mirror of
https://github.com/darlinghq/darling-gdb.git
synced 2025-01-24 02:14:28 +00:00
1000 lines
34 KiB
C
1000 lines
34 KiB
C
/* Vector API for GDB.
|
|
Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009
|
|
Free Software Foundation, Inc.
|
|
Contributed by Nathan Sidwell <nathan@codesourcery.com>
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
|
|
|
#if !defined (GDB_VEC_H)
|
|
#define GDB_VEC_H
|
|
|
|
#include <stddef.h>
|
|
#include "gdb_string.h"
|
|
#include "gdb_assert.h"
|
|
|
|
/* The macros here implement a set of templated vector types and
|
|
associated interfaces. These templates are implemented with
|
|
macros, as we're not in C++ land. The interface functions are
|
|
typesafe and use static inline functions, sometimes backed by
|
|
out-of-line generic functions.
|
|
|
|
Because of the different behavior of structure objects, scalar
|
|
objects and of pointers, there are three flavors, one for each of
|
|
these variants. Both the structure object and pointer variants
|
|
pass pointers to objects around -- in the former case the pointers
|
|
are stored into the vector and in the latter case the pointers are
|
|
dereferenced and the objects copied into the vector. The scalar
|
|
object variant is suitable for int-like objects, and the vector
|
|
elements are returned by value.
|
|
|
|
There are both 'index' and 'iterate' accessors. The iterator
|
|
returns a boolean iteration condition and updates the iteration
|
|
variable passed by reference. Because the iterator will be
|
|
inlined, the address-of can be optimized away.
|
|
|
|
The vectors are implemented using the trailing array idiom, thus
|
|
they are not resizeable without changing the address of the vector
|
|
object itself. This means you cannot have variables or fields of
|
|
vector type -- always use a pointer to a vector. The one exception
|
|
is the final field of a structure, which could be a vector type.
|
|
You will have to use the embedded_size & embedded_init calls to
|
|
create such objects, and they will probably not be resizeable (so
|
|
don't use the 'safe' allocation variants). The trailing array
|
|
idiom is used (rather than a pointer to an array of data), because,
|
|
if we allow NULL to also represent an empty vector, empty vectors
|
|
occupy minimal space in the structure containing them.
|
|
|
|
Each operation that increases the number of active elements is
|
|
available in 'quick' and 'safe' variants. The former presumes that
|
|
there is sufficient allocated space for the operation to succeed
|
|
(it dies if there is not). The latter will reallocate the
|
|
vector, if needed. Reallocation causes an exponential increase in
|
|
vector size. If you know you will be adding N elements, it would
|
|
be more efficient to use the reserve operation before adding the
|
|
elements with the 'quick' operation. This will ensure there are at
|
|
least as many elements as you ask for, it will exponentially
|
|
increase if there are too few spare slots. If you want reserve a
|
|
specific number of slots, but do not want the exponential increase
|
|
(for instance, you know this is the last allocation), use a
|
|
negative number for reservation. You can also create a vector of a
|
|
specific size from the get go.
|
|
|
|
You should prefer the push and pop operations, as they append and
|
|
remove from the end of the vector. If you need to remove several
|
|
items in one go, use the truncate operation. The insert and remove
|
|
operations allow you to change elements in the middle of the
|
|
vector. There are two remove operations, one which preserves the
|
|
element ordering 'ordered_remove', and one which does not
|
|
'unordered_remove'. The latter function copies the end element
|
|
into the removed slot, rather than invoke a memmove operation. The
|
|
'lower_bound' function will determine where to place an item in the
|
|
array using insert that will maintain sorted order.
|
|
|
|
If you need to directly manipulate a vector, then the 'address'
|
|
accessor will return the address of the start of the vector. Also
|
|
the 'space' predicate will tell you whether there is spare capacity
|
|
in the vector. You will not normally need to use these two functions.
|
|
|
|
Vector types are defined using a DEF_VEC_{O,P,I}(TYPEDEF) macro.
|
|
Variables of vector type are declared using a VEC(TYPEDEF) macro.
|
|
The characters O, P and I indicate whether TYPEDEF is a pointer
|
|
(P), object (O) or integral (I) type. Be careful to pick the
|
|
correct one, as you'll get an awkward and inefficient API if you
|
|
use the wrong one. There is a check, which results in a
|
|
compile-time warning, for the P and I versions, but there is no
|
|
check for the O versions, as that is not possible in plain C.
|
|
|
|
An example of their use would be,
|
|
|
|
DEF_VEC_P(tree); // non-managed tree vector.
|
|
|
|
struct my_struct {
|
|
VEC(tree) *v; // A (pointer to) a vector of tree pointers.
|
|
};
|
|
|
|
struct my_struct *s;
|
|
|
|
if (VEC_length(tree, s->v)) { we have some contents }
|
|
VEC_safe_push(tree, s->v, decl); // append some decl onto the end
|
|
for (ix = 0; VEC_iterate(tree, s->v, ix, elt); ix++)
|
|
{ do something with elt }
|
|
|
|
*/
|
|
|
|
/* Macros to invoke API calls. A single macro works for both pointer
|
|
and object vectors, but the argument and return types might well be
|
|
different. In each macro, T is the typedef of the vector elements.
