mirror of
https://github.com/darlinghq/darling-gdb.git
synced 2024-12-11 06:04:12 +00:00
0256a6ac4b
The dcache (code/stack cache) is supposed to be transparent, but it's actually not in one case. dcache tries to read chunks (cache lines) at a time off of the target. This may end up trying to read unaccessible or unavailable memory. Currently the caller gets an xfer error in this case. But if the specific bits of memory the caller actually wanted are available and accessible, then the caller should get the memory it wanted, not an error. gdb/ 2014-05-21 Pedro Alves <palves@redhat.com> * dcache.c (dcache_read_memory_partial): If reading the cache line fails, fallback to reading just the memory the caller wanted. gdb/testsuite/ 2014-05-21 Pedro Alves <palves@redhat.com> * gdb.base/dcache-line-read-error.c: New. * gdb.base/dcache-line-read-error.exp: New.
739 lines
20 KiB
C
739 lines
20 KiB
C
/* Caching code for GDB, the GNU debugger.
|
|
|
|
Copyright (C) 1992-2014 Free Software Foundation, Inc.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
|
|
|
#include "defs.h"
|
|
#include "dcache.h"
|
|
#include "gdbcmd.h"
|
|
#include <string.h>
|
|
#include "gdbcore.h"
|
|
#include "target-dcache.h"
|
|
#include "inferior.h"
|
|
#include "splay-tree.h"
|
|
|
|
/* Commands with a prefix of `{set,show} dcache'. */
|
|
static struct cmd_list_element *dcache_set_list = NULL;
|
|
static struct cmd_list_element *dcache_show_list = NULL;
|
|
|
|
/* The data cache could lead to incorrect results because it doesn't
|
|
know about volatile variables, thus making it impossible to debug
|
|
functions which use memory mapped I/O devices. Set the nocache
|
|
memory region attribute in those cases.
|
|
|
|
In general the dcache speeds up performance. Some speed improvement
|
|
comes from the actual caching mechanism, but the major gain is in
|
|
the reduction of the remote protocol overhead; instead of reading
|
|
or writing a large area of memory in 4 byte requests, the cache
|
|
bundles up the requests into LINE_SIZE chunks, reducing overhead
|
|
significantly. This is most useful when accessing a large amount
|
|
of data, such as when performing a backtrace.
|
|
|
|
The cache is a splay tree along with a linked list for replacement.
|
|
Each block caches a LINE_SIZE area of memory. Within each line we
|
|
remember the address of the line (which must be a multiple of
|
|
LINE_SIZE) and the actual data block.
|
|
|
|
Lines are only allocated as needed, so DCACHE_SIZE really specifies the
|
|
*maximum* number of lines in the cache.
|
|
|
|
At present, the cache is write-through rather than writeback: as soon
|
|
as data is written to the cache, it is also immediately written to
|
|
the target. Therefore, cache lines are never "dirty". Whether a given
|
|
line is valid or not depends on where it is stored in the dcache_struct;
|
|
there is no per-block valid flag. */
|
|
|
|
/* NOTE: Interaction of dcache and memory region attributes
|
|
|
|
As there is no requirement that memory region attributes be aligned
|
|
to or be a multiple of the dcache page size, dcache_read_line() and
|
|
dcache_write_line() must break up the page by memory region. If a
|
|
chunk does not have the cache attribute set, an invalid memory type
|
|
is set, etc., then the chunk is skipped. Those chunks are handled
|
|
in target_xfer_memory() (or target_xfer_memory_partial()).
