mirror of
https://github.com/darlinghq/darling-gdb.git
synced 2024-11-26 05:20:30 +00:00
1134 lines
30 KiB
C
1134 lines
30 KiB
C
/* Handle SunOS and SVR4 shared libraries for GDB, the GNU Debugger.
|
|
Copyright 1990, 1991 Free Software Foundation, Inc.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
|
|
|
|
|
|
#include <sys/types.h>
|
|
#include <signal.h>
|
|
#include <string.h>
|
|
#include <link.h>
|
|
#include <sys/param.h>
|
|
#include <fcntl.h>
|
|
#include <stdio.h>
|
|
#include <a.out.h>
|
|
|
|
#include "defs.h"
|
|
#include "symtab.h"
|
|
#include "gdbcore.h"
|
|
#include "command.h"
|
|
#include "target.h"
|
|
#include "frame.h"
|
|
#include "regex.h"
|
|
#include "inferior.h"
|
|
|
|
extern char *getenv ();
|
|
extern char *elf_interpreter (); /* Interpreter name from exec file */
|
|
extern char *re_comp ();
|
|
|
|
#define MAX_PATH_SIZE 256 /* FIXME: Should be dynamic */
|
|
|
|
/* On SVR4 systems, for the initial implementation, use main() as the
|
|
"startup mapping complete" breakpoint address. The models for SunOS
|
|
and SVR4 dynamic linking debugger support are different in that SunOS
|
|
hits one breakpoint when all mapping is complete while using the SVR4
|
|
debugger support takes two breakpoint hits for each file mapped, and
|
|
there is no way to know when the "last" one is hit. Both these
|
|
mechanisms should be tied to a "breakpoint service routine" that
|
|
gets automatically executed whenever one of the breakpoints indicating
|
|
a change in mapping is hit. This is a future enhancement. (FIXME) */
|
|
|
|
#define BKPT_AT_MAIN 1
|
|
|
|
/* local data declarations */
|
|
|
|
#ifndef SVR4_SHARED_LIBS
|
|
|
|
#define DEBUG_BASE "_DYNAMIC"
|
|
#define LM_ADDR(so) ((so) -> lm.lm_addr)
|
|
#define LM_NEXT(so) ((so) -> lm.lm_next)
|
|
#define LM_NAME(so) ((so) -> lm.lm_name)
|
|
static struct link_dynamic dynamic_copy;
|
|
static struct link_dynamic_2 ld_2_copy;
|
|
static struct ld_debug debug_copy;
|
|
static CORE_ADDR debug_addr;
|
|
static CORE_ADDR flag_addr;
|
|
|
|
#else /* SVR4_SHARED_LIBS */
|
|
|
|
#define DEBUG_BASE "_r_debug"
|
|
#define LM_ADDR(so) ((so) -> lm.l_addr)
|
|
#define LM_NEXT(so) ((so) -> lm.l_next)
|
|
#define LM_NAME(so) ((so) -> lm.l_name)
|
|
static struct r_debug debug_copy;
|
|
char shadow_contents[BREAKPOINT_MAX]; /* Stash old bkpt addr contents */
|
|
extern CORE_ADDR proc_base_address ();
|
|
extern int proc_address_to_fd ();
|
|
|
|
#endif /* !SVR4_SHARED_LIBS */
|
|
|
|
struct so_list {
|
|
struct so_list *next; /* next structure in linked list */
|
|
struct link_map lm; /* copy of link map from inferior */
|
|
struct link_map *lmaddr; /* addr in inferior lm was read from */
|
|
CORE_ADDR lmend; /* upper addr bound of mapped object */
|
|
char so_name[MAX_PATH_SIZE]; /* shared object lib name (FIXME) */
|
|
char symbols_loaded; /* flag: symbols read in yet? */
|
|
char from_tty; /* flag: print msgs? */
|
|
bfd *so_bfd; /* bfd for so_name */
|
|
struct section_table *sections;
|
|
struct section_table *sections_end;
|
|
};
|
|
|
|
static struct so_list *so_list_head; /* List of known shared objects */
|
|
static CORE_ADDR debug_base; /* Base of dynamic linker structures */
|
|
static CORE_ADDR breakpoint_addr; /* Address where end bkpt is set */
|
|
|
|
|
|
/*
|
|
|
|
LOCAL FUNCTION
|
|
|
|
solib_map_sections -- open bfd and build sections for shared lib
|
|
|
|
SYNOPSIS
|
|
|
|
static void solib_map_sections (struct so_list *so)
|
|
|
|
DESCRIPTION
|
|
|
|
Given a pointer to one of the shared objects in our list
|
|
of mapped objects, use the recorded name to open a bfd
|
|
descriptor for the object, build a section table, and then
|
|
relocate all the section addresses by the base address at
|
|
which the shared object was mapped.
|
|
|
|
FIXMES
|
|
|
|
In most (all?) cases the shared object file name recorded in the
|
|
dynamic linkage tables will be a fully qualified pathname. For
|
|
cases where it isn't, do we really mimic the systems search
|
|
mechanism correctly in the below code (particularly the tilde
|
|
expansion stuff?).