|
|
Some of these macros pass the vector, V, by reference (by taking
|
|
its address), this is noted in the descriptions. */
|
|
|
|
/* Length of vector
|
|
unsigned VEC_T_length(const VEC(T) *v);
|
|
|
|
Return the number of active elements in V. V can be NULL, in which
|
|
case zero is returned. */
|
|
|
|
#define VEC_length(T,V) (VEC_OP(T,length)(V))
|
|
|
|
|
|
/* Check if vector is empty
|
|
int VEC_T_empty(const VEC(T) *v);
|
|
|
|
Return nonzero if V is an empty vector (or V is NULL), zero otherwise. */
|
|
|
|
#define VEC_empty(T,V) (VEC_length (T,V) == 0)
|
|
|
|
|
|
/* Get the final element of the vector.
|
|
T VEC_T_last(VEC(T) *v); // Integer
|
|
T VEC_T_last(VEC(T) *v); // Pointer
|
|
T *VEC_T_last(VEC(T) *v); // Object
|
|
|
|
Return the final element. V must not be empty. */
|
|
|
|
#define VEC_last(T,V) (VEC_OP(T,last)(V VEC_ASSERT_INFO))
|
|
|
|
/* Index into vector
|
|
T VEC_T_index(VEC(T) *v, unsigned ix); // Integer
|
|
T VEC_T_index(VEC(T) *v, unsigned ix); // Pointer
|
|
T *VEC_T_index(VEC(T) *v, unsigned ix); // Object
|
|
|
|
Return the IX'th element. If IX must be in the domain of V. */
|
|
|
|
#define VEC_index(T,V,I) (VEC_OP(T,index)(V,I VEC_ASSERT_INFO))
|
|
|
|
/* Iterate over vector
|
|
int VEC_T_iterate(VEC(T) *v, unsigned ix, T &ptr); // Integer
|
|
int VEC_T_iterate(VEC(T) *v, unsigned ix, T &ptr); // Pointer
|
|
int VEC_T_iterate(VEC(T) *v, unsigned ix, T *&ptr); // Object
|
|
|
|
Return iteration condition and update PTR to point to the IX'th
|
|
element. At the end of iteration, sets PTR to NULL. Use this to
|
|
iterate over the elements of a vector as follows,
|
|
|
|
for (ix = 0; VEC_iterate(T,v,ix,ptr); ix++)
|
|
continue; */
|
|
|
|
#define VEC_iterate(T,V,I,P) (VEC_OP(T,iterate)(V,I,&(P)))
|
|
|
|
/* Allocate new vector.
|
|
VEC(T,A) *VEC_T_alloc(int reserve);
|
|
|
|
Allocate a new vector with space for RESERVE objects. If RESERVE
|
|
is zero, NO vector is created. */
|
|
|
|
#define VEC_alloc(T,N) (VEC_OP(T,alloc)(N))
|
|
|
|
/* Free a vector.
|
|
void VEC_T_free(VEC(T,A) *&);
|
|
|
|
Free a vector and set it to NULL. */
|
|
|
|
#define VEC_free(T,V) (VEC_OP(T,free)(&V))
|
|
|
|
/* Use these to determine the required size and initialization of a
|
|
vector embedded within another structure (as the final member).
|
|
|
|
size_t VEC_T_embedded_size(int reserve);
|
|
void VEC_T_embedded_init(VEC(T) *v, int reserve);
|
|
|
|
These allow the caller to perform the memory allocation. */
|
|
|
|
#define VEC_embedded_size(T,N) (VEC_OP(T,embedded_size)(N))
|
|
#define VEC_embedded_init(T,O,N) (VEC_OP(T,embedded_init)(VEC_BASE(O),N))
|
|
|
|
/* Copy a vector.
|
|
VEC(T,A) *VEC_T_copy(VEC(T) *);
|
|
|
|
Copy the live elements of a vector into a new vector. The new and
|
|
old vectors need not be allocated by the same mechanism. */
|
|
|
|
#define VEC_copy(T,V) (VEC_OP(T,copy)(V))
|
|
|
|
/* Determine if a vector has additional capacity.
|
|
|
|
int VEC_T_space (VEC(T) *v,int reserve)
|
|
|
|
If V has space for RESERVE additional entries, return nonzero. You
|
|
usually only need to use this if you are doing your own vector
|
|
reallocation, for instance on an embedded vector. This returns
|
|
nonzero in exactly the same circumstances that VEC_T_reserve
|
|
will. */
|
|
|
|
#define VEC_space(T,V,R) (VEC_OP(T,space)(V,R VEC_ASSERT_INFO))
|
|
|
|
/* Reserve space.