|
|
|
|
This doesn't occur very often. The most common occurance is when
|
|
the last bit of the .text segment and the first bit of the .data
|
|
segment fall within the same dcache page with a ro/cacheable memory
|
|
region defined for the .text segment and a rw/non-cacheable memory
|
|
region defined for the .data segment. */
|
|
|
|
/* The maximum number of lines stored. The total size of the cache is
|
|
equal to DCACHE_SIZE times LINE_SIZE. */
|
|
#define DCACHE_DEFAULT_SIZE 4096
|
|
static unsigned dcache_size = DCACHE_DEFAULT_SIZE;
|
|
|
|
/* The default size of a cache line. Smaller values reduce the time taken to
|
|
read a single byte and make the cache more granular, but increase
|
|
overhead and reduce the effectiveness of the cache as a prefetcher. */
|
|
#define DCACHE_DEFAULT_LINE_SIZE 64
|
|
static unsigned dcache_line_size = DCACHE_DEFAULT_LINE_SIZE;
|
|
|
|
/* Each cache block holds LINE_SIZE bytes of data
|
|
starting at a multiple-of-LINE_SIZE address. */
|
|
|
|
#define LINE_SIZE_MASK(dcache) ((dcache->line_size - 1))
|
|
#define XFORM(dcache, x) ((x) & LINE_SIZE_MASK (dcache))
|
|
#define MASK(dcache, x) ((x) & ~LINE_SIZE_MASK (dcache))
|
|
|
|
struct dcache_block
|
|
{
|
|
/* For least-recently-allocated and free lists. */
|
|
struct dcache_block *prev;
|
|
struct dcache_block *next;
|
|
|
|
CORE_ADDR addr; /* address of data */
|
|
int refs; /* # hits */
|
|
gdb_byte data[1]; /* line_size bytes at given address */
|
|
};
|
|
|
|
struct dcache_struct
|
|
{
|
|
splay_tree tree;
|
|
struct dcache_block *oldest; /* least-recently-allocated list. */
|
|
|
|
/* The free list is maintained identically to OLDEST to simplify
|
|
the code: we only need one set of accessors. */
|
|
struct dcache_block *freelist;
|
|
|
|
/* The number of in-use lines in the cache. */
|
|
int size;
|
|
CORE_ADDR line_size; /* current line_size. */
|
|
|
|
/* The ptid of last inferior to use cache or null_ptid. */
|
|
ptid_t ptid;
|
|
};
|
|
|
|
typedef void (block_func) (struct dcache_block *block, void *param);
|
|
|
|
static struct dcache_block *dcache_hit (DCACHE *dcache, CORE_ADDR addr);
|
|
|
|
static int dcache_read_line (DCACHE *dcache, struct dcache_block *db);
|
|
|
|
static struct dcache_block *dcache_alloc (DCACHE *dcache, CORE_ADDR addr);
|
|
|
|
static void dcache_info (char *exp, int tty);
|
|
|
|
void _initialize_dcache (void);
|
|
|
|
static int dcache_enabled_p = 0; /* OBSOLETE */
|
|
|
|
static void
|
|
show_dcache_enabled_p (struct ui_file *file, int from_tty,
|
|
struct cmd_list_element *c, const char *value)
|
|
{
|
|
fprintf_filtered (file, _("Deprecated remotecache flag is %s.\n"), value);
|
|
}
|
|
|
|
/* Add BLOCK to circular block list BLIST, behind the block at *BLIST.
|
|
*BLIST is not updated (unless it was previously NULL of course).
|
|
This is for the least-recently-allocated list's sake:
|
|
BLIST points to the oldest block.
|
|
??? This makes for poor cache usage of the free list,
|
|
but is it measurable? */
|
|
|
|
static void
|
|
append_block (struct dcache_block **blist, struct dcache_block *block)
|
|
{
|
|
if (*blist)
|
|
{
|
|
block->next = *blist;
|
|
block->prev = (*blist)->prev;
|
|
block->prev->next = block;
|
|
(*blist)->prev = block;
|
|
/* We don't update *BLIST here to maintain the invariant that for the
|
|
least-recently-allocated list *BLIST points to the oldest block. */
|
|
}
|
|
else
|
|
{
|
|
block->next = block;
|
|
block->prev = block;
|
|
*blist = block;
|
|
}
|
|
}
|
|
|
|
/* Remove BLOCK from circular block list BLIST. */
|
|
|
|
static void
|
|
remove_block (struct dcache_block **blist, struct dcache_block *block)
|
|
{
|
|
if (block->next == block)
|
|
{
|
|
*blist = NULL;
|
|
}
|
|
else
|
|
{
|
|
block->next->prev = block->prev;
|
|
block->prev->next = block->next;
|
|
/* If we removed the block *BLIST points to, shift it to the next block
|
|
to maintain the invariant that for the least-recently-allocated list
|
|
*BLIST points to the oldest block. */
|
|
if (*blist == block)
|
|
*blist = block->next;
|
|
}
|
|
}
|
|
|
|
/* Iterate over all elements in BLIST, calling FUNC.