|
|
*/
|
|
|
|
static void
|
|
solib_map_sections (so)
|
|
struct so_list *so;
|
|
{
|
|
char *filename;
|
|
char *scratch_pathname;
|
|
int scratch_chan;
|
|
struct section_table *p;
|
|
|
|
filename = tilde_expand (so -> so_name);
|
|
make_cleanup (free, filename);
|
|
|
|
scratch_chan = openp (getenv ("PATH"), 1, filename, O_RDONLY, 0,
|
|
&scratch_pathname);
|
|
if (scratch_chan < 0)
|
|
{
|
|
scratch_chan = openp (getenv ("LD_LIBRARY_PATH"), 1, filename,
|
|
O_RDONLY, 0, &scratch_pathname);
|
|
}
|
|
if (scratch_chan < 0)
|
|
{
|
|
perror_with_name (filename);
|
|
}
|
|
|
|
so -> so_bfd = bfd_fdopenr (scratch_pathname, NULL, scratch_chan);
|
|
if (!so -> so_bfd)
|
|
{
|
|
error ("Could not open `%s' as an executable file: %s",
|
|
scratch_pathname, bfd_errmsg (bfd_error));
|
|
}
|
|
if (!bfd_check_format (so -> so_bfd, bfd_object))
|
|
{
|
|
error ("\"%s\": not in executable format: %s.",
|
|
scratch_pathname, bfd_errmsg (bfd_error));
|
|
}
|
|
if (build_section_table (so -> so_bfd, &so -> sections, &so -> sections_end))
|
|
{
|
|
error ("Can't find the file sections in `%s': %s",
|
|
exec_bfd -> filename, bfd_errmsg (bfd_error));
|
|
}
|
|
|
|
for (p = so -> sections; p < so -> sections_end; p++)
|
|
{
|
|
/* Relocate the section binding addresses as recorded in the shared
|
|
object's file by the base address to which the object was actually
|
|
mapped. */
|
|
p -> addr += (CORE_ADDR) LM_ADDR (so);
|
|
p -> endaddr += (CORE_ADDR) LM_ADDR (so);
|
|
so -> lmend = (CORE_ADDR) max (p -> endaddr, so -> lmend);
|
|
}
|
|
}
|
|
|
|
/* Read all dynamically loaded common symbol definitions from the inferior
|
|
and add them to the misc_function_vector. */
|
|
|
|
#ifndef SVR4_SHARED_LIBS
|
|
|
|
static void
|
|
solib_add_common_symbols (rtc_symp)
|
|
struct rtc_symb *rtc_symp;
|
|
{
|
|
struct rtc_symb inferior_rtc_symb;
|
|
struct nlist inferior_rtc_nlist;
|
|
extern void discard_misc_bunches();
|
|
|
|
init_misc_bunches ();
|
|
make_cleanup (discard_misc_bunches, 0);
|
|
|
|
while (rtc_symp)
|
|
{
|
|
read_memory((CORE_ADDR)rtc_symp,
|
|
&inferior_rtc_symb,
|
|
sizeof(inferior_rtc_symb));
|
|
read_memory((CORE_ADDR)inferior_rtc_symb.rtc_sp,
|
|
&inferior_rtc_nlist,
|
|
sizeof(inferior_rtc_nlist));
|
|
if (inferior_rtc_nlist.n_type == N_COMM)
|
|
{
|
|
/* FIXME: The length of the symbol name is not available, but in the
|
|
current implementation the common symbol is allocated immediately
|
|
behind the name of the symbol. */
|
|
int len = inferior_rtc_nlist.n_value - inferior_rtc_nlist.n_un.n_strx;
|
|
char *name, *origname;
|
|
|
|
origname = name = xmalloc (len);
|
|
read_memory((CORE_ADDR)inferior_rtc_nlist.n_un.n_name, name, len);
|
|
|
|
/* Don't enter the symbol twice if the target is re-run. */
|
|
|
|
#ifdef NAMES_HAVE_UNDERSCORE
|
|
if (*name == '_')
|
|
name++;
|
|
#endif
|
|
if (lookup_misc_func (name) < 0)
|
|
prim_record_misc_function (obsavestring (name, strlen (name)),
|
|
inferior_rtc_nlist.n_value,
|
|
mf_bss);
|
|
free (origname);
|
|
}
|
|
rtc_symp = inferior_rtc_symb.rtc_next;
|
|
}
|
|
|
|
condense_misc_bunches (1);
|
|
}
|
|
|
|
#endif /* SVR4_SHARED_LIBS */
|
|
|
|
/*
|
|
|
|
LOCAL FUNCTION
|
|
|
|
bfd_lookup_symbol -- lookup the value for a specific symbol
|
|
|
|
SYNOPSIS
|
|
|
|
CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname)
|
|
|
|
DESCRIPTION
|
|
|
|
An expensive way to lookup the value of a single symbol for
|
|
bfd's that are only temporary anyway. This is used by the
|
|
shared library support to find the address of the debugger
|
|
interface structures in the shared library.