|
|
int VEC_T_reserve(VEC(T,A) *&v, int reserve);
|
|
|
|
Ensure that V has at least abs(RESERVE) slots available. The
|
|
signedness of RESERVE determines the reallocation behavior. A
|
|
negative value will not create additional headroom beyond that
|
|
requested. A positive value will create additional headroom. Note
|
|
this can cause V to be reallocated. Returns nonzero iff
|
|
reallocation actually occurred. */
|
|
|
|
#define VEC_reserve(T,V,R) (VEC_OP(T,reserve)(&(V),R VEC_ASSERT_INFO))
|
|
|
|
/* Push object with no reallocation
|
|
T *VEC_T_quick_push (VEC(T) *v, T obj); // Integer
|
|
T *VEC_T_quick_push (VEC(T) *v, T obj); // Pointer
|
|
T *VEC_T_quick_push (VEC(T) *v, T *obj); // Object
|
|
|
|
Push a new element onto the end, returns a pointer to the slot
|
|
filled in. For object vectors, the new value can be NULL, in which
|
|
case NO initialization is performed. There must
|
|
be sufficient space in the vector. */
|
|
|
|
#define VEC_quick_push(T,V,O) (VEC_OP(T,quick_push)(V,O VEC_ASSERT_INFO))
|
|
|
|
/* Push object with reallocation
|
|
T *VEC_T_safe_push (VEC(T,A) *&v, T obj); // Integer
|
|
T *VEC_T_safe_push (VEC(T,A) *&v, T obj); // Pointer
|
|
T *VEC_T_safe_push (VEC(T,A) *&v, T *obj); // Object
|
|
|
|
Push a new element onto the end, returns a pointer to the slot
|
|
filled in. For object vectors, the new value can be NULL, in which
|
|
case NO initialization is performed. Reallocates V, if needed. */
|
|
|
|
#define VEC_safe_push(T,V,O) (VEC_OP(T,safe_push)(&(V),O VEC_ASSERT_INFO))
|
|
|
|
/* Pop element off end
|
|
T VEC_T_pop (VEC(T) *v); // Integer
|
|
T VEC_T_pop (VEC(T) *v); // Pointer
|
|
void VEC_T_pop (VEC(T) *v); // Object
|
|
|
|
Pop the last element off the end. Returns the element popped, for
|
|
pointer vectors. */
|
|
|
|
#define VEC_pop(T,V) (VEC_OP(T,pop)(V VEC_ASSERT_INFO))
|
|
|
|
/* Truncate to specific length
|
|
void VEC_T_truncate (VEC(T) *v, unsigned len);
|
|
|
|
Set the length as specified. The new length must be less than or
|
|
equal to the current length. This is an O(1) operation. */
|
|
|
|
#define VEC_truncate(T,V,I) \
|
|
(VEC_OP(T,truncate)(V,I VEC_ASSERT_INFO))
|
|
|
|
/* Grow to a specific length.
|
|
void VEC_T_safe_grow (VEC(T,A) *&v, int len);
|
|
|
|
Grow the vector to a specific length. The LEN must be as
|
|
long or longer than the current length. The new elements are
|
|
uninitialized. */
|
|
|
|
#define VEC_safe_grow(T,V,I) \
|
|
(VEC_OP(T,safe_grow)(&(V),I VEC_ASSERT_INFO))
|
|
|
|
/* Replace element
|
|
T VEC_T_replace (VEC(T) *v, unsigned ix, T val); // Integer
|
|
T VEC_T_replace (VEC(T) *v, unsigned ix, T val); // Pointer
|
|
T *VEC_T_replace (VEC(T) *v, unsigned ix, T *val); // Object
|
|
|
|
Replace the IXth element of V with a new value, VAL. For pointer
|
|
vectors returns the original value. For object vectors returns a
|
|
pointer to the new value. For object vectors the new value can be
|
|
NULL, in which case no overwriting of the slot is actually
|
|
performed. */
|
|
|
|
#define VEC_replace(T,V,I,O) (VEC_OP(T,replace)(V,I,O VEC_ASSERT_INFO))
|
|
|
|
/* Insert object with no reallocation
|
|
T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T val); // Integer
|
|
T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T val); // Pointer
|
|
T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T *val); // Object
|
|
|
|
Insert an element, VAL, at the IXth position of V. Return a pointer
|
|
to the slot created. For vectors of object, the new value can be
|
|
NULL, in which case no initialization of the inserted slot takes
|
|
place. There must be sufficient space. */
|
|
|
|
#define VEC_quick_insert(T,V,I,O) \
|
|
(VEC_OP(T,quick_insert)(V,I,O VEC_ASSERT_INFO))
|
|
|
|
/* Insert object with reallocation
|
|
T *VEC_T_safe_insert (VEC(T,A) *&v, unsigned ix, T val); // Integer
|
|
T *VEC_T_safe_insert (VEC(T,A) *&v, unsigned ix, T val); // Pointer
|
|
T *VEC_T_safe_insert (VEC(T,A) *&v, unsigned ix, T *val); // Object
|
|
|
|
Insert an element, VAL, at the IXth position of V. Return a pointer
|
|
to the slot created. For vectors of object, the new value can be
|
|
NULL, in which case no initialization of the inserted slot takes
|
|
place. Reallocate V, if necessary. */
|
|
|
|
#define VEC_safe_insert(T,V,I,O) \
|
|
(VEC_OP(T,safe_insert)(&(V),I,O VEC_ASSERT_INFO))
|
|
|
|
/* Remove element retaining order
|
|
T VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Integer
|
|
T VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Pointer
|
|
void VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Object
|
|
|
|
Remove an element from the IXth position of V. Ordering of
|
|
remaining elements is preserved. For pointer vectors returns the
|
|
removed object. This is an O(N) operation due to a memmove. */
|
|
|
|
#define VEC_ordered_remove(T,V,I) \
|
|
(VEC_OP(T,ordered_remove)(V,I VEC_ASSERT_INFO))
|
|
|
|
/* Remove element destroying order
|
|
T VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Integer
|
|
T VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Pointer
|
|
void VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Object
|
|
|
|
Remove an element from the IXth position of V. Ordering of
|
|
remaining elements is destroyed. For pointer vectors returns the
|
|
removed object. This is an O(1) operation. */
|
|
|
|
#define VEC_unordered_remove(T,V,I) \
|
|
(VEC_OP(T,unordered_remove)(V,I VEC_ASSERT_INFO))
|
|
|
|
/* Remove a block of elements
|
|
void VEC_T_block_remove (VEC(T) *v, unsigned ix, unsigned len);
|
|
|
|
Remove LEN elements starting at the IXth. Ordering is retained.
