,c]
'Z' SIZE10 size field in ld a,[b,shimm]
'y' SIZE22 size field in st c,[b,shimm]
'x' SIGN0 sign extend field ld a,[b,c]
'X' SIGN9 sign extend field ld a,[b,shimm]
'u' ADDRESS3 update field in ld a,[b,c]
'v' ADDRESS12 update field in ld a,[b,shimm]
'w' ADDRESS24 update field in st c,[b,shimm]
'D' CACHEBYPASS5 direct to memory enable (cache bypass) in ld a,[b,c]
'e' CACHEBYPASS14 direct to memory enable (cache bypass) in ld a,[b,shimm]
'E' CACHEBYPASS26 direct to memory enable (cache bypass) in st c,[b,shimm]
'U' UNOPMACRO fake operand to copy REGB to REGC for unop macros
'M' MULTSHIFT fake operand to check if target has multiply/shifter
The following modifiers may appear between the % and char (eg: %.f):
'.' MODDOT '.' prefix must be present
'r' REG generic register value, for register table
'A' AUXREG auxiliary register in lr a,[b], sr c,[b]
Fields are:
CHAR BITS SHIFT FLAGS INSERT_FN EXTRACT_FN
*/
const struct arc_operand arc_operands[] =
{
/* place holder (??? not sure if needed) */
#define UNUSED 0
{ 0 },
/* register A or shimm/limm indicator */
#define REGA (UNUSED + 1)
{ 'a', 6, ARC_SHIFT_REGA, 0, insert_reg, extract_reg },
/* register B or shimm/limm indicator */
#define REGB (REGA + 1)
{ 'b', 6, ARC_SHIFT_REGB, 0, insert_reg, extract_reg },
/* register C or shimm/limm indicator */
#define REGC (REGB + 1)
{ 'c', 6, ARC_SHIFT_REGC, 0, insert_reg, extract_reg },
/* fake operand used to insert shimm value into most instructions */
#define SHIMMFINISH (REGC + 1)
{ 'S', 9, 0, ARC_OPERAND_SIGNED + ARC_OPERAND_FAKE, insert_shimmfinish, 0 },
/* fake operand used to insert limm value into most instructions */
#define LIMMFINISH (SHIMMFINISH + 1)
{ 'L', 32, 32, ARC_OPERAND_ABSOLUTE + ARC_OPERAND_FAKE, insert_limmfinish, 0 },
/* shimm operand when there is no reg indicator (ld,st) */
#define SHIMMOFFSET (LIMMFINISH + 1)
{ 'd', 9, 0, ARC_OPERAND_SIGNED, insert_shimmoffset, 0 },
/* 0 shimm operand for ld,st insns */
#define SHIMMZERO (SHIMMOFFSET + 1)
{ '0', 9, 0, ARC_OPERAND_FAKE, insert_shimmzero, 0 },
/* flag update bit (insertion is defered until we know how) */
#define FLAG (SHIMMZERO + 1)
{ 'f', 1, 8, ARC_OPERAND_SUFFIX, insert_flag, extract_flag },
/* fake utility operand to finish 'f' suffix handling */
#define FLAGFINISH (FLAG + 1)
{ 'F', 1, 8, ARC_OPERAND_FAKE, insert_flagfinish, 0 },
/* fake utility operand to set the 'f' flag for the "flag" insn */
#define FLAGINSN (FLAGFINISH + 1)
{ 'G', 1, 8, ARC_OPERAND_FAKE, insert_flag, 0 },
/* branch delay types */
#define DELAY (FLAGINSN + 1)
{ 'n', 2, 5, ARC_OPERAND_SUFFIX },
/* conditions */
#define COND (DELAY + 1)
{ 'q', 5, 0, ARC_OPERAND_SUFFIX, insert_cond, extract_cond },
/* set `cond_p' to 1 to ensure a constant is treated as a limm */
#define FORCELIMM (COND + 1)
{ 'Q', 0, 0, ARC_OPERAND_FAKE, insert_forcelimm },
/* branch address b, bl, and lp insns */
#define BRANCH (FORCELIMM + 1)
{ 'B', 20, 7, ARC_OPERAND_RELATIVE + ARC_OPERAND_SIGNED, insert_reladdr },