|
|
|
|
Note that 0 is specifically allowed as an error return (no
|
|
such symbol).
|
|
|
|
FIXME: See if there is a less "expensive" way of doing this.
|
|
Also see if there is already another bfd or gdb function
|
|
that specifically does this, and if so, use it.
|
|
*/
|
|
|
|
static CORE_ADDR
|
|
DEFUN (bfd_lookup_symbol, (abfd, symname),
|
|
bfd *abfd AND
|
|
char *symname)
|
|
{
|
|
unsigned int storage_needed;
|
|
asymbol *sym;
|
|
asymbol **symbol_table;
|
|
unsigned int number_of_symbols;
|
|
unsigned int i;
|
|
struct cleanup *back_to;
|
|
CORE_ADDR symaddr = 0;
|
|
enum misc_function_type mf_type;
|
|
|
|
storage_needed = get_symtab_upper_bound (abfd);
|
|
|
|
if (storage_needed > 0)
|
|
{
|
|
symbol_table = (asymbol **) bfd_xmalloc (storage_needed);
|
|
back_to = make_cleanup (free, symbol_table);
|
|
number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
|
|
|
|
for (i = 0; i < number_of_symbols; i++)
|
|
{
|
|
sym = *symbol_table++;
|
|
if (strcmp (sym -> name, symname) == 0)
|
|
{
|
|
symaddr = sym -> value;
|
|
break;
|
|
}
|
|
}
|
|
do_cleanups (back_to);
|
|
}
|
|
return (symaddr);
|
|
}
|
|
|
|
/*
|
|
|
|
LOCAL FUNCTION
|
|
|
|
look_for_base -- examine file for each mapped address segment
|
|
|
|
SYNOPSYS
|
|
|
|
static int look_for_base (int fd, CORE_ADDR baseaddr)
|
|
|
|
DESCRIPTION
|
|
|
|
This function is passed to proc_iterate_over_mappings, which
|
|
causes it to get called once for each mapped address space, with
|
|
an open file descriptor for the file mapped to that space, and the
|
|
base address of that mapped space.
|
|
|
|
Our job is to find the symbol DEBUG_BASE in the file that this
|
|
fd is open on, if it exists, and if so, initialize the dynamic
|
|
linker structure base address debug_base.
|
|
|
|
Note that this is a computationally expensive proposition, since
|
|
we basically have to open a bfd on every call, so we specifically
|
|
avoid opening the exec file.
|
|
*/
|
|
|
|
static int
|
|
DEFUN (look_for_base, (fd, baseaddr),
|
|
int fd AND
|
|
CORE_ADDR baseaddr)
|
|
{
|
|
bfd *interp_bfd;
|
|
CORE_ADDR address;
|
|
|
|
/* If the fd is -1, then there is no file that corresponds to this
|
|
mapped memory segment, so skip it. Also, if the fd corresponds
|
|
to the exec file, skip it as well. */
|
|
|
|
if ((fd == -1) || fdmatch (fileno ((FILE *)(exec_bfd -> iostream)), fd))
|
|
{
|
|
return (0);
|
|
}
|
|
|
|
/* Try to open whatever random file this fd corresponds to. Note that
|
|
we have no way currently to find the filename. Don't gripe about
|
|
any problems we might have, just fail. */
|
|
|
|
if ((interp_bfd = bfd_fdopenr ("unnamed", NULL, fd)) == NULL)
|
|
{
|
|
return (0);
|
|
}
|
|
if (!bfd_check_format (interp_bfd, bfd_object))
|
|
{
|
|
bfd_close (interp_bfd);
|
|
return (0);
|
|
}
|
|
|
|
/* Now try to find our DEBUG_BASE symbol in this file, which we at
|
|
least know to be a valid ELF executable or shared library. */
|
|
|
|
if ((address = bfd_lookup_symbol (interp_bfd, DEBUG_BASE)) == 0)
|
|
{
|
|
bfd_close (interp_bfd);
|
|
return (0);
|
|
}
|
|
|
|
/* Eureka! We found the symbol. But now we may need to relocate it
|
|
by the base address. If the symbol's value is less than the base
|
|
address of the shared library, then it hasn't yet been relocated
|
|
by the dynamic linker, and we have to do it ourself. FIXME: Note
|
|
that we make the assumption that the first segment that corresponds
|
|
to the shared library has the base address to which the library
|
|
was relocated. */
|
|
|
|
if (address < baseaddr)
|
|
{
|
|
address += baseaddr;
|
|
}
|
|
debug_base = address;
|
|
bfd_close (interp_bfd);
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
|
|
LOCAL FUNCTION
|
|
|
|
locate_base -- locate the base address of dynamic linker structs
|
|
|
|
SYNOPSIS
|
|
|
|
CORE_ADDR locate_base (void)
|
|
|
|
DESCRIPTION
|
|
|
|
For both the SunOS and SVR4 shared library implementations, if the
|
|
inferior executable has been linked dynamically, there is a single
|
|
address somewhere in the inferior's data space which is the key to
|
|
locating all of the dynamic linker's runtime structures. This
|
|
address is the value of the symbol defined by the macro DEBUG_BASE.