|
|
PARAM is passed to FUNC.
|
|
FUNC may remove the block it's passed, but only that block. */
|
|
|
|
static void
|
|
for_each_block (struct dcache_block **blist, block_func *func, void *param)
|
|
{
|
|
struct dcache_block *db;
|
|
|
|
if (*blist == NULL)
|
|
return;
|
|
|
|
db = *blist;
|
|
do
|
|
{
|
|
struct dcache_block *next = db->next;
|
|
|
|
func (db, param);
|
|
db = next;
|
|
}
|
|
while (*blist && db != *blist);
|
|
}
|
|
|
|
/* BLOCK_FUNC routine for dcache_free. */
|
|
|
|
static void
|
|
free_block (struct dcache_block *block, void *param)
|
|
{
|
|
xfree (block);
|
|
}
|
|
|
|
/* Free a data cache. */
|
|
|
|
void
|
|
dcache_free (DCACHE *dcache)
|
|
{
|
|
splay_tree_delete (dcache->tree);
|
|
for_each_block (&dcache->oldest, free_block, NULL);
|
|
for_each_block (&dcache->freelist, free_block, NULL);
|
|
xfree (dcache);
|
|
}
|
|
|
|
|
|
/* BLOCK_FUNC function for dcache_invalidate.
|
|
This doesn't remove the block from the oldest list on purpose.
|
|
dcache_invalidate will do it later. */
|
|
|
|
static void
|
|
invalidate_block (struct dcache_block *block, void *param)
|
|
{
|
|
DCACHE *dcache = (DCACHE *) param;
|
|
|
|
splay_tree_remove (dcache->tree, (splay_tree_key) block->addr);
|
|
append_block (&dcache->freelist, block);
|
|
}
|
|
|
|
/* Free all the data cache blocks, thus discarding all cached data. */
|
|
|
|
void
|
|
dcache_invalidate (DCACHE *dcache)
|
|
{
|
|
for_each_block (&dcache->oldest, invalidate_block, dcache);
|
|
|
|
dcache->oldest = NULL;
|
|
dcache->size = 0;
|
|
dcache->ptid = null_ptid;
|
|
|
|
if (dcache->line_size != dcache_line_size)
|
|
{
|
|
/* We've been asked to use a different line size.
|
|
All of our freelist blocks are now the wrong size, so free them. */
|
|
|
|
for_each_block (&dcache->freelist, free_block, dcache);
|
|
dcache->freelist = NULL;
|
|
dcache->line_size = dcache_line_size;
|
|
}
|
|
}
|
|
|
|
/* Invalidate the line associated with ADDR. */
|
|
|
|
static void
|
|
dcache_invalidate_line (DCACHE *dcache, CORE_ADDR addr)
|
|
{
|
|
struct dcache_block *db = dcache_hit (dcache, addr);
|
|
|
|
if (db)
|
|
{
|
|
splay_tree_remove (dcache->tree, (splay_tree_key) db->addr);
|
|
remove_block (&dcache->oldest, db);
|
|
append_block (&dcache->freelist, db);
|
|
--dcache->size;
|
|
}
|
|
}
|
|
|
|
/* If addr is present in the dcache, return the address of the block
|
|
containing it. Otherwise return NULL. */
|
|
|
|
static struct dcache_block *
|
|
dcache_hit (DCACHE *dcache, CORE_ADDR addr)
|
|
{
|
|
struct dcache_block *db;
|
|
|
|
splay_tree_node node = splay_tree_lookup (dcache->tree,
|
|
(splay_tree_key) MASK (dcache, addr));
|
|
|
|
if (!node)
|
|
return NULL;
|
|
|
|
db = (struct dcache_block *) node->value;
|
|
db->refs++;
|
|
return db;
|
|
}
|
|
|
|
/* Fill a cache line from target memory.