/* size field, stored in bit 1,2 */
#define SIZE1 (BRANCH + 1)
{ 'z', 2, 1, ARC_OPERAND_SUFFIX },
/* size field, stored in bit 10,11 */
#define SIZE10 (SIZE1 + 1)
{ 'Z', 2, 10, ARC_OPERAND_SUFFIX, },
/* size field, stored in bit 22,23 */
#define SIZE22 (SIZE10 + 1)
{ 'y', 2, 22, ARC_OPERAND_SUFFIX, },
/* sign extend field, stored in bit 0 */
#define SIGN0 (SIZE22 + 1)
{ 'x', 1, 0, ARC_OPERAND_SUFFIX },
/* sign extend field, stored in bit 9 */
#define SIGN9 (SIGN0 + 1)
{ 'X', 1, 9, ARC_OPERAND_SUFFIX },
/* address write back, stored in bit 3 */
#define ADDRESS3 (SIGN9 + 1)
{ 'u', 1, 3, ARC_OPERAND_SUFFIX },
/* address write back, stored in bit 12 */
#define ADDRESS12 (ADDRESS3 + 1)
{ 'v', 1, 12, ARC_OPERAND_SUFFIX },
/* address write back, stored in bit 24 */
#define ADDRESS24 (ADDRESS12 + 1)
{ 'w', 1, 24, ARC_OPERAND_SUFFIX },
/* address write back, stored in bit 3 */
#define CACHEBYPASS5 (ADDRESS24 + 1)
{ 'D', 1, 5, ARC_OPERAND_SUFFIX },
/* address write back, stored in bit 12 */
#define CACHEBYPASS14 (CACHEBYPASS5 + 1)
{ 'e', 1, 14, ARC_OPERAND_SUFFIX },
/* address write back, stored in bit 24 */
#define CACHEBYPASS26 (CACHEBYPASS14 + 1)
{ 'E', 1, 26, ARC_OPERAND_SUFFIX },
/* unop macro, used to copy REGB to REGC */
#define UNOPMACRO (CACHEBYPASS26 + 1)
{ 'U', 6, ARC_SHIFT_REGC, ARC_OPERAND_FAKE, insert_unopmacro, extract_unopmacro },
/* multiply/shifter detector */
/* ??? Using ARC_OPERAND_FAKE this way is probably taking things too far. */
#define MULTSHIFT (UNOPMACRO + 1)
{ 'M', 0, 0, ARC_OPERAND_FAKE, insert_multshift, extract_multshift },
/* '.' modifier ('.' required). */
#define MODDOT (MULTSHIFT + 1)
{ '.', 1, 0, ARC_MOD_DOT },
/* Dummy 'r' modifier for the register table.
It's called a "dummy" because there's no point in inserting an 'r' into all
the %a/%b/%c occurrences in the insn table. */
#define REG (MODDOT + 1)
{ 'r', 6, 0, ARC_MOD_REG },
/* Known auxiliary register modifier (stored in shimm field). */
#define AUXREG (REG + 1)
{ 'A', 9, 0, ARC_MOD_AUXREG },
/* end of list place holder */
{ 0 }
};
/* Given a format letter, yields the index into `arc_operands'.
eg: arc_operand_map['a'] = REGA. */
unsigned char arc_operand_map[256];
#define I(x) (((x) & 31) << 27)
#define A(x) (((x) & ARC_MASK_REG) << ARC_SHIFT_REGA)
#define B(x) (((x) & ARC_MASK_REG) << ARC_SHIFT_REGB)
#define C(x) (((x) & ARC_MASK_REG) << ARC_SHIFT_REGC)
#define R(x,b,m) (((x) & (m)) << (b)) /* value X, mask M, at bit B */
/* ARC instructions (sorted by at least the first letter, and equivalent
opcodes kept together).
By recording the insns this way, the table is not hashable on the opcode.
That's not a real loss though as there are only a few entries for each
insn (ld/st being the exception), which are quickly found and since
they're stored together (eg: all `ld' variants are together) very little
time is spent on the opcode itself. The slow part is parsing the options,
but that's always going to be slow.