|
|
This is an O(1) operation. */
|
|
|
|
#define VEC_block_remove(T,V,I,L) \
|
|
(VEC_OP(T,block_remove)(V,I,L) VEC_ASSERT_INFO)
|
|
|
|
/* Get the address of the array of elements
|
|
T *VEC_T_address (VEC(T) v)
|
|
|
|
If you need to directly manipulate the array (for instance, you
|
|
want to feed it to qsort), use this accessor. */
|
|
|
|
#define VEC_address(T,V) (VEC_OP(T,address)(V))
|
|
|
|
/* Find the first index in the vector not less than the object.
|
|
unsigned VEC_T_lower_bound (VEC(T) *v, const T val,
|
|
int (*lessthan) (const T, const T)); // Integer
|
|
unsigned VEC_T_lower_bound (VEC(T) *v, const T val,
|
|
int (*lessthan) (const T, const T)); // Pointer
|
|
unsigned VEC_T_lower_bound (VEC(T) *v, const T *val,
|
|
int (*lessthan) (const T*, const T*)); // Object
|
|
|
|
Find the first position in which VAL could be inserted without
|
|
changing the ordering of V. LESSTHAN is a function that returns
|
|
true if the first argument is strictly less than the second. */
|
|
|
|
#define VEC_lower_bound(T,V,O,LT) \
|
|
(VEC_OP(T,lower_bound)(V,O,LT VEC_ASSERT_INFO))
|
|
|
|
/* Reallocate an array of elements with prefix. */
|
|
extern void *vec_p_reserve (void *, int);
|
|
extern void *vec_o_reserve (void *, int, size_t, size_t);
|
|
#define vec_free_(V) xfree (V)
|
|
|
|
#define VEC_ASSERT_INFO ,__FILE__,__LINE__
|
|
#define VEC_ASSERT_DECL ,const char *file_,unsigned line_
|
|
#define VEC_ASSERT_PASS ,file_,line_
|
|
#define vec_assert(expr, op) \
|
|
((void)((expr) ? 0 : (gdb_assert_fail (op, file_, line_, ASSERT_FUNCTION), 0)))
|
|
|
|
#define VEC(T) VEC_##T
|
|
#define VEC_OP(T,OP) VEC_##T##_##OP
|
|
|
|
#define VEC_T(T) \
|
|
typedef struct VEC(T) \
|
|
{ \
|
|
unsigned num; \
|
|
unsigned alloc; \
|
|
T vec[1]; \
|
|
} VEC(T)
|
|
|
|
/* Vector of integer-like object. */
|
|
#define DEF_VEC_I(T) \
|
|
static inline void VEC_OP (T,must_be_integral_type) (void) \
|
|
{ \
|
|
(void)~(T)0; \
|
|
} \
|
|
\
|
|
VEC_T(T); \
|
|
DEF_VEC_FUNC_P(T) \
|
|
DEF_VEC_ALLOC_FUNC_I(T) \
|
|
struct vec_swallow_trailing_semi
|
|
|
|
/* Vector of pointer to object. */
|
|
#define DEF_VEC_P(T) \
|
|
static inline void VEC_OP (T,must_be_pointer_type) (void) \
|
|
{ \
|
|
(void)((T)1 == (void *)1); \
|
|
} \
|
|
\
|
|
VEC_T(T); \
|
|
DEF_VEC_FUNC_P(T) \
|
|
DEF_VEC_ALLOC_FUNC_P(T) \
|
|
struct vec_swallow_trailing_semi
|
|
|
|
/* Vector of object. */
|
|
#define DEF_VEC_O(T) \
|
|
VEC_T(T); \
|
|
DEF_VEC_FUNC_O(T) \
|
|
DEF_VEC_ALLOC_FUNC_O(T) \
|
|
struct vec_swallow_trailing_semi
|
|
|
|
#define DEF_VEC_ALLOC_FUNC_I(T) \
|
|
static inline VEC(T) *VEC_OP (T,alloc) \
|
|
(int alloc_) \
|
|
{ \
|
|
/* We must request exact size allocation, hence the negation. */ \
|
|
return (VEC(T) *) vec_o_reserve (NULL, -alloc_, \
|
|
offsetof (VEC(T),vec), sizeof (T)); \
|
|
} \
|
|
\
|
|
static inline VEC(T) *VEC_OP (T,copy) (VEC(T) *vec_) \
|
|
{ \
|
|
size_t len_ = vec_ ? vec_->num : 0; \
|
|
VEC (T) *new_vec_ = NULL; \
|
|
\
|
|
if (len_) \
|
|
{ \
|
|
/* We must request exact size allocation, hence the negation. */ \
|
|
new_vec_ = (VEC (T) *) \
|
|
vec_o_reserve (NULL, -len_, offsetof (VEC(T),vec), sizeof (T)); \
|
|
\
|
|
new_vec_->num = len_; \
|
|
memcpy (new_vec_->vec, vec_->vec, sizeof (T) * len_); \
|
|
} \
|
|
return new_vec_; \
|
|
} \
|
|
\
|
|
static inline void VEC_OP (T,free) \
|
|
(VEC(T) **vec_) \
|
|
{ \
|
|
if (*vec_) \