|
|
The result is 1 for success, 0 if the (entire) cache line
|
|
wasn't readable. */
|
|
|
|
static int
|
|
dcache_read_line (DCACHE *dcache, struct dcache_block *db)
|
|
{
|
|
CORE_ADDR memaddr;
|
|
gdb_byte *myaddr;
|
|
int len;
|
|
int res;
|
|
int reg_len;
|
|
struct mem_region *region;
|
|
|
|
len = dcache->line_size;
|
|
memaddr = db->addr;
|
|
myaddr = db->data;
|
|
|
|
while (len > 0)
|
|
{
|
|
/* Don't overrun if this block is right at the end of the region. */
|
|
region = lookup_mem_region (memaddr);
|
|
if (region->hi == 0 || memaddr + len < region->hi)
|
|
reg_len = len;
|
|
else
|
|
reg_len = region->hi - memaddr;
|
|
|
|
/* Skip non-readable regions. The cache attribute can be ignored,
|
|
since we may be loading this for a stack access. */
|
|
if (region->attrib.mode == MEM_WO)
|
|
{
|
|
memaddr += reg_len;
|
|
myaddr += reg_len;
|
|
len -= reg_len;
|
|
continue;
|
|
}
|
|
|
|
res = target_read_raw_memory (memaddr, myaddr, reg_len);
|
|
if (res != 0)
|
|
return 0;
|
|
|
|
memaddr += reg_len;
|
|
myaddr += reg_len;
|
|
len -= reg_len;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Get a free cache block, put or keep it on the valid list,
|
|
and return its address. */
|
|
|
|
static struct dcache_block *
|
|
dcache_alloc (DCACHE *dcache, CORE_ADDR addr)
|
|
{
|
|
struct dcache_block *db;
|
|
|
|
if (dcache->size >= dcache_size)
|
|
{
|
|
/* Evict the least recently allocated line. */
|
|
db = dcache->oldest;
|
|
remove_block (&dcache->oldest, db);
|
|
|
|
splay_tree_remove (dcache->tree, (splay_tree_key) db->addr);
|
|
}
|
|
else
|
|
{
|
|
db = dcache->freelist;
|
|
if (db)
|
|
remove_block (&dcache->freelist, db);
|
|
else
|
|
db = xmalloc (offsetof (struct dcache_block, data) +
|
|
dcache->line_size);
|
|
|
|
dcache->size++;
|
|
}
|
|
|
|
db->addr = MASK (dcache, addr);
|
|
db->refs = 0;
|
|
|
|
/* Put DB at the end of the list, it's the newest. */
|
|
append_block (&dcache->oldest, db);
|
|
|
|
splay_tree_insert (dcache->tree, (splay_tree_key) db->addr,
|
|
(splay_tree_value) db);
|
|
|
|
return db;
|
|
}
|
|
|
|
/* Using the data cache DCACHE, store in *PTR the contents of the byte at
|
|
address ADDR in the remote machine.
|
|
|
|
Returns 1 for success, 0 for error. */
|
|
|
|
static int
|
|
dcache_peek_byte (DCACHE *dcache, CORE_ADDR addr, gdb_byte *ptr)
|
|
{
|
|
struct dcache_block *db = dcache_hit (dcache, addr);
|
|
|
|
if (!db)
|
|
{
|
|
db = dcache_alloc (dcache, addr);
|
|
|
|
if (!dcache_read_line (dcache, db))
|
|
return 0;
|
|
}
|
|
|
|
*ptr = db->data[XFORM (dcache, addr)];
|
|
return 1;
|
|
}
|
|
|
|
/* Write the byte at PTR into ADDR in the data cache.