Longer versions of insns must appear before shorter ones (if gas sees
"lsr r2,r3,1" when it's parsing "lsr %a,%b" it will think the ",1" is
junk). */
/* ??? This table also includes macros: asl, lsl, and mov. The ppc port has
a more general facility for dealing with macros which could be used if
we need to. */
/* ??? As an experiment, the "mov" macro appears at the start so it is
prefered to "and" when disassembling. At present, the table needn't be
sorted, though all opcodes with the same first letter must be kept
together. */
const struct arc_opcode arc_opcodes[] = {
/* Note that "mov" is really an "and". */
{ "mov%.q%.f %a,%b%F%S%L%U", I(-1), I(12) },
{ "mul%M%.q%.f %a,%b,%c%F%S%L", I(-1), I(20) },
{ "mulu%M%.q%.f %a,%b,%c%F%S%L", I(-1), I(21) },
{ "adc%.q%.f %a,%b,%c%F%S%L", I(-1), I(9) },
{ "add%.q%.f %a,%b,%c%F%S%L", I(-1), I(8) },
{ "and%.q%.f %a,%b,%c%F%S%L", I(-1), I(12) },
{ "asl%M%.q%.f %a,%b,%c%F%S%L", I(-1), I(16) },
/* Note that "asl" is really an "add". */
{ "asl%.q%.f %a,%b%F%S%L%U", I(-1), I(8) },
{ "asr%M%.q%.f %a,%b,%c%F%S%L", I(-1), I(18) },
{ "asr%.q%.f %a,%b%F%S%L", I(-1)+C(-1), I(3)+C(1) },
{ "bic%.q%.f %a,%b,%c%F%S%L", I(-1), I(14) },
{ "b%q%.n %B", I(-1), I(4) },
{ "bl%q%.n %B", I(-1), I(5) },
{ "extb%.q%.f %a,%b%F%S%L", I(-1)+C(-1), I(3)+C(7) },
{ "extw%.q%.f %a,%b%F%S%L", I(-1)+C(-1), I(3)+C(8) },
{ "flag%.q %b%G%S%L", I(-1)+A(-1)+C(-1), I(3)+A(ARC_REG_SHIMM_UPDATE)+C(0) },
/* %Q: force cond_p=1 --> no shimm values */
{ "j%q%Q%.n%.f %b%L", I(-1)+A(-1)+C(-1)+R(-1,7,1), I(7)+A(0)+C(0)+R(0,7,1) },
/* Put opcode 1 ld insns first so shimm gets prefered over limm. */
/* "[%b]" is before "[%b,%d]" so 0 offsets don't get printed. */
{ "ld%Z%.X%.v%.e %0%a,[%b]%L", I(-1)+R(-1,13,1)+R(-1,0,511), I(1)+R(0,13,1)+R(0,0,511) },
{ "ld%Z%.X%.v%.e %a,[%b,%d]%S%L", I(-1)+R(-1,13,1), I(1)+R(0,13,1) },
{ "ld%z%.x%.u%.D %a,[%b,%c]", I(-1)+R(-1,4,1)+R(-1,6,7), I(0)+R(0,4,1)+R(0,6,7) },
{ "lp%q%.n %B", I(-1), I(6), },
{ "lr %a,[%Ab]%S%L", I(-1)+C(-1), I(1)+C(0x10) },
/* Note that "lsl" is really an "add". */
{ "lsl%.q%.f %a,%b%F%S%L%U", I(-1), I(8) },
{ "lsr%M%.q%.f %a,%b,%c%F%S%L", I(-1), I(17) },
{ "lsr%.q%.f %a,%b%F%S%L", I(-1)+C(-1), I(3)+C(2) },
/* Note that "nop" is really an "xor". */
{ "nop", 0xffffffff, 0x7fffffff },
{ "or%.q%.f %a,%b,%c%F%S%L", I(-1), I(13) },
/* Note that "rlc" is really an "adc". */
{ "rlc%.q%.f %a,%b%F%S%L%U", I(-1), I(9) },
{ "ror%M%.q%.f %a,%b,%c%F%S%L", I(-1), I(19) },
{ "ror%.q%.f %a,%b%F%S%L", I(-1)+C(-1), I(3)+C(3) },
