darling-gdb/sim/mn10300/dv-mn103ser.c
2008-01-01 22:53:26 +00:00

712 lines
16 KiB
C

/* This file is part of the program GDB, the GNU debugger.
Copyright (C) 1998, 2007, 2008 Free Software Foundation, Inc.
Contributed by Cygnus Solutions.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "sim-main.h"
#include "hw-main.h"
#include "dv-sockser.h"
/* DEVICE
mn103ser - mn103002 serial devices 0, 1 and 2.
DESCRIPTION
Implements the mn103002 serial interfaces as described in the
mn103002 user guide.
PROPERTIES
reg = <serial-addr> <serial-size>
BUGS
*/
/* The serial devices' registers' address block */
struct mn103ser_block {
unsigned_word base;
unsigned_word bound;
};
enum serial_register_types {
SC0CTR,
SC1CTR,
SC2CTR,
SC0ICR,
SC1ICR,
SC2ICR,
SC0TXB,
SC1TXB,
SC2TXB,
SC0RXB,
SC1RXB,
SC2RXB,
SC0STR,
SC1STR,
SC2STR,
SC2TIM,
};
/* Access dv-sockser state */
extern char* sockser_addr;
#define USE_SOCKSER_P (sockser_addr != NULL)
#define NR_SERIAL_DEVS 3
#define SIO_STAT_RRDY 0x0010
typedef struct _mn10300_serial {
unsigned16 status, control;
unsigned8 txb, rxb, intmode;
struct hw_event *event;
} mn10300_serial;
struct mn103ser {
struct mn103ser_block block;
mn10300_serial device[NR_SERIAL_DEVS];
unsigned8 serial2_timer_reg;
do_hw_poll_read_method *reader;
};
/* output port ID's */
/* for mn103002 */
enum {
SERIAL0_RECEIVE,
SERIAL1_RECEIVE,
SERIAL2_RECEIVE,
SERIAL0_SEND,
SERIAL1_SEND,
SERIAL2_SEND,
};
static const struct hw_port_descriptor mn103ser_ports[] = {
{ "serial-0-receive", SERIAL0_RECEIVE, 0, output_port, },
{ "serial-1-receive", SERIAL1_RECEIVE, 0, output_port, },
{ "serial-2-receive", SERIAL2_RECEIVE, 0, output_port, },
{ "serial-0-transmit", SERIAL0_SEND, 0, output_port, },
{ "serial-1-transmit", SERIAL1_SEND, 0, output_port, },
{ "serial-2-transmit", SERIAL2_SEND, 0, output_port, },
{ NULL, },
};
/* Finish off the partially created hw device. Attach our local
callbacks. Wire up our port names etc */
static hw_io_read_buffer_method mn103ser_io_read_buffer;
static hw_io_write_buffer_method mn103ser_io_write_buffer;
static void
attach_mn103ser_regs (struct hw *me,
struct mn103ser *serial)
{
unsigned_word attach_address;
int attach_space;
unsigned attach_size;
reg_property_spec reg;
if (hw_find_property (me, "reg") == NULL)
hw_abort (me, "Missing \"reg\" property");
if (!hw_find_reg_array_property (me, "reg", 0, &reg))
hw_abort (me, "\"reg\" property must contain three addr/size entries");
hw_unit_address_to_attach_address (hw_parent (me),
&reg.address,
&attach_space,
&attach_address,
me);
serial->block.base = attach_address;
hw_unit_size_to_attach_size (hw_parent (me),
&reg.size,
&attach_size, me);
serial->block.bound = attach_address + (attach_size - 1);
hw_attach_address (hw_parent (me),
0,
attach_space, attach_address, attach_size,
me);
}
static void
mn103ser_finish (struct hw *me)
{
struct mn103ser *serial;
int i;
serial = HW_ZALLOC (me, struct mn103ser);
set_hw_data (me, serial);
set_hw_io_read_buffer (me, mn103ser_io_read_buffer);
set_hw_io_write_buffer (me, mn103ser_io_write_buffer);
set_hw_ports (me, mn103ser_ports);
/* Attach ourself to our parent bus */
attach_mn103ser_regs (me, serial);
/* If so configured, enable polled input */
if (hw_find_property (me, "poll?") != NULL
&& hw_find_boolean_property (me, "poll?"))