|
|
|
|
The caller should have written the data through to target memory
|
|
already.
|
|
|
|
If ADDR is not in cache, this function does nothing; writing to an
|
|
area of memory which wasn't present in the cache doesn't cause it
|
|
to be loaded in. */
|
|
|
|
static void
|
|
dcache_poke_byte (DCACHE *dcache, CORE_ADDR addr, const gdb_byte *ptr)
|
|
{
|
|
struct dcache_block *db = dcache_hit (dcache, addr);
|
|
|
|
if (db)
|
|
db->data[XFORM (dcache, addr)] = *ptr;
|
|
}
|
|
|
|
static int
|
|
dcache_splay_tree_compare (splay_tree_key a, splay_tree_key b)
|
|
{
|
|
if (a > b)
|
|
return 1;
|
|
else if (a == b)
|
|
return 0;
|
|
else
|
|
return -1;
|
|
}
|
|
|
|
/* Allocate and initialize a data cache. */
|
|
|
|
DCACHE *
|
|
dcache_init (void)
|
|
{
|
|
DCACHE *dcache;
|
|
|
|
dcache = (DCACHE *) xmalloc (sizeof (*dcache));
|
|
|
|
dcache->tree = splay_tree_new (dcache_splay_tree_compare,
|
|
NULL,
|
|
NULL);
|
|
|
|
dcache->oldest = NULL;
|
|
dcache->freelist = NULL;
|
|
dcache->size = 0;
|
|
dcache->line_size = dcache_line_size;
|
|
dcache->ptid = null_ptid;
|
|
|
|
return dcache;
|
|
}
|
|
|
|
|
|
/* Read LEN bytes from dcache memory at MEMADDR, transferring to
|
|
debugger address MYADDR. If the data is presently cached, this
|
|
fills the cache. Arguments/return are like the target_xfer_partial
|
|
interface. */
|
|
|
|
enum target_xfer_status
|
|
dcache_read_memory_partial (struct target_ops *ops, DCACHE *dcache,
|
|
CORE_ADDR memaddr, gdb_byte *myaddr,
|
|
ULONGEST len, ULONGEST *xfered_len)
|
|
{
|
|
ULONGEST i;
|
|
|
|
/* If this is a different inferior from what we've recorded,
|
|
flush the cache. */
|
|
|
|
if (! ptid_equal (inferior_ptid, dcache->ptid))
|
|
{
|
|
dcache_invalidate (dcache);
|
|
dcache->ptid = inferior_ptid;
|
|
}
|
|
|
|
for (i = 0; i < len; i++)
|
|
{
|
|
if (!dcache_peek_byte (dcache, memaddr + i, myaddr + i))
|
|
{
|
|
/* That failed. Discard its cache line so we don't have a
|
|
partially read line. */
|
|
dcache_invalidate_line (dcache, memaddr + i);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (i == 0)
|
|
{
|
|
/* Even though reading the whole line failed, we may be able to
|
|
read a piece starting where the caller wanted. */
|
|
return ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
|
|
myaddr, NULL, memaddr, len,
|
|
xfered_len);
|
|
}
|
|
else
|
|
{
|
|
*xfered_len = i;
|
|
return TARGET_XFER_OK;
|
|
}
|
|
}
|
|
|
|
/* FIXME: There would be some benefit to making the cache write-back and
|
|
moving the writeback operation to a higher layer, as it could occur
|
|
after a sequence of smaller writes have been completed (as when a stack
|
|
frame is constructed for an inferior function call). Note that only
|
|
moving it up one level to target_xfer_memory[_partial]() is not
|
|
sufficient since we want to coalesce memory transfers that are
|
|
"logically" connected but not actually a single call to one of the
|
|