{ "rrc%.q%.f %a,%b%F%S%L", I(-1)+C(-1), I(3)+C(4) },
{ "sbc%.q%.f %a,%b,%c%F%S%L", I(-1), I(11) },
{ "sexb%.q%.f %a,%b%F%S%L", I(-1)+C(-1), I(3)+C(5) },
{ "sexw%.q%.f %a,%b%F%S%L", I(-1)+C(-1), I(3)+C(6) },
{ "sr %c,[%Ab]%S%L", I(-1)+A(-1), I(2)+A(0x10) },
/* "[%b]" is before "[%b,%d]" so 0 offsets don't get printed. */
{ "st%y%.w%.E %0%c,[%b]%L", I(-1)+R(-1,25,3)+R(-1,21,1)+R(-1,0,511), I(2)+R(0,25,3)+R(0,21,1)+R(0,0,511) },
{ "st%y%.w%.E %c,[%b,%d]%S%L", I(-1)+R(-1,25,3)+R(-1,21,1), I(2)+R(0,25,3)+R(0,21,1) },
{ "sub%.q%.f %a,%b,%c%F%S%L", I(-1), I(10) },
{ "xor%.q%.f %a,%b,%c%F%S%L", I(-1), I(15) }
};
int arc_opcodes_count = sizeof (arc_opcodes) / sizeof (arc_opcodes[0]);
const struct arc_operand_value arc_reg_names[] =
{
/* Sort this so that the first 61 entries are sequential.
IE: For each i (i<61), arc_reg_names[i].value == i. */
{ "r0", 0, REG }, { "r1", 1, REG }, { "r2", 2, REG }, { "r3", 3, REG },
{ "r4", 4, REG }, { "r5", 5, REG }, { "r6", 6, REG }, { "r7", 7, REG },
{ "r8", 8, REG }, { "r9", 9, REG }, { "r10", 10, REG }, { "r11", 11, REG },
{ "r12", 12, REG }, { "r13", 13, REG }, { "r14", 14, REG }, { "r15", 15, REG },
{ "r16", 16, REG }, { "r17", 17, REG }, { "r18", 18, REG }, { "r19", 19, REG },
{ "r20", 20, REG }, { "r21", 21, REG }, { "r22", 22, REG }, { "r23", 23, REG },
{ "r24", 24, REG }, { "r25", 25, REG }, { "r26", 26, REG }, { "fp", 27, REG },
{ "sp", 28, REG }, { "ilink1", 29, REG }, { "ilink2", 30, REG }, { "blink", 31, REG },
{ "r32", 32, REG }, { "r33", 33, REG }, { "r34", 34, REG }, { "r35", 35, REG },
{ "r36", 36, REG }, { "r37", 37, REG }, { "r38", 38, REG }, { "r39", 39, REG },
{ "r40", 40, REG }, { "r41", 41, REG }, { "r42", 42, REG }, { "r43", 43, REG },
{ "r44", 44, REG }, { "r45", 45, REG }, { "r46", 46, REG }, { "r47", 47, REG },
{ "r48", 48, REG }, { "r49", 49, REG }, { "r50", 50, REG }, { "r51", 51, REG },
{ "r52", 52, REG }, { "r53", 53, REG }, { "r54", 54, REG }, { "r55", 55, REG },
{ "r56", 56, REG }, { "r57", 57, REG }, { "r58", 58, REG }, { "r59", 59, REG },
{ "lp_count", 60, REG },
/* I'd prefer to output these as "fp" and "sp" by default, but we still need
to recognize the canonical values. */
{ "r27", 27, REG }, { "r28", 28, REG },
/* Standard auxiliary registers. */
{ "status", 0, AUXREG },
{ "semaphore", 1, AUXREG },
{ "lp_start", 2, AUXREG },
{ "lp_end", 3, AUXREG },
{ "identity", 4, AUXREG },
{ "debug", 5, AUXREG },
};
int arc_reg_names_count = sizeof (arc_reg_names) / sizeof (arc_reg_names[0]);
/* The suffix table.