|
|
vec_free_ (*vec_); \
|
|
*vec_ = NULL; \
|
|
} \
|
|
\
|
|
static inline int VEC_OP (T,reserve) \
|
|
(VEC(T) **vec_, int alloc_ VEC_ASSERT_DECL) \
|
|
{ \
|
|
int extend = !VEC_OP (T,space) \
|
|
(*vec_, alloc_ < 0 ? -alloc_ : alloc_ VEC_ASSERT_PASS); \
|
|
\
|
|
if (extend) \
|
|
*vec_ = (VEC(T) *) vec_o_reserve (*vec_, alloc_, \
|
|
offsetof (VEC(T),vec), sizeof (T)); \
|
|
\
|
|
return extend; \
|
|
} \
|
|
\
|
|
static inline void VEC_OP (T,safe_grow) \
|
|
(VEC(T) **vec_, int size_ VEC_ASSERT_DECL) \
|
|
{ \
|
|
vec_assert (size_ >= 0 && VEC_OP(T,length) (*vec_) <= (unsigned)size_, \
|
|
"safe_grow"); \
|
|
VEC_OP (T,reserve) (vec_, (int)(*vec_ ? (*vec_)->num : 0) - size_ \
|
|
VEC_ASSERT_PASS); \
|
|
(*vec_)->num = size_; \
|
|
} \
|
|
\
|
|
static inline T *VEC_OP (T,safe_push) \
|
|
(VEC(T) **vec_, const T obj_ VEC_ASSERT_DECL) \
|
|
{ \
|
|
VEC_OP (T,reserve) (vec_, 1 VEC_ASSERT_PASS); \
|
|
\
|
|
return VEC_OP (T,quick_push) (*vec_, obj_ VEC_ASSERT_PASS); \
|
|
} \
|
|
\
|
|
static inline T *VEC_OP (T,safe_insert) \
|
|
(VEC(T) **vec_, unsigned ix_, const T obj_ VEC_ASSERT_DECL) \
|
|
{ \
|
|
VEC_OP (T,reserve) (vec_, 1 VEC_ASSERT_PASS); \
|
|
\
|
|
return VEC_OP (T,quick_insert) (*vec_, ix_, obj_ VEC_ASSERT_PASS); \
|
|
}
|
|
|
|
#define DEF_VEC_FUNC_P(T) \
|
|
static inline unsigned VEC_OP (T,length) (const VEC(T) *vec_) \
|
|
{ \
|
|
return vec_ ? vec_->num : 0; \
|
|
} \
|
|
\
|
|
static inline T VEC_OP (T,last) \
|
|
(const VEC(T) *vec_ VEC_ASSERT_DECL) \
|
|
{ \
|
|
vec_assert (vec_ && vec_->num, "last"); \
|
|
\
|
|
return vec_->vec[vec_->num - 1]; \
|
|
} \
|
|
\
|
|
static inline T VEC_OP (T,index) \
|
|
(const VEC(T) *vec_, unsigned ix_ VEC_ASSERT_DECL) \
|
|
{ \
|
|
vec_assert (vec_ && ix_ < vec_->num, "index"); \
|
|
\
|
|
return vec_->vec[ix_]; \
|
|
} \
|
|
\
|
|
static inline int VEC_OP (T,iterate) \
|
|
(const VEC(T) *vec_, unsigned ix_, T *ptr) \
|
|
{ \
|
|
if (vec_ && ix_ < vec_->num) \
|
|
{ \
|
|
*ptr = vec_->vec[ix_]; \
|
|
return 1; \
|
|
} \
|
|
else \
|
|
{ \
|
|
*ptr = 0; \
|
|
return 0; \
|
|
} \
|
|
} \
|
|
\
|
|
static inline size_t VEC_OP (T,embedded_size) \
|
|
(int alloc_) \
|
|
{ \
|
|
return offsetof (VEC(T),vec) + alloc_ * sizeof(T); \
|
|
} \
|
|
\
|
|
static inline void VEC_OP (T,embedded_init) \
|
|
(VEC(T) *vec_, int alloc_) \
|
|
{ \
|
|
vec_->num = 0; \
|
|
vec_->alloc = alloc_; \
|
|
} \
|
|
\
|
|
static inline int VEC_OP (T,space) \
|
|
(VEC(T) *vec_, int alloc_ VEC_ASSERT_DECL) \
|
|
{ \
|
|
vec_assert (alloc_ >= 0, "space"); \
|
|
return vec_ ? vec_->alloc - vec_->num >= (unsigned)alloc_ : !alloc_; \
|
|
} \
|
|
\
|
|
static inline T *VEC_OP (T,quick_push) \
|
|
(VEC(T) *vec_, T obj_ VEC_ASSERT_DECL) \
|
|
{ \
|
|
T *slot_; \
|
|
\
|
|
vec_assert (vec_->num < vec_->alloc, "quick_push"); \
|
|
slot_ = &vec_->vec[vec_->num++]; \
|
|
*slot_ = obj_; \
|
|
\
|
|
return slot_; \
|
|
} \
|
|
\
|
|
static inline T VEC_OP (T,pop) (VEC(T) *vec_ VEC_ASSERT_DECL) \
|
|
{ \
|
|
T obj_; \
|
|
\
|
|
vec_assert (vec_->num, "pop"); \
|
|
obj_ = vec_->vec[--vec_->num]; \
|
|
\
|
|
return obj_; \
|
|
} \
|
|
\
|
|
static inline void VEC_OP (T,truncate) \
|
|
(VEC(T) *vec_, unsigned size_ VEC_ASSERT_DECL) \
|
|
{ \
|
|
vec_assert (vec_ ? vec_->num >= size_ : !size_, "truncate"); \
|
|
if (vec_) \
|
|
vec_->num = size_; \
|
|
} \
|
|
\
|
|
static inline T VEC_OP (T,replace) \
|
|