memory transfer functions. */
|
|
|
|
/* Just update any cache lines which are already present. This is
|
|
called by the target_xfer_partial machinery when writing raw
|
|
memory. */
|
|
|
|
void
|
|
dcache_update (DCACHE *dcache, enum target_xfer_status status,
|
|
CORE_ADDR memaddr, const gdb_byte *myaddr,
|
|
ULONGEST len)
|
|
{
|
|
ULONGEST i;
|
|
|
|
for (i = 0; i < len; i++)
|
|
if (status == TARGET_XFER_OK)
|
|
dcache_poke_byte (dcache, memaddr + i, myaddr + i);
|
|
else
|
|
{
|
|
/* Discard the whole cache line so we don't have a partially
|
|
valid line. */
|
|
dcache_invalidate_line (dcache, memaddr + i);
|
|
}
|
|
}
|
|
|
|
/* Print DCACHE line INDEX. */
|
|
|
|
static void
|
|
dcache_print_line (DCACHE *dcache, int index)
|
|
{
|
|
splay_tree_node n;
|
|
struct dcache_block *db;
|
|
int i, j;
|
|
|
|
if (dcache == NULL)
|
|
{
|
|
printf_filtered (_("No data cache available.\n"));
|
|
return;
|
|
}
|
|
|
|
n = splay_tree_min (dcache->tree);
|
|
|
|
for (i = index; i > 0; --i)
|
|
{
|
|
if (!n)
|
|
break;
|
|
n = splay_tree_successor (dcache->tree, n->key);
|
|
}
|
|
|
|
if (!n)
|
|
{
|
|
printf_filtered (_("No such cache line exists.\n"));
|
|
return;
|
|
}
|
|
|
|
db = (struct dcache_block *) n->value;
|
|
|
|
printf_filtered (_("Line %d: address %s [%d hits]\n"),
|
|
index, paddress (target_gdbarch (), db->addr), db->refs);
|
|
|
|
for (j = 0; j < dcache->line_size; j++)
|
|
{
|
|
printf_filtered ("%02x ", db->data[j]);
|
|
|
|
/* Print a newline every 16 bytes (48 characters). */
|
|
if ((j % 16 == 15) && (j != dcache->line_size - 1))
|
|
printf_filtered ("\n");
|
|
}
|
|
printf_filtered ("\n");
|
|
}
|
|
|
|
/* Parse EXP and show the info about DCACHE. */
|
|
|
|
static void
|
|
dcache_info_1 (DCACHE *dcache, char *exp)
|
|
{
|
|
splay_tree_node n;
|
|
int i, refcount;
|
|
|
|
if (exp)
|
|
{
|
|
char *linestart;
|
|
|
|
i = strtol (exp, &linestart, 10);
|
|
if (linestart == exp || i < 0)
|
|
{
|
|
printf_filtered (_("Usage: info dcache [linenumber]\n"));
|
|
return;
|
|
}
|
|
|
|
dcache_print_line (dcache, i);
|
|
return;
|
|
}
|
|
|
|
printf_filtered (_("Dcache %u lines of %u bytes each.\n"),
|
|
dcache_size,
|
|
dcache ? (unsigned) dcache->line_size
|
|
: dcache_line_size);
|
|
|
|
if (dcache == NULL || ptid_equal (dcache->ptid, null_ptid))
|
|
{
|
|
printf_filtered (_("No data cache available.\n"));
|
|
return;
|
|
}
|
|
|
|
printf_filtered (_("Contains data for %s\n"),
|
|
target_pid_to_str (dcache->ptid));
|
|
|
|
refcount = 0;
|
|
|
|
n = splay_tree_min (dcache->tree);
|
|
i = 0;
|
|
|
|
while (n)
|
|
{
|
|
struct dcache_block *db = (struct dcache_block *) n->value;
|
|
|
|
printf_filtered (_("Line %d: address %s [%d hits]\n"),
|
|
i, paddress (target_gdbarch (), db->addr), db->refs);
|
|
i++;
|
|
refcount += db->refs;
|
|
|
|
n = splay_tree_successor (dcache->tree, n->key);
|
|
}
|
|
|
|
printf_filtered (_("Cache state: %d active lines, %d hits\n"), i, refcount);