Operands with the same name must be stored together. */
const struct arc_operand_value arc_suffixes[] =
{
/* Entry 0 is special, default values aren't printed by the disassembler. */
{ "", 0, -1 },
{ "al", 0, COND },
{ "ra", 0, COND },
{ "eq", 1, COND },
{ "z", 1, COND },
{ "ne", 2, COND },
{ "nz", 2, COND },
{ "p", 3, COND },
{ "pl", 3, COND },
{ "n", 4, COND },
{ "mi", 4, COND },
{ "c", 5, COND },
{ "cs", 5, COND },
{ "lo", 5, COND },
{ "nc", 6, COND },
{ "cc", 6, COND },
{ "hs", 6, COND },
{ "v", 7, COND },
{ "vs", 7, COND },
{ "nv", 8, COND },
{ "vc", 8, COND },
{ "gt", 9, COND },
{ "ge", 10, COND },
{ "lt", 11, COND },
{ "le", 12, COND },
{ "hi", 13, COND },
{ "ls", 14, COND },
{ "pnz", 15, COND },
{ "f", 1, FLAG },
{ "nd", 0, DELAY },
{ "d", 1, DELAY },
{ "jd", 2, DELAY },
/* { "b", 7, SIZEEXT },*/
/* { "b", 5, SIZESEX },*/
{ "b", 1, SIZE1 },
{ "b", 1, SIZE10 },
{ "b", 1, SIZE22 },
/* { "w", 8, SIZEEXT },*/
/* { "w", 6, SIZESEX },*/
{ "w", 2, SIZE1 },
{ "w", 2, SIZE10 },
{ "w", 2, SIZE22 },
{ "x", 1, SIGN0 },
{ "x", 1, SIGN9 },
{ "a", 1, ADDRESS3 },
{ "a", 1, ADDRESS12 },
{ "a", 1, ADDRESS24 },
{ "di", 1, CACHEBYPASS5 },
{ "di", 1, CACHEBYPASS14 },
{ "di", 1, CACHEBYPASS26 },
};
int arc_suffixes_count = sizeof (arc_suffixes) / sizeof (arc_suffixes[0]);
/* Configuration flags. */
/* Various ARC_HAVE_XXX bits. */
static int cpu_type;
/* Initialize any tables that need it.
Must be called once at start up (or when first needed).
CPU is a set of bits that say what version of the cpu we have. */
void
arc_opcode_init_tables (cpu)
int cpu;
{
register int i,n;
memset (arc_operand_map, 0, sizeof (arc_operand_map));
n = sizeof (arc_operands) / sizeof (arc_operands[0]);
for (i = 0; i < n; i++)
arc_operand_map[arc_operands[i].fmt] = i;
cpu_type = cpu;
}
/* Nonzero if we've seen an 'f' suffix (in certain insns). */
static int flag_p;
/* Nonzero if we've finished processing the 'f' suffix. */
static int flagshimm_handled_p;
/* Nonzero if we've seen a 'q' suffix (condition code). */
static int cond_p;
/* Nonzero if we've inserted a shimm. */
static int shimm_p;
/* The value of the shimm we inserted (each insn only gets one but it can
appear multiple times. */
static int shimm;
/* Nonzero if we've inserted a limm (during assembly) or seen a limm
(during disassembly). */
static int limm_p;
/* The value of the limm we inserted. Each insn only gets one but it can
appear multiple times. */
static long limm;
/* Called by the assembler before parsing an instruction. */
void
arc_opcode_init_insert ()
{
flag_p = 0;
flagshimm_handled_p = 0;
cond_p = 0;
shimm_p = 0;
limm_p = 0;
}
/* Called by the assembler to see if the insn has a limm operand.
Also called by the disassembler to see if the insn contains a limm. */
int
arc_opcode_limm_p (limmp)
long *limmp;
{
if (limmp)
*limmp = limm;
return limm_p;
}
/* Insert a value into a register field.
If REG is NULL, then this is actually a constant.