{
serial->reader = sim_io_poll_read;
}
else
{
serial->reader = sim_io_read;
}
/* Initialize the serial device registers. */
for ( i=0; i<NR_SERIAL_DEVS; ++i )
{
serial->device[i].txb = 0;
serial->device[i].rxb = 0;
serial->device[i].status = 0;
serial->device[i].control = 0;
serial->device[i].intmode = 0;
serial->device[i].event = NULL;
}
}
/* read and write */
static int
decode_addr (struct hw *me,
struct mn103ser *serial,
unsigned_word address)
{
unsigned_word offset;
offset = address - serial->block.base;
switch (offset)
{
case 0x00: return SC0CTR;
case 0x04: return SC0ICR;
case 0x08: return SC0TXB;
case 0x09: return SC0RXB;
case 0x0C: return SC0STR;
case 0x10: return SC1CTR;
case 0x14: return SC1ICR;
case 0x18: return SC1TXB;
case 0x19: return SC1RXB;
case 0x1C: return SC1STR;
case 0x20: return SC2CTR;
case 0x24: return SC2ICR;
case 0x28: return SC2TXB;
case 0x29: return SC2RXB;
case 0x2C: return SC2STR;
case 0x2D: return SC2TIM;
default:
{
hw_abort (me, "bad address");
return -1;
}
}
}
static void
do_polling_event (struct hw *me,
void *data)
{
struct mn103ser *serial = hw_data(me);
long serial_reg = (long) data;
char c;
int count;
if(USE_SOCKSER_P)
{
int rd;
rd = dv_sockser_read (hw_system (me));
if(rd != -1)
{
c = (char) rd;
count = 1;
}
else
{
count = HW_IO_NOT_READY;
}
}
else
{
count = do_hw_poll_read (me, serial->reader,
0/*STDIN*/, &c, sizeof(c));
}
switch (count)
{
case HW_IO_NOT_READY:
case HW_IO_EOF:
serial->device[serial_reg].rxb = 0;
serial->device[serial_reg].status &= ~SIO_STAT_RRDY;
break;
default:
serial->device[serial_reg].rxb = c;
serial->device[serial_reg].status |= SIO_STAT_RRDY;
hw_port_event (me, serial_reg+SERIAL0_RECEIVE, 1);
}
/* Schedule next polling event */
serial->device[serial_reg].event
= hw_event_queue_schedule (me, 1000,
do_polling_event, (void *)serial_reg);
}
static void
read_control_reg (struct hw *me,
struct mn103ser *serial,
unsigned_word serial_reg,
void *dest,
unsigned nr_bytes)
{
/* really allow 1 byte read, too */
if ( nr_bytes == 2 )
{
*(unsigned16 *)dest = H2LE_2 (serial->device[serial_reg].control);
}
else
{
hw_abort (me, "bad read size of %d bytes from SC%dCTR.", nr_bytes,
serial_reg);
}
}
static void
read_intmode_reg (struct hw *me,
struct mn103ser *serial,
unsigned_word serial_reg,
void *dest,
unsigned nr_bytes)
{
if ( nr_bytes == 1 )
{
*(unsigned8 *)dest = serial->device[serial_reg].intmode;
}
else
{
hw_abort (me, "bad read size of %d bytes from SC%dICR.", nr_bytes,
serial_reg);
}
}
static void
read_txb (struct hw *me,
struct mn103ser *serial,
unsigned_word serial_reg,
void *dest,
unsigned nr_bytes)
{
if ( nr_bytes == 1 )
{
*(unsigned8 *)dest = serial->device[serial_reg].txb;
}
else
{
hw_abort (me, "bad read size of %d bytes from SC%dTXB.", nr_bytes,
serial_reg);
}
}
static void
read_rxb (struct hw *me,
struct mn103ser *serial,
unsigned_word serial_reg,
void *dest,
unsigned nr_bytes)
{
if ( nr_bytes == 1 )
{
*(unsigned8 *)dest = serial->device[serial_reg].rxb;
/* Reception buffer is now empty. */
serial->device[serial_reg].status &= ~SIO_STAT_RRDY;
}
else
{
hw_abort (me, "bad read size of %d bytes from SC%dRXB.", nr_bytes,
serial_reg);
}
}
static void
read_status_reg (struct hw *me,
struct mn103ser *serial,
unsigned_word serial_reg,
void *dest,
unsigned nr_bytes)
{
char c;
int count;