|
|
}
|
|
|
|
static void
|
|
dcache_info (char *exp, int tty)
|
|
{
|
|
dcache_info_1 (target_dcache_get (), exp);
|
|
}
|
|
|
|
static void
|
|
set_dcache_size (char *args, int from_tty,
|
|
struct cmd_list_element *c)
|
|
{
|
|
if (dcache_size == 0)
|
|
{
|
|
dcache_size = DCACHE_DEFAULT_SIZE;
|
|
error (_("Dcache size must be greater than 0."));
|
|
}
|
|
target_dcache_invalidate ();
|
|
}
|
|
|
|
static void
|
|
set_dcache_line_size (char *args, int from_tty,
|
|
struct cmd_list_element *c)
|
|
{
|
|
if (dcache_line_size < 2
|
|
|| (dcache_line_size & (dcache_line_size - 1)) != 0)
|
|
{
|
|
unsigned d = dcache_line_size;
|
|
dcache_line_size = DCACHE_DEFAULT_LINE_SIZE;
|
|
error (_("Invalid dcache line size: %u (must be power of 2)."), d);
|
|
}
|
|
target_dcache_invalidate ();
|
|
}
|
|
|
|
static void
|
|
set_dcache_command (char *arg, int from_tty)
|
|
{
|
|
printf_unfiltered (
|
|
"\"set dcache\" must be followed by the name of a subcommand.\n");
|
|
help_list (dcache_set_list, "set dcache ", -1, gdb_stdout);
|
|
}
|
|
|
|
static void
|
|
show_dcache_command (char *args, int from_tty)
|
|
{
|
|
cmd_show_list (dcache_show_list, from_tty, "");
|
|
}
|
|
|
|
void
|
|
_initialize_dcache (void)
|
|
{
|
|
add_setshow_boolean_cmd ("remotecache", class_support,
|
|
&dcache_enabled_p, _("\
|
|
Set cache use for remote targets."), _("\
|
|
Show cache use for remote targets."), _("\
|
|
This used to enable the data cache for remote targets. The cache\n\
|
|
functionality is now controlled by the memory region system and the\n\
|
|
\"stack-cache\" flag; \"remotecache\" now does nothing and\n\
|
|
exists only for compatibility reasons."),
|
|
NULL,
|
|
show_dcache_enabled_p,
|
|
&setlist, &showlist);
|
|
|
|
add_info ("dcache", dcache_info,
|
|
_("\
|
|
Print information on the dcache performance.\n\
|
|
With no arguments, this command prints the cache configuration and a\n\
|
|
summary of each line in the cache. Use \"info dcache <lineno> to dump\"\n\
|
|
the contents of a given line."));
|
|
|
|
add_prefix_cmd ("dcache", class_obscure, set_dcache_command, _("\
|
|
Use this command to set number of lines in dcache and line-size."),
|
|
&dcache_set_list, "set dcache ", /*allow_unknown*/0, &setlist);
|
|
add_prefix_cmd ("dcache", class_obscure, show_dcache_command, _("\
|
|
Show dcachesettings."),
|
|
&dcache_show_list, "show dcache ", /*allow_unknown*/0, &showlist);
|
|
|
|
add_setshow_zuinteger_cmd ("line-size", class_obscure,
|
|
&dcache_line_size, _("\
|
|
Set dcache line size in bytes (must be power of 2)."), _("\
|
|
Show dcache line size."),
|
|
NULL,
|
|
set_dcache_line_size,
|
|
NULL,
|
|
&dcache_set_list, &dcache_show_list);
|
|
add_setshow_zuinteger_cmd ("size", class_obscure,
|
|
&dcache_size, _("\
|
|
Set number of dcache lines."), _("\
|
|
Show number of dcache lines."),
|
|
NULL,
|
|
set_dcache_size,
|
|
NULL,
|
|
&dcache_set_list, &dcache_show_list);
|
|
}
|