(VEC(T) *vec_, unsigned ix_, T obj_ VEC_ASSERT_DECL) \
|
|
{ \
|
|
T old_obj_; \
|
|
\
|
|
vec_assert (ix_ < vec_->num, "replace"); \
|
|
old_obj_ = vec_->vec[ix_]; \
|
|
vec_->vec[ix_] = obj_; \
|
|
\
|
|
return old_obj_; \
|
|
} \
|
|
\
|
|
static inline T *VEC_OP (T,quick_insert) \
|
|
(VEC(T) *vec_, unsigned ix_, T obj_ VEC_ASSERT_DECL) \
|
|
{ \
|
|
T *slot_; \
|
|
\
|
|
vec_assert (vec_->num < vec_->alloc && ix_ <= vec_->num, "quick_insert"); \
|
|
slot_ = &vec_->vec[ix_]; \
|
|
memmove (slot_ + 1, slot_, (vec_->num++ - ix_) * sizeof (T)); \
|
|
*slot_ = obj_; \
|
|
\
|
|
return slot_; \
|
|
} \
|
|
\
|
|
static inline T VEC_OP (T,ordered_remove) \
|
|
(VEC(T) *vec_, unsigned ix_ VEC_ASSERT_DECL) \
|
|
{ \
|
|
T *slot_; \
|
|
T obj_; \
|
|
\
|
|
vec_assert (ix_ < vec_->num, "ordered_remove"); \
|
|
slot_ = &vec_->vec[ix_]; \
|
|
obj_ = *slot_; \
|
|
memmove (slot_, slot_ + 1, (--vec_->num - ix_) * sizeof (T)); \
|
|
\
|
|
return obj_; \
|
|
} \
|
|
\
|
|
static inline T VEC_OP (T,unordered_remove) \
|
|
(VEC(T) *vec_, unsigned ix_ VEC_ASSERT_DECL) \
|
|
{ \
|
|
T *slot_; \
|
|
T obj_; \
|
|
\
|
|
vec_assert (ix_ < vec_->num, "unordered_remove"); \
|
|
slot_ = &vec_->vec[ix_]; \
|
|
obj_ = *slot_; \
|
|
*slot_ = vec_->vec[--vec_->num]; \
|
|
\
|
|
return obj_; \
|
|
} \
|
|
\
|
|
static inline void VEC_OP (T,block_remove) \
|
|
(VEC(T) *vec_, unsigned ix_, unsigned len_ VEC_ASSERT_DECL) \
|
|
{ \
|
|
T *slot_; \
|
|
\
|
|
vec_assert (ix_ + len_ <= vec_->num, "block_remove"); \
|
|
slot_ = &vec_->vec[ix_]; \
|
|
vec_->num -= len_; \
|
|
memmove (slot_, slot_ + len_, (vec_->num - ix_) * sizeof (T)); \
|
|
} \
|
|
\
|
|
static inline T *VEC_OP (T,address) \
|
|
(VEC(T) *vec_) \
|
|
{ \
|
|
return vec_ ? vec_->vec : 0; \
|
|
} \
|
|
\
|
|
static inline unsigned VEC_OP (T,lower_bound) \
|
|
(VEC(T) *vec_, const T obj_, \
|
|
int (*lessthan_)(const T, const T) VEC_ASSERT_DECL) \
|
|
{ \
|
|
unsigned int len_ = VEC_OP (T, length) (vec_); \
|
|
unsigned int half_, middle_; \
|
|
unsigned int first_ = 0; \
|
|
while (len_ > 0) \
|
|
{ \
|
|
T middle_elem_; \
|
|
half_ = len_ >> 1; \
|
|
middle_ = first_; \
|
|
middle_ += half_; \
|
|
middle_elem_ = VEC_OP (T,index) (vec_, middle_ VEC_ASSERT_PASS); \
|
|
if (lessthan_ (middle_elem_, obj_)) \
|
|
{ \
|
|
first_ = middle_; \
|
|
++first_; \
|
|
len_ = len_ - half_ - 1; \
|
|
} \
|
|
else \
|
|
len_ = half_; \
|
|
} \
|
|
return first_; \
|
|
}
|
|
|
|
#define DEF_VEC_ALLOC_FUNC_P(T) \
|
|
static inline VEC(T) *VEC_OP (T,alloc) \
|
|
(int alloc_) \
|
|
{ \
|
|
/* We must request exact size allocation, hence the negation. */ \
|
|
return (VEC(T) *) vec_p_reserve (NULL, -alloc_); \
|
|
} \
|
|
\
|
|
static inline void VEC_OP (T,free) \
|
|
(VEC(T) **vec_) \
|
|
{ \
|
|
if (*vec_) \
|
|
vec_free_ (*vec_); \
|
|
*vec_ = NULL; \
|
|
} \
|
|
\
|
|
static inline VEC(T) *VEC_OP (T,copy) (VEC(T) *vec_) \
|
|
{ \
|
|
size_t len_ = vec_ ? vec_->num : 0; \
|
|
VEC (T) *new_vec_ = NULL; \
|
|
\
|
|
if (len_) \
|
|
{ \
|
|
/* We must request exact size allocation, hence the negation. */ \
|
|
new_vec_ = (VEC (T) *)(vec_p_reserve (NULL, -len_)); \
|
|
\
|
|
new_vec_->num = len_; \
|
|
memcpy (new_vec_->vec, vec_->vec, sizeof (T) * len_); \
|
|
} \
|
|
return new_vec_; \
|
|
} \
|
|
\
|
|
static inline int VEC_OP (T,reserve) \
|
|
(VEC(T) **vec_, int alloc_ VEC_ASSERT_DECL) \
|
|
{ \
|
|