We must also handle auxiliary registers for lr/sr insns. */
static arc_insn
insert_reg (insn, operand, mods, reg, value, errmsg)
arc_insn insn;
const struct arc_operand *operand;
int mods;
const struct arc_operand_value *reg;
long value;
const char **errmsg;
{
static char buf[100];
if (!reg)
{
/* We have a constant that also requires a value stored in a register
field. Handle these by updating the register field and saving the
value for later handling by either %S (shimm) or %L (limm). */
/* Try to use a shimm value before a limm one. */
if (ARC_SHIMM_CONST_P (value)
/* If we've seen a conditional suffix we have to use a limm. */
&& !cond_p
/* If we already have a shimm value that is different than ours
we have to use a limm. */
&& (!shimm_p || shimm == value))
{
int marker = flag_p ? ARC_REG_SHIMM_UPDATE : ARC_REG_SHIMM;
flagshimm_handled_p = 1;
shimm_p = 1;
shimm = value;
insn |= marker << operand->shift;
/* insn |= value & 511; - done later */
}
/* We have to use a limm. If we've already seen one they must match. */
else if (!limm_p || limm == value)
{
limm_p = 1;
limm = value;
insn |= ARC_REG_LIMM << operand->shift;
/* The constant is stored later. */
}
else
{
*errmsg = "unable to fit different valued constants into instruction";
}
}
else
{
/* We have to handle both normal and auxiliary registers. */
if (reg->type == AUXREG)
{
if (!(mods & ARC_MOD_AUXREG))
*errmsg = "auxiliary register not allowed here";
else
{
insn |= ARC_REG_SHIMM << operand->shift;
insn |= reg->value << arc_operands[reg->type].shift;
}
}
else
{
/* We should never get an invalid register number here. */
if ((unsigned int) reg->value > 60)
{
sprintf (buf, "invalid register number `%d'", reg->value);
*errmsg = buf;
}
else
insn |= reg->value << operand->shift;
}
}
return insn;
}
/* Called when we see an 'f' flag. */
static arc_insn
insert_flag (insn, operand, mods, reg, value, errmsg)
arc_insn insn;
const struct arc_operand *operand;
int mods;
const struct arc_operand_value *reg;
long value;
const char **errmsg;
{
/* We can't store anything in the insn until we've parsed the registers.
Just record the fact that we've got this flag. `insert_reg' will use it
to store the correct value (ARC_REG_SHIMM_UPDATE or bit 0x100). */
flag_p = 1;
return insn;
}
/* Called after completely building an insn to ensure the 'f' flag gets set
properly. This is needed because we don't know how to set this flag until
we've parsed the registers. */
static arc_insn
insert_flagfinish (insn, operand, mods, reg, value, errmsg)
arc_insn insn;
const struct arc_operand *operand;
int mods;
const struct arc_operand_value *reg;
long value;
const char **errmsg;
{
if (flag_p && !flagshimm_handled_p)
{
if (shimm_p)
abort ();
flagshimm_handled_p = 1;
insn |= (1 << operand->shift);
}
return insn;
}
/* Called when we see a conditional flag (eg: .eq). */
static arc_insn
insert_cond (insn, operand, mods, reg, value, errmsg)
arc_insn insn;
const struct arc_operand *operand;
int mods;
const struct arc_operand_value *reg;
long value;
const char **errmsg;
{
cond_p = 1;
insn |= (value & ((1 << operand->bits) - 1)) << operand->shift;
return insn;
}
/* Used in the "j" instruction to prevent constants from being interpreted as
shimm values (which the jump insn doesn't accept). This can also be used
to force the use of limm values in other situations (eg: ld r0,[foo] uses
this).