|
|
The job of this function is to find and return that address, or to
|
|
return 0 if there is no such address (the executable is statically
|
|
linked for example).
|
|
|
|
For SunOS, the job is almost trivial, since the dynamic linker and
|
|
all of it's structures are statically linked to the executable at
|
|
link time. Thus the symbol for the address we are looking for has
|
|
already been added to the misc function vector at the time the symbol
|
|
file's symbols were read, and all we have to do is look it up there.
|
|
|
|
The SVR4 version is much more complicated because the dynamic linker
|
|
and it's structures are located in the shared C library, which gets
|
|
run as the executable's "interpreter" by the kernel. We have to go
|
|
to a lot more work to discover the address of DEBUG_BASE. Because
|
|
of this complexity, we cache the value we find and return that value
|
|
on subsequent invocations.
|
|
|
|
Note that we can assume nothing about the process state at the time
|
|
we need to find this address. We may be stopped on the first instruc-
|
|
tion of the interpreter (C shared library), the first instruction of
|
|
the executable itself, or somewhere else entirely (if we attached
|
|
to the process for example).
|
|
|
|
*/
|
|
|
|
static CORE_ADDR
|
|
locate_base ()
|
|
{
|
|
|
|
#ifndef SVR4_SHARED_LIBS
|
|
|
|
int i;
|
|
CORE_ADDR address = 0;
|
|
|
|
i = lookup_misc_func (DEBUG_BASE);
|
|
if (i >= 0 && misc_function_vector[i].address != 0)
|
|
{
|
|
address = misc_function_vector[i].address;
|
|
}
|
|
return (address);
|
|
|
|
#else /* SVR4_SHARED_LIBS */
|
|
|
|
/* Check to see if we have a currently valid address, and if so, avoid
|
|
doing all this work again and just return the cached address. If
|
|
we have no cached address, ask the /proc support interface to iterate
|
|
over the list of mapped address segments, calling look_for_base() for
|
|
each segment. When we are done, we will have either found the base
|
|
address or not. */
|
|
|
|
if (debug_base == 0)
|
|
{
|
|
proc_iterate_over_mappings (look_for_base);
|
|
}
|
|
return (debug_base);
|
|
|
|
#endif /* !SVR4_SHARED_LIBS */
|
|
|
|
}
|
|
|
|
static struct link_map *
|
|
first_link_map_member ()
|
|
{
|
|
struct link_map *lm = NULL;
|
|
|
|
#ifndef SVR4_SHARED_LIBS
|
|
|
|
read_memory (debug_base, &dynamic_copy, sizeof (dynamic_copy));
|
|
if (dynamic_copy.ld_version >= 2)
|
|
{
|
|
/* It is a version that we can deal with, so read in the secondary
|
|
structure and find the address of the link map list from it. */
|
|
read_memory ((CORE_ADDR) dynamic_copy.ld_un.ld_2, &ld_2_copy,
|
|
sizeof (struct link_dynamic_2));
|
|
lm = ld_2_copy.ld_loaded;
|
|
}
|
|
|
|
#else /* SVR4_SHARED_LIBS */
|
|
|
|
read_memory (debug_base, &debug_copy, sizeof (struct r_debug));
|
|
lm = debug_copy.r_map;
|
|
|
|
#endif /* !SVR4_SHARED_LIBS */
|
|
|
|
return (lm);
|
|
}
|
|
|
|
/*
|
|
|
|
GLOBAL FUNCTION
|
|
|
|
find_solib -- step through list of shared objects
|
|
|
|
SYNOPSIS
|
|
|
|
struct so_list *find_solib (struct so_list *so_list_ptr)
|
|
|
|
DESCRIPTION
|
|
|
|
This module contains the routine which finds the names of any
|
|
loaded "images" in the current process. The argument in must be
|
|
NULL on the first call, and then the returned value must be passed
|
|
in on subsequent calls. This provides the capability to "step" down
|
|
the list of loaded objects. On the last object, a NULL value is
|
|
returned.
|
|
|
|
The arg and return value are "struct link_map" pointers, as defined
|
|
in <link.h>.