if ( (serial->device[serial_reg].status & SIO_STAT_RRDY) == 0 )
{
/* FIFO is empty */
/* Kill current poll event */
if ( NULL != serial->device[serial_reg].event )
{
hw_event_queue_deschedule (me, serial->device[serial_reg].event);
serial->device[serial_reg].event = NULL;
}
if(USE_SOCKSER_P)
{
int rd;
rd = dv_sockser_read (hw_system (me));
if(rd != -1)
{
c = (char) rd;
count = 1;
}
else
{
count = HW_IO_NOT_READY;
}
}
else
{
count = do_hw_poll_read (me, serial->reader,
0/*STDIN*/, &c, sizeof(c));
}
switch (count)
{
case HW_IO_NOT_READY:
case HW_IO_EOF:
serial->device[serial_reg].rxb = 0;
serial->device[serial_reg].status &= ~SIO_STAT_RRDY;
break;
default:
serial->device[serial_reg].rxb = c;
serial->device[serial_reg].status |= SIO_STAT_RRDY;
hw_port_event (me, serial_reg+SERIAL0_RECEIVE, 1);
}
/* schedule polling event */
serial->device[serial_reg].event
= hw_event_queue_schedule (me, 1000,
do_polling_event,
(void *) (long) serial_reg);
}
if ( nr_bytes == 1 )
{
*(unsigned8 *)dest = (unsigned8)serial->device[serial_reg].status;
}
else if ( nr_bytes == 2 && serial_reg != SC2STR )
{
*(unsigned16 *)dest = H2LE_2 (serial->device[serial_reg].status);
}
else
{
hw_abort (me, "bad read size of %d bytes from SC%dSTR.", nr_bytes,
serial_reg);
}
}
static void
read_serial2_timer_reg (struct hw *me,
struct mn103ser *serial,
void *dest,
unsigned nr_bytes)
{
if ( nr_bytes == 1 )
{
* (unsigned8 *) dest = (unsigned8) serial->serial2_timer_reg;
}
else
{
hw_abort (me, "bad read size of %d bytes to SC2TIM.", nr_bytes);
}
}
static unsigned
mn103ser_io_read_buffer (struct hw *me,
void *dest,
int space,
unsigned_word base,
unsigned nr_bytes)
{
struct mn103ser *serial = hw_data (me);
enum serial_register_types serial_reg;
HW_TRACE ((me, "read 0x%08lx %d", (long) base, (int) nr_bytes));
serial_reg = decode_addr (me, serial, base);
switch (serial_reg)
{
/* control registers */
case SC0CTR:
case SC1CTR:
case SC2CTR:
read_control_reg(me, serial, serial_reg-SC0CTR, dest, nr_bytes);
HW_TRACE ((me, "read - ctrl reg%d has 0x%x\n", serial_reg-SC0CTR,
*(unsigned8 *)dest));
break;
/* interrupt mode registers */
case SC0ICR:
case SC1ICR:
case SC2ICR:
read_intmode_reg(me, serial, serial_reg-SC0ICR, dest, nr_bytes);
HW_TRACE ((me, "read - intmode reg%d has 0x%x\n", serial_reg-SC0ICR,
*(unsigned8 *)dest));
break;
/* transmission buffers */
case SC0TXB:
case SC1TXB:
case SC2TXB:
read_txb(me, serial, serial_reg-SC0TXB, dest, nr_bytes);
HW_TRACE ((me, "read - txb%d has %c\n", serial_reg-SC0TXB,
*(char *)dest));
break;
/* reception buffers */
case SC0RXB:
case SC1RXB:
case SC2RXB:
read_rxb(me, serial, serial_reg-SC0RXB, dest, nr_bytes);
HW_TRACE ((me, "read - rxb%d has %c\n", serial_reg-SC0RXB,
*(char *)dest));
break;
/* status registers */
case SC0STR:
case SC1STR:
case SC2STR:
read_status_reg(me, serial, serial_reg-SC0STR, dest, nr_bytes);
HW_TRACE ((me, "read - status reg%d has 0x%x\n", serial_reg-SC0STR,
*(unsigned8 *)dest));
break;
case SC2TIM:
read_serial2_timer_reg(me, serial, dest, nr_bytes);
HW_TRACE ((me, "read - serial2 timer reg %d\n", *(unsigned8 *)dest));
break;
default:
hw_abort(me, "invalid address");
}
return nr_bytes;
}
static void
write_control_reg (struct hw *me,
struct mn103ser *serial,
unsigned_word serial_reg,
const void *source,
unsigned nr_bytes)
{
unsigned16 val = LE2H_2 (*(unsigned16 *)source);
/* really allow 1 byte write, too */