??? The mechanism is sound. Access to it is a bit klunky right now. */
static arc_insn
insert_forcelimm (insn, operand, mods, reg, value, errmsg)
arc_insn insn;
const struct arc_operand *operand;
int mods;
const struct arc_operand_value *reg;
long value;
const char **errmsg;
{
cond_p = 1;
return insn;
}
/* Used in ld/st insns to handle the shimm offset field. */
static arc_insn
insert_shimmoffset (insn, operand, mods, reg, value, errmsg)
arc_insn insn;
const struct arc_operand *operand;
int mods;
const struct arc_operand_value *reg;
long value;
const char **errmsg;
{
insn |= (value & ((1 << operand->bits) - 1)) << operand->shift;
return insn;
}
/* Used in ld/st insns when the shimm offset is 0. */
static arc_insn
insert_shimmzero (insn, operand, mods, reg, value, errmsg)
arc_insn insn;
const struct arc_operand *operand;
int mods;
const struct arc_operand_value *reg;
long value;
const char **errmsg;
{
shimm_p = 1;
shimm = 0;
return insn;
}
/* Called at the end of processing normal insns (eg: add) to insert a shimm
value (if present) into the insn. */
static arc_insn
insert_shimmfinish (insn, operand, mods, reg, value, errmsg)
arc_insn insn;
const struct arc_operand *operand;
int mods;
const struct arc_operand_value *reg;
long value;
const char **errmsg;
{
if (shimm_p)
insn |= (shimm & ((1 << operand->bits) - 1)) << operand->shift;
return insn;
}
/* Called at the end of processing normal insns (eg: add) to insert a limm
value (if present) into the insn. Actually, there's nothing for us to do
as we can't call frag_more, the caller must do that. */
/* ??? The extract fns take a pointer to two words. The insert insns could be
converted and then we could do something useful. Not sure it's worth it. */
static arc_insn
insert_limmfinish (insn, operand, mods, reg, value, errmsg)
arc_insn insn;
const struct arc_operand *operand;
int mods;
const struct arc_operand_value *reg;
long value;
const char **errmsg;
{
if (limm_p)
; /* nothing to do */
return insn;
}
/* Called at the end of unary operand macros to copy the B field to C. */
static arc_insn
insert_unopmacro (insn, operand, mods, reg, value, errmsg)
arc_insn insn;
const struct arc_operand *operand;
int mods;
const struct arc_operand_value *reg;
long value;
const char **errmsg;
{
insn |= ((insn >> ARC_SHIFT_REGB) & ARC_MASK_REG) << operand->shift;
return insn;
}
/* Insert a relative address for a branch insn (b, bl, or lp). */
static arc_insn
insert_reladdr (insn, operand, mods, reg, value, errmsg)
arc_insn insn;
const struct arc_operand *operand;
int mods;
const struct arc_operand_value *reg;
long value;
const char **errmsg;
{
/* FIXME: Addresses are stored * 4. Do we want to handle that here? */
insn |= (value & ((1 << operand->bits) - 1)) << operand->shift;
return insn;
}
/* Fake operand to disallow the multiply and variable shift insns if the cpu
doesn't have them. */
static arc_insn
insert_multshift (insn, operand, mods, reg, value, errmsg)
arc_insn insn;
const struct arc_operand *operand;
int mods;
const struct arc_operand_value *reg;
long value;
const char **errmsg;
{
if (!(cpu_type & ARC_HAVE_MULT_SHIFT))
*errmsg = "cpu doesn't support this insn";
return insn;
}
/* Extraction functions.
The suffix extraction functions' return value is redundant since it can be
obtained from (*OPVAL)->value. However, the boolean suffixes don't have
a suffix table entry for the "false" case, so values of zero must be
obtained from the return value (*OPVAL == NULL). */
static const struct arc_operand_value *lookup_register (int type, long regno);
/* Called by the disassembler before printing an instruction. */
void
arc_opcode_init_extract ()
{
flag_p = 0;
flagshimm_handled_p = 0;
shimm_p = 0;
limm_p = 0;
}
/* As we're extracting registers, keep an eye out for the 'f' indicator
(ARC_REG_SHIMM_UPDATE). If we find a register (not a constant marker,
like ARC_REG_SHIMM), set OPVAL so our caller will know this is a register.
We must also handle auxiliary registers for lr/sr insns. They are just
constants with special names. */
static long
extract_reg (insn, operand, mods, opval, invalid)
arc_insn *insn;
const struct arc_operand *operand;
int mods;
const struct arc_operand_value **opval;
int *invalid;
{
int regno;
long value;
/* Get the register number. */
regno = (insn[0] >> operand->shift) & ((1 << operand->bits) - 1);
/* Is it a constant marker? */
if (regno == ARC_REG_SHIMM)
{
value = insn[0] & 511;
if ((operand->flags & ARC_OPERAND_SIGNED)
&& (value & 256))
value -= 512;
flagshimm_handled_p = 1;
}
else if (regno == ARC_REG_SHIMM_UPDATE)
{
value = insn[0] & 511;
if ((operand->flags & ARC_OPERAND_SIGNED)
&& (value & 256))
value -= 512;
flag_p = 1;
flagshimm_handled_p = 1;
}
else if (regno == ARC_REG_LIMM)
{
value = insn[1];
limm_p = 1;
}
/* It's a register, set OPVAL (that's the only way we distinguish registers
from constants here). */
else
{
const struct arc_operand_value *reg = lookup_register (REG, regno);
if (!reg)
abort ();
if (opval)
*opval = reg;
value = regno;
}
/* If this field takes an auxiliary register, see if it's a known one. */
if ((mods & ARC_MOD_AUXREG)
&& ARC_REG_CONSTANT_P (regno))
{
const struct arc_operand_value *reg = lookup_register (AUXREG, value);
/* This is really a constant, but tell the caller it has a special
name. */
if (reg && opval)
*opval = reg;
}
return value;
}
/* Return the value of the "flag update" field for shimm insns.