|
|
*/
|
|
|
|
struct so_list *
|
|
find_solib (so_list_ptr)
|
|
struct so_list *so_list_ptr; /* Last lm or NULL for first one */
|
|
{
|
|
struct so_list *so_list_next = NULL;
|
|
struct link_map *lm = NULL;
|
|
struct so_list *new;
|
|
|
|
if (so_list_ptr == NULL)
|
|
{
|
|
/* We are setting up for a new scan through the loaded images. */
|
|
if ((so_list_next = so_list_head) == NULL)
|
|
{
|
|
/* We have not already read in the dynamic linking structures
|
|
from the inferior, lookup the address of the base structure. */
|
|
debug_base = locate_base ();
|
|
if (debug_base > 0)
|
|
{
|
|
/* Read the base structure in and find the address of the first
|
|
link map list member. */
|
|
lm = first_link_map_member ();
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* We have been called before, and are in the process of walking
|
|
the shared library list. Advance to the next shared object. */
|
|
if ((lm = LM_NEXT (so_list_ptr)) == NULL)
|
|
{
|
|
/* We have hit the end of the list, so check to see if any were
|
|
added, but be quiet if we can't read from the target any more. */
|
|
int status = target_read_memory ((CORE_ADDR) so_list_ptr -> lmaddr,
|
|
(char *) &(so_list_ptr -> lm),
|
|
sizeof (struct link_map));
|
|
if (status == 0)
|
|
{
|
|
lm = LM_NEXT (so_list_ptr);
|
|
}
|
|
else
|
|
{
|
|
lm = NULL;
|
|
}
|
|
}
|
|
so_list_next = so_list_ptr -> next;
|
|
}
|
|
if ((so_list_next == NULL) && (lm != NULL))
|
|
{
|
|
/* Get next link map structure from inferior image and build a local
|
|
abbreviated load_map structure */
|
|
new = (struct so_list *) xmalloc (sizeof (struct so_list));
|
|
(void) memset ((char *) new, 0, sizeof (struct so_list));
|
|
new -> lmaddr = lm;
|
|
/* Add the new node as the next node in the list, or as the root
|
|
node if this is the first one. */
|
|
if (so_list_ptr != NULL)
|
|
{
|
|
so_list_ptr -> next = new;
|
|
}
|
|
else
|
|
{
|
|
so_list_head = new;
|
|
}
|
|
so_list_next = new;
|
|
read_memory ((CORE_ADDR) lm, &(new -> lm), sizeof (struct link_map));
|
|
/* For the SVR4 version, there is one entry that has no name
|
|
(for the inferior executable) since it is not a shared object. */
|
|
if (LM_NAME (new) != 0)
|
|
{
|
|
(void) target_read_string((CORE_ADDR) LM_NAME (new), new -> so_name,
|
|
MAX_PATH_SIZE - 1);
|
|
new -> so_name[MAX_PATH_SIZE - 1] = 0;
|
|
solib_map_sections (new);
|
|
}
|
|
}
|
|
return (so_list_next);
|
|
}
|
|
|
|
/* A small stub to get us past the arg-passing pinhole of catch_errors. */
|
|
|
|
static int
|
|
symbol_add_stub (arg)
|
|
char *arg;
|
|
{
|
|
register struct so_list *so = (struct so_list *) arg; /* catch_errs bogon */
|
|
|
|
symbol_file_add (so -> so_name, so -> from_tty,
|
|
(unsigned int) LM_ADDR (so), 0);
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
|
|
GLOBAL FUNCTION
|
|
|
|
solib_add -- add a shared library file to the symtab and section list
|
|
|
|
SYNOPSIS
|
|
|
|
void solib_add (char *arg_string, int from_tty,
|
|
struct target_ops *target)
|
|
|
|
DESCRIPTION
|
|
|
|
*/
|
|
|
|
void
|
|
solib_add (arg_string, from_tty, target)
|
|
char *arg_string;
|
|
int from_tty;
|
|
struct target_ops *target;
|
|
{
|
|
register struct so_list *so = NULL; /* link map state variable */
|
|
char *re_err;
|
|
int count;
|
|
int old;
|
|
|
|
if ((re_err = re_comp (arg_string ? arg_string : ".")) != NULL)
|
|
{
|
|
error ("Invalid regexp: %s", re_err);
|
|
}
|
|
|
|
/* Getting new symbols may change our opinion about what is
|
|
frameless. */
|
|
reinit_frame_cache ();
|
|
|
|
while ((so = find_solib (so)) != NULL)
|
|
{
|
|
if (so -> so_name[0] && re_exec (so -> so_name))
|
|
{
|
|
if (so -> symbols_loaded)
|
|
{
|
|
if (from_tty)
|
|
{
|
|
printf ("Symbols already loaded for %s\n", so -> so_name);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
so -> symbols_loaded = 1;
|
|
so -> from_tty = from_tty;
|
|
catch_errors (symbol_add_stub, (char *) so,
|
|
"Error while reading shared library symbols:\n");
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Now add the shared library sections to the section table of the
|
|
specified target, if any. */
|
|
if (target)
|
|
{
|
|
/* Count how many new section_table entries there are. */
|
|
so = NULL;
|
|
count = 0;
|
|
while ((so = find_solib (so)) != NULL)
|
|
{
|
|
if (so -> so_name[0])
|
|
{
|
|
count += so -> sections_end - so -> sections;
|
|
}
|
|
}
|
|
|
|
if (count)
|
|
{
|
|
/* Reallocate the target's section table including the new size. */
|
|
if (target -> sections)
|
|
{
|
|
old = target -> sections_end - target -> sections;
|
|
target -> sections = (struct section_table *)
|
|
realloc ((char *)target -> sections,
|
|
(sizeof (struct section_table)) * (count + old));
|
|
}
|
|
else
|
|
{
|
|
old = 0;
|
|
target -> sections = (struct section_table *)
|
|
malloc ((sizeof (struct section_table)) * count);
|
|
}
|
|
target -> sections_end = target -> sections + (count + old);
|
|
|
|
/* Add these section table entries to the target's table. */
|
|
while ((so = find_solib (so)) != NULL)
|
|
{
|
|
if (so -> so_name[0])
|
|
{
|
|
count = so -> sections_end - so -> sections;
|
|
bcopy (so -> sections, (char *)(target -> sections + old),
|
|
(sizeof (struct section_table)) * count);
|
|
old += count;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
|
|
LOCAL FUNCTION
|
|
|
|
info_sharedlibrary_command -- code for "info sharedlibrary"
|
|
|
|
SYNOPSIS
|
|
|
|
static void info_sharedlibrary_command ()
|
|
|
|
DESCRIPTION
|
|
|
|
Walk through the shared library list and print information
|
|
about each attached library.