int extend = !VEC_OP (T,space) \
|
|
(*vec_, alloc_ < 0 ? -alloc_ : alloc_ VEC_ASSERT_PASS); \
|
|
\
|
|
if (extend) \
|
|
*vec_ = (VEC(T) *) vec_p_reserve (*vec_, alloc_); \
|
|
\
|
|
return extend; \
|
|
} \
|
|
\
|
|
static inline void VEC_OP (T,safe_grow) \
|
|
(VEC(T) **vec_, int size_ VEC_ASSERT_DECL) \
|
|
{ \
|
|
vec_assert (size_ >= 0 && VEC_OP(T,length) (*vec_) <= (unsigned)size_, \
|
|
"safe_grow"); \
|
|
VEC_OP (T,reserve) \
|
|
(vec_, (int)(*vec_ ? (*vec_)->num : 0) - size_ VEC_ASSERT_PASS); \
|
|
(*vec_)->num = size_; \
|
|
} \
|
|
\
|
|
static inline T *VEC_OP (T,safe_push) \
|
|
(VEC(T) **vec_, T obj_ VEC_ASSERT_DECL) \
|
|
{ \
|
|
VEC_OP (T,reserve) (vec_, 1 VEC_ASSERT_PASS); \
|
|
\
|
|
return VEC_OP (T,quick_push) (*vec_, obj_ VEC_ASSERT_PASS); \
|
|
} \
|
|
\
|
|
static inline T *VEC_OP (T,safe_insert) \
|
|
(VEC(T) **vec_, unsigned ix_, T obj_ VEC_ASSERT_DECL) \
|
|
{ \
|
|
VEC_OP (T,reserve) (vec_, 1 VEC_ASSERT_PASS); \
|
|
\
|
|
return VEC_OP (T,quick_insert) (*vec_, ix_, obj_ VEC_ASSERT_PASS); \
|
|
}
|
|
|
|
#define DEF_VEC_FUNC_O(T) \
|
|
static inline unsigned VEC_OP (T,length) (const VEC(T) *vec_) \
|
|
{ \
|
|
return vec_ ? vec_->num : 0; \
|
|
} \
|
|
\
|
|
static inline T *VEC_OP (T,last) (VEC(T) *vec_ VEC_ASSERT_DECL) \
|
|
{ \
|
|
vec_assert (vec_ && vec_->num, "last"); \
|
|
\
|
|
return &vec_->vec[vec_->num - 1]; \
|
|
} \
|
|
\
|
|
static inline T *VEC_OP (T,index) \
|
|
(VEC(T) *vec_, unsigned ix_ VEC_ASSERT_DECL) \
|
|
{ \
|
|
vec_assert (vec_ && ix_ < vec_->num, "index"); \
|
|
\
|
|
return &vec_->vec[ix_]; \
|
|
} \
|
|
\
|
|
static inline int VEC_OP (T,iterate) \
|
|
(VEC(T) *vec_, unsigned ix_, T **ptr) \
|
|
{ \
|
|
if (vec_ && ix_ < vec_->num) \
|
|
{ \
|
|
*ptr = &vec_->vec[ix_]; \
|
|
return 1; \
|
|
} \
|
|
else \
|
|
{ \
|
|
*ptr = 0; \
|
|
return 0; \
|
|
} \
|
|
} \
|
|
\
|
|
static inline size_t VEC_OP (T,embedded_size) \
|
|
(int alloc_) \
|
|
{ \
|
|
return offsetof (VEC(T),vec) + alloc_ * sizeof(T); \
|
|
} \
|
|
\
|
|
static inline void VEC_OP (T,embedded_init) \
|
|
(VEC(T) *vec_, int alloc_) \
|
|
{ \
|
|
vec_->num = 0; \
|
|
vec_->alloc = alloc_; \
|
|
} \
|
|
\
|
|
static inline int VEC_OP (T,space) \
|
|
(VEC(T) *vec_, int alloc_ VEC_ASSERT_DECL) \
|
|
{ \
|
|
vec_assert (alloc_ >= 0, "space"); \
|
|
return vec_ ? vec_->alloc - vec_->num >= (unsigned)alloc_ : !alloc_; \
|
|
} \
|
|
\
|
|
static inline T *VEC_OP (T,quick_push) \
|
|
(VEC(T) *vec_, const T *obj_ VEC_ASSERT_DECL) \
|
|
{ \
|
|
T *slot_; \
|
|
\
|
|
vec_assert (vec_->num < vec_->alloc, "quick_push"); \
|
|
slot_ = &vec_->vec[vec_->num++]; \
|
|
if (obj_) \
|
|
*slot_ = *obj_; \
|
|
\
|
|
return slot_; \
|
|
} \
|
|
\
|
|
static inline void VEC_OP (T,pop) (VEC(T) *vec_ VEC_ASSERT_DECL) \
|
|
{ \
|
|
vec_assert (vec_->num, "pop"); \
|
|
--vec_->num; \
|
|
} \
|
|
\
|
|
static inline void VEC_OP (T,truncate) \
|
|
(VEC(T) *vec_, unsigned size_ VEC_ASSERT_DECL) \
|
|
{ \
|
|
vec_assert (vec_ ? vec_->num >= size_ : !size_, "truncate"); \
|
|
if (vec_) \
|
|
vec_->num = size_; \
|
|
} \
|
|
\
|
|
static inline T *VEC_OP (T,replace) \
|
|
(VEC(T) *vec_, unsigned ix_, const T *obj_ VEC_ASSERT_DECL) \
|
|
{ \
|
|
T *slot_; \
|
|
\
|
|
vec_assert (ix_ < vec_->num, "replace"); \
|
|
slot_ = &vec_->vec[ix_]; \
|
|
if (obj_) \
|
|
*slot_ = *obj_; \
|
|
\
|
|
return slot_; \
|
|
} \
|
|
\
|
|
static inline T *VEC_OP (T,quick_insert) \