This value is actually stored in the register field. */
static long
extract_flag (insn, operand, mods, opval, invalid)
arc_insn *insn;
const struct arc_operand *operand;
int mods;
const struct arc_operand_value **opval;
int *invalid;
{
int f;
const struct arc_operand_value *val;
if (flagshimm_handled_p)
f = flag_p != 0;
else
f = (insn[0] & (1 << operand->shift)) != 0;
/* There is no text for zero values. */
if (f == 0)
return 0;
val = arc_opcode_lookup_suffix (operand, 1);
if (opval && val)
*opval = val;
return val->value;
}
/* Extract the condition code (if it exists).
If we've seen a shimm value in this insn (meaning that the insn can't have
a condition code field), then we don't store anything in OPVAL and return
zero. */
static long
extract_cond (insn, operand, mods, opval, invalid)
arc_insn *insn;
const struct arc_operand *operand;
int mods;
const struct arc_operand_value **opval;
int *invalid;
{
long cond;
const struct arc_operand_value *val;
if (flagshimm_handled_p)
return 0;
cond = (insn[0] >> operand->shift) & ((1 << operand->bits) - 1);
val = arc_opcode_lookup_suffix (operand, cond);
/* Ignore NULL values of `val'. Several condition code values aren't
implemented yet. */
if (opval && val)
*opval = val;
return cond;
}
/* The only thing this does is set the `invalid' flag if B != C.
This is needed because the "mov" macro appears before it's real insn "and"
and we don't want the disassembler to confuse them. */
static long
extract_unopmacro (insn, operand, mods, opval, invalid)
arc_insn *insn;
const struct arc_operand *operand;
int mods;
const struct arc_operand_value **opval;
int *invalid;
{
/* ??? This misses the case where B == ARC_REG_SHIMM_UPDATE &&
C == ARC_REG_SHIMM (or vice versa). No big deal. Those insns will get
printed as "and"s. */
if (((insn[0] >> ARC_SHIFT_REGB) & ARC_MASK_REG)
!= ((insn[0] >> ARC_SHIFT_REGC) & ARC_MASK_REG))
if (invalid)
*invalid = 1;
return 0;
}
/* Don't recognize the multiply and variable shift insns if the cpu doesn't
have them.
??? Actually, we probably should anyway. */
static long
extract_multshift (insn, operand, mods, opval, invalid)
arc_insn *insn;
const struct arc_operand *operand;
int mods;
const struct arc_operand_value **opval;
int *invalid;
{
return 0;
}
/* Utility for the extraction functions to return the index into
`arc_suffixes'. */
const struct arc_operand_value *
arc_opcode_lookup_suffix (type, value)
const struct arc_operand *type;
int value;
{
register const struct arc_operand_value *v,*end;
/* ??? This is a little slow and can be speeded up. */
for (v = arc_suffixes, end = arc_suffixes + arc_suffixes_count; v < end; ++v)
if (type == &arc_operands[v->type]
&& value == v->value)
return v;
return 0;
}
static const struct arc_operand_value *
lookup_register (type, regno)
int type;
long regno;
{
register const struct arc_operand_value *r,*end;
if (type == REG)
return &arc_reg_names[regno];
/* ??? This is a little slow and can be speeded up. */
for (r = arc_reg_names, end = arc_reg_names + arc_reg_names_count;
r < end; ++r)
if (type == r->type && regno == r->value)
return r;
return 0;
}