|
|
*/
|
|
|
|
static void
|
|
info_sharedlibrary_command ()
|
|
{
|
|
register struct so_list *so = NULL; /* link map state variable */
|
|
int header_done = 0;
|
|
|
|
if (exec_bfd == NULL)
|
|
{
|
|
printf ("No exec file.\n");
|
|
return;
|
|
}
|
|
while ((so = find_solib (so)) != NULL)
|
|
{
|
|
if (so -> so_name[0])
|
|
{
|
|
if (!header_done)
|
|
{
|
|
printf("%-12s%-12s%-12s%s\n", "From", "To", "Syms Read",
|
|
"Shared Object Library");
|
|
header_done++;
|
|
}
|
|
printf ("%-12s", local_hex_string_custom (LM_ADDR (so), "08"));
|
|
printf ("%-12s", local_hex_string_custom (so -> lmend, "08"));
|
|
printf ("%-12s", so -> symbols_loaded ? "Yes" : "No");
|
|
printf ("%s\n", so -> so_name);
|
|
}
|
|
}
|
|
if (so_list_head == NULL)
|
|
{
|
|
printf ("No shared libraries loaded at this time.\n");
|
|
}
|
|
}
|
|
|
|
/*
|
|
|
|
GLOBAL FUNCTION
|
|
|
|
solib_address -- check to see if an address is in a shared lib
|
|
|
|
SYNOPSIS
|
|
|
|
int solib_address (CORE_ADDR address)
|
|
|
|
DESCRIPTION
|
|
|
|
Provides a hook for other gdb routines to discover whether or
|
|
not a particular address is within the mapped address space of
|
|
a shared library. Any address between the base mapping address
|
|
and the first address beyond the end of the last mapping, is
|
|
considered to be within the shared library address space, for
|
|
our purposes.
|
|
|
|
For example, this routine is called at one point to disable
|
|
breakpoints which are in shared libraries that are not currently
|
|
mapped in.
|
|
*/
|
|
|
|
int
|
|
solib_address (address)
|
|
CORE_ADDR address;
|
|
{
|
|
register struct so_list *so = 0; /* link map state variable */
|
|
|
|
while ((so = find_solib (so)) != NULL)
|
|
{
|
|
if (so -> so_name[0])
|
|
{
|
|
if ((address >= (CORE_ADDR) LM_ADDR (so)) &&
|
|
(address < (CORE_ADDR) so -> lmend))
|
|
{
|
|
return (1);
|
|
}
|
|
}
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/* Called by free_all_symtabs */
|
|
|
|
void
|
|
clear_solib()
|
|
{
|
|
struct so_list *next;
|
|
|
|
while (so_list_head)
|
|
{
|
|
if (so_list_head -> sections)
|
|
{
|
|
free (so_list_head -> sections);
|
|
}
|
|
if (so_list_head -> so_bfd)
|
|
{
|
|
bfd_close (so_list_head -> so_bfd);
|
|
}
|
|
next = so_list_head -> next;
|
|
free(so_list_head);
|
|
so_list_head = next;
|
|
}
|
|
debug_base = 0;
|
|
}
|
|
|
|
/*
|
|
|
|
LOCAL FUNCTION
|
|
|
|
disable_break -- remove the "mapping changed" breakpoint
|
|
|
|
SYNOPSIS
|
|
|
|
static int disable_break ()
|
|
|
|
DESCRIPTION
|
|
|
|
Removes the breakpoint that gets hit when the dynamic linker
|
|
completes a mapping change.