if ( nr_bytes == 2 )
{
if ( serial_reg == 2 && (val & 0x0C04) != 0 )
{
hw_abort(me, "Cannot write to read-only bits of SC2CTR.");
}
else
{
serial->device[serial_reg].control = val;
}
}
else
{
hw_abort (me, "bad read size of %d bytes from SC%dSTR.", nr_bytes,
serial_reg);
}
}
static void
write_intmode_reg (struct hw *me,
struct mn103ser *serial,
unsigned_word serial_reg,
const void *source,
unsigned nr_bytes)
{
unsigned8 val = *(unsigned8 *)source;
if ( nr_bytes == 1 )
{
/* Check for attempt to write to read-only bits of register. */
if ( ( serial_reg == 2 && (val & 0xCA) != 0 )
|| ( serial_reg != 2 && (val & 0x4A) != 0 ) )
{
hw_abort(me, "Cannot write to read-only bits of SC%dICR.",
serial_reg);
}
else
{
serial->device[serial_reg].intmode = val;
}
}
else
{
hw_abort (me, "bad write size of %d bytes to SC%dICR.", nr_bytes,
serial_reg);
}
}
static void
write_txb (struct hw *me,
struct mn103ser *serial,
unsigned_word serial_reg,
const void *source,
unsigned nr_bytes)
{
if ( nr_bytes == 1 )
{
serial->device[serial_reg].txb = *(unsigned8 *)source;
if(USE_SOCKSER_P)
{
dv_sockser_write(hw_system (me), * (char*) source);
}
else
{
sim_io_write_stdout(hw_system (me), (char *)source, 1);
sim_io_flush_stdout(hw_system (me));
}
hw_port_event (me, serial_reg+SERIAL0_SEND, 1);
}
else
{
hw_abort (me, "bad write size of %d bytes to SC%dTXB.", nr_bytes,
serial_reg);
}
}
static void
write_serial2_timer_reg (struct hw *me,
struct mn103ser *serial,
const void *source,
unsigned nr_bytes)
{
if ( nr_bytes == 1 )
{
serial->serial2_timer_reg = *(unsigned8 *)source;
}
else
{
hw_abort (me, "bad write size of %d bytes to SC2TIM.", nr_bytes);
}
}
static unsigned
mn103ser_io_write_buffer (struct hw *me,
const void *source,
int space,
unsigned_word base,
unsigned nr_bytes)
{
struct mn103ser *serial = hw_data (me);
enum serial_register_types serial_reg;
HW_TRACE ((me, "write 0x%08lx %d", (long) base, (int) nr_bytes));
serial_reg = decode_addr (me, serial, base);
switch (serial_reg)
{
/* control registers */
case SC0CTR:
case SC1CTR:
case SC2CTR:
HW_TRACE ((me, "write - ctrl reg%d has 0x%x, nrbytes=%d.\n",
serial_reg-SC0CTR, *(unsigned8 *)source, nr_bytes));
write_control_reg(me, serial, serial_reg-SC0CTR, source, nr_bytes);
break;
/* interrupt mode registers */
case SC0ICR:
case SC1ICR:
case SC2ICR:
HW_TRACE ((me, "write - intmode reg%d has 0x%x, nrbytes=%d.\n",
serial_reg-SC0ICR, *(unsigned8 *)source, nr_bytes));
write_intmode_reg(me, serial, serial_reg-SC0ICR, source, nr_bytes);
break;
/* transmission buffers */
case SC0TXB:
case SC1TXB:
case SC2TXB:
HW_TRACE ((me, "write - txb%d has %c, nrbytes=%d.\n",
serial_reg-SC0TXB, *(char *)source, nr_bytes));
write_txb(me, serial, serial_reg-SC0TXB, source, nr_bytes);
break;
/* reception buffers */
case SC0RXB:
case SC1RXB:
case SC2RXB:
hw_abort(me, "Cannot write to reception buffer.");
break;
/* status registers */
case SC0STR:
case SC1STR:
case SC2STR:
hw_abort(me, "Cannot write to status register.");
break;
case SC2TIM:
HW_TRACE ((me, "read - serial2 timer reg %d (nrbytes=%d)\n",
*(unsigned8 *)source, nr_bytes));
write_serial2_timer_reg(me, serial, source, nr_bytes);
break;
default:
hw_abort(me, "invalid address");
}
return nr_bytes;
}
const struct hw_descriptor dv_mn103ser_descriptor[] = {
{ "mn103ser", mn103ser_finish, },
{ NULL },
};