|
|
(VEC(T) *vec_, unsigned ix_, const T *obj_ VEC_ASSERT_DECL) \
|
|
{ \
|
|
T *slot_; \
|
|
\
|
|
vec_assert (vec_->num < vec_->alloc && ix_ <= vec_->num, "quick_insert"); \
|
|
slot_ = &vec_->vec[ix_]; \
|
|
memmove (slot_ + 1, slot_, (vec_->num++ - ix_) * sizeof (T)); \
|
|
if (obj_) \
|
|
*slot_ = *obj_; \
|
|
\
|
|
return slot_; \
|
|
} \
|
|
\
|
|
static inline void VEC_OP (T,ordered_remove) \
|
|
(VEC(T) *vec_, unsigned ix_ VEC_ASSERT_DECL) \
|
|
{ \
|
|
T *slot_; \
|
|
\
|
|
vec_assert (ix_ < vec_->num, "ordered_remove"); \
|
|
slot_ = &vec_->vec[ix_]; \
|
|
memmove (slot_, slot_ + 1, (--vec_->num - ix_) * sizeof (T)); \
|
|
} \
|
|
\
|
|
static inline void VEC_OP (T,unordered_remove) \
|
|
(VEC(T) *vec_, unsigned ix_ VEC_ASSERT_DECL) \
|
|
{ \
|
|
vec_assert (ix_ < vec_->num, "unordered_remove"); \
|
|
vec_->vec[ix_] = vec_->vec[--vec_->num]; \
|
|
} \
|
|
\
|
|
static inline void VEC_OP (T,block_remove) \
|
|
(VEC(T) *vec_, unsigned ix_, unsigned len_ VEC_ASSERT_DECL) \
|
|
{ \
|
|
T *slot_; \
|
|
\
|
|
vec_assert (ix_ + len_ <= vec_->num, "block_remove"); \
|
|
slot_ = &vec_->vec[ix_]; \
|
|
vec_->num -= len_; \
|
|
memmove (slot_, slot_ + len_, (vec_->num - ix_) * sizeof (T)); \
|
|
} \
|
|
\
|
|
static inline T *VEC_OP (T,address) \
|
|
(VEC(T) *vec_) \
|
|
{ \
|
|
return vec_ ? vec_->vec : 0; \
|
|
} \
|
|
\
|
|
static inline unsigned VEC_OP (T,lower_bound) \
|
|
(VEC(T) *vec_, const T *obj_, \
|
|
int (*lessthan_)(const T *, const T *) VEC_ASSERT_DECL) \
|
|
{ \
|
|
unsigned int len_ = VEC_OP (T, length) (vec_); \
|
|
unsigned int half_, middle_; \
|
|
unsigned int first_ = 0; \
|
|
while (len_ > 0) \
|
|
{ \
|
|
T *middle_elem_; \
|
|
half_ = len_ >> 1; \
|
|
middle_ = first_; \
|
|
middle_ += half_; \
|
|
middle_elem_ = VEC_OP (T,index) (vec_, middle_ VEC_ASSERT_PASS); \
|
|
if (lessthan_ (middle_elem_, obj_)) \
|
|
{ \
|
|
first_ = middle_; \
|
|
++first_; \
|
|
len_ = len_ - half_ - 1; \
|
|
} \
|
|
else \
|
|
len_ = half_; \
|
|
} \
|
|
return first_; \
|
|
}
|
|
|
|
#define DEF_VEC_ALLOC_FUNC_O(T) \
|
|
static inline VEC(T) *VEC_OP (T,alloc) \
|
|
(int alloc_) \
|
|
{ \
|
|
/* We must request exact size allocation, hence the negation. */ \
|
|
return (VEC(T) *) vec_o_reserve (NULL, -alloc_, \
|
|
offsetof (VEC(T),vec), sizeof (T)); \
|
|
} \
|
|
\
|
|
static inline VEC(T) *VEC_OP (T,copy) (VEC(T) *vec_) \
|
|
{ \
|
|
size_t len_ = vec_ ? vec_->num : 0; \
|
|
VEC (T) *new_vec_ = NULL; \
|
|
\
|
|
if (len_) \
|
|
{ \
|
|
/* We must request exact size allocation, hence the negation. */ \
|
|
new_vec_ = (VEC (T) *) \
|
|
vec_o_reserve (NULL, -len_, offsetof (VEC(T),vec), sizeof (T)); \
|
|
\
|
|
new_vec_->num = len_; \
|
|
memcpy (new_vec_->vec, vec_->vec, sizeof (T) * len_); \
|
|
} \
|
|
return new_vec_; \
|
|
} \
|
|
\
|
|
static inline void VEC_OP (T,free) \
|
|
(VEC(T) **vec_) \
|
|
{ \
|
|
if (*vec_) \
|
|
vec_free_ (*vec_); \
|
|
*vec_ = NULL; \
|
|
} \
|
|
\
|
|
static inline int VEC_OP (T,reserve) \
|
|
(VEC(T) **vec_, int alloc_ VEC_ASSERT_DECL) \
|
|
{ \
|
|
int extend = !VEC_OP (T,space) (*vec_, alloc_ < 0 ? -alloc_ : alloc_ \
|
|
VEC_ASSERT_PASS); \
|
|
\
|
|
if (extend) \
|
|
*vec_ = (VEC(T) *) \
|
|
vec_o_reserve (*vec_, alloc_, offsetof (VEC(T),vec), sizeof (T)); \
|
|
\
|
|
return extend; \
|
|
} \
|
|
\
|
|
static inline void VEC_OP (T,safe_grow) \
|
|
(VEC(T) **vec_, int size_ VEC_