|
|
|
|
*/
|
|
|
|
static int
|
|
disable_break ()
|
|
{
|
|
int status = 1;
|
|
|
|
#ifndef SVR4_SHARED_LIBS
|
|
|
|
int in_debugger = 0;
|
|
|
|
/* Read the debugger structure from the inferior to retrieve the
|
|
address of the breakpoint and the original contents of the
|
|
breakpoint address. Remove the breakpoint by writing the original
|
|
contents back. */
|
|
|
|
read_memory (debug_addr, &debug_copy, sizeof (debug_copy));
|
|
|
|
/* Get common symbol definitions for the loaded object. */
|
|
if (debug_copy.ldd_cp)
|
|
solib_add_common_symbols (debug_copy.ldd_cp);
|
|
|
|
/* Set `in_debugger' to zero now. */
|
|
|
|
write_memory (flag_addr, &in_debugger, sizeof (in_debugger));
|
|
|
|
breakpoint_addr = (CORE_ADDR) debug_copy.ldd_bp_addr;
|
|
write_memory (breakpoint_addr, &debug_copy.ldd_bp_inst,
|
|
sizeof (debug_copy.ldd_bp_inst));
|
|
|
|
#else /* SVR4_SHARED_LIBS */
|
|
|
|
/* Note that breakpoint address and original contents are in our address
|
|
space, so we just need to write the original contents back. */
|
|
|
|
if (memory_remove_breakpoint (breakpoint_addr, shadow_contents) != 0)
|
|
{
|
|
status = 0;
|
|
}
|
|
|
|
#endif /* !SVR4_SHARED_LIBS */
|
|
|
|
/* For the SVR4 version, we always know the breakpoint address. For the
|
|
SunOS version we don't know it until the above code is executed.
|
|
Grumble if we are stopped anywhere besides the breakpoint address. */
|
|
|
|
if (stop_pc != breakpoint_addr)
|
|
{
|
|
warning ("stopped at unknown breakpoint while handling shared libraries");
|
|
}
|
|
|
|
return (status);
|
|
}
|
|
|
|
/*
|
|
|
|
LOCAL FUNCTION
|
|
|
|
enable_break -- arrange for dynamic linker to hit breakpoint
|
|
|
|
SYNOPSIS
|
|
|
|
int enable_break (void)
|
|
|
|
DESCRIPTION
|
|
|
|
Both the SunOS and the SVR4 dynamic linkers have, as part of their
|
|
debugger interface, support for arranging for the inferior to hit
|
|
a breakpoint after mapping in the shared libraries. This function
|
|
enables that breakpoint.
|
|
|
|
For SunOS, there is a special flag location (in_debugger) which we
|
|
set to 1. When the dynamic linker sees this flag set, it will set
|
|
a breakpoint at a location known only to itself, after saving the
|
|
original contents of that place and the breakpoint address itself,
|
|
in it's own internal structures. When we resume the inferior, it
|
|
will eventually take a SIGTRAP when it runs into the breakpoint.
|
|
We handle this (in a different place) by restoring the contents of
|
|
the breakpointed location (which is only known after it stops),
|
|
chasing around to locate the shared libraries that have been
|
|
loaded, then resuming.
|
|
|
|
For SVR4, the debugger interface structure contains a member (r_brk)
|
|
which is statically initialized at the time the shared library is
|
|
built, to the offset of a function (_r_debug_state) which is guaran-
|
|
teed to be called once before mapping in a library, and again when
|
|
the mapping is complete. At the time we are examining this member,
|
|
it contains only the unrelocated offset of the function, so we have
|
|
to do our own relocation. Later, when the dynamic linker actually
|
|
runs, it relocates r_brk to be the actual address of _r_debug_state().
|
|
|
|
The debugger interface structure also contains an enumeration which
|
|
is set to either RT_ADD or RT_DELETE prior to changing the mapping,
|
|
depending upon whether or not the library is being mapped or unmapped,
|
|
and then set to RT_CONSISTENT after the library is mapped/unmapped.
|
|
*/
|
|
|
|
static int
|
|
enable_break ()
|
|
{
|
|
|
|
int j;
|
|
|
|
#ifndef SVR4_SHARED_LIBS
|
|
|
|
int in_debugger;
|
|
|
|
/* Get link_dynamic structure */
|
|
|
|
j = target_read_memory (debug_base, (char *) &dynamic_copy,
|
|
sizeof (dynamic_copy));
|
|
if (j)
|
|
{
|
|
/* unreadable */
|
|
return (0);
|
|
}
|
|
|
|
/* Calc address of debugger interface structure */
|
|
|
|
debug_addr = (CORE_ADDR) dynamic_copy.ldd;
|
|
|
|
/* Calc address of `in_debugger' member of debugger interface structure */
|
|
|
|
flag_addr = debug_addr + (CORE_ADDR) ((char *) &debug_copy.ldd_in_debugger -
|
|
(char *) &debug_copy);
|
|
|
|
/* Write a value of 1 to this member. */
|
|
|
|
in_debugger = 1;
|
|
|
|
write_memory (flag_addr, &in_debugger, sizeof (in_debugger));
|
|
|
|
#else /* SVR4_SHARED_LIBS */
|
|
|
|
#ifdef BKPT_AT_MAIN
|
|
|
|
int i;
|
|
|
|
i = lookup_misc_func ("main");
|
|
if (i >= 0 && misc_function_vector[i].address != 0)
|
|
{
|
|
breakpoint_addr = misc_function_vector[i].address;
|
|
}
|
|
else
|
|
{
|
|
return (0);
|
|
}
|
|
|
|
if (target_insert_breakpoint (breakpoint_addr, shadow_contents) != 0)
|
|
{
|
|
return (0);
|
|
}
|
|
|
|
#else /* !BKPT_AT_MAIN */
|
|
|
|
struct symtab_and_line sal;
|
|
|
|
/* Read the debugger interface structure directly. */
|
|
|
|
read_memory (debug_base, (char *) &debug_copy, sizeof (debug_copy));
|
|
|
|
/* Set breakpoint at the debugger interface stub routine that will
|
|
be called just prior to each mapping change and again after the
|
|
mapping change is complete. Set up the (nonexistent) handler to
|
|
deal with hitting these breakpoints. (FIXME). */
|
|
|
|
warning ("'%s': line %d: missing SVR4 support code", __FILE__, __LINE__);
|
|
|
|
#endif /* BKPT_AT_MAIN */
|
|
|
|
#endif /* !SVR4_SHARED_LIBS */
|
|
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
|
|
GLOBAL FUNCTION
|
|
|
|
solib_create_inferior_hook -- shared library startup support
|
|
|
|
SYNOPSIS
|
|
|
|
void solib_create_inferior_hook()
|
|
|
|
DESCRIPTION
|
|
|
|
When gdb starts up the inferior, it nurses it along (through the
|
|
shell) until it is ready to execute it's first instruction. At this
|
|
point, this function gets called via expansion of the macro
|
|
SOLIB_CREATE_INFERIOR_HOOK.
|
|
|
|
For both SunOS shared libraries, and SVR4 shared libraries, we
|
|
can arrange to cooperate with the dynamic linker to discover the
|
|
names of shared libraries that are dynamically linked, and the
|
|
base addresses to which they are linked.
|
|
|
|
This function is responsible for discovering those names and
|
|
addresses, and saving sufficient information about them to allow
|
|
their symbols to be read at a later time.
|
|
|
|
FIXME
|
|
|
|
Between enable_break() and disable_break(), this code does not
|
|
properly handle hitting breakpoints which the user might have
|
|
set in the startup code or in the dynamic linker itself. Proper
|
|
handling will probably have to wait until the implementation is
|
|
changed to use the "breakpoint handler function" method.
|
|
|
|
Also, what if child has exit()ed? Must exit loop somehow.
|
|
*/
|
|
|
|
void
|
|
solib_create_inferior_hook()
|
|
{
|
|
CORE_ADDR debug_addr;
|
|
int in_debugger;
|
|
CORE_ADDR in_debugger_addr;
|
|
CORE_ADDR breakpoint_addr;
|
|
int i, j;
|
|
|
|
if ((debug_base = locate_base ()) == 0)
|
|
{
|
|
/* Can't find the symbol or the executable is statically linked. */
|
|
return;
|
|
}
|
|
|
|
if (!enable_break ())
|
|
{
|
|
warning ("shared library handler failed to enable breakpoint");
|
|
return;
|
|
}
|
|
|
|
/* Now run the target. It will eventually hit the breakpoint, at
|
|
which point all of the libraries will have been mapped in and we
|
|
can go groveling around in the dynamic linker structures to find
|
|
out what we need to know about them. */
|
|
|
|
clear_proceed_status ();
|
|
stop_soon_quietly = 1;
|
|
stop_signal = 0;
|
|
do
|
|
{
|
|
target_resume (0, stop_signal);
|
|
wait_for_inferior ();
|
|
}
|
|
while (stop_signal != SIGTRAP);
|
|
stop_soon_quietly = 0;
|
|
|
|
/* We are now either at the "mapping complete" breakpoint (or somewhere
|
|
else, a condition we aren't prepared to deal with anyway), so adjust
|
|
the PC as necessary after a breakpoint, disable the breakpoint, and
|
|
add any shared libraries that were mapped in. */
|
|
|
|
if (DECR_PC_AFTER_BREAK)
|
|
{
|
|
stop_pc -= DECR_PC_AFTER_BREAK;
|
|
write_register (PC_REGNUM, stop_pc);
|
|
}
|
|
|
|
if (!disable_break ())
|
|
{
|
|
warning ("shared library handler failed to disable breakpoint");
|
|
}
|
|
|
|
solib_add ((char *) 0, 0, (struct target_ops *) 0);
|
|
}
|
|
|
|
/*
|
|
|
|
GLOBAL FUNCTION
|
|
|
|
sharedlibrary_command -- handle command to explicitly add library
|
|
|
|
SYNOPSIS
|
|
|
|
void sharedlibrary_command (char *args, int from_tty)
|
|
|
|
DESCRIPTION
|
|
|
|
*/
|
|
|
|
void
|
|
sharedlibrary_command (args, from_tty)
|
|
char *args;
|
|
int from_tty;
|
|
{
|
|
dont_repeat ();
|
|
solib_add (args, from_tty, (struct target_ops *) 0);
|
|
}
|
|
|
|
void
|
|
_initialize_solib()
|
|
{
|
|
|
|
add_com ("sharedlibrary", class_files, sharedlibrary_command,
|
|
"Load shared object library symbols for files matching REGEXP.");
|
|
add_info ("sharedlibrary", info_sharedlibrary_command,
|
|
"Status of loaded shared object libraries.");
|
|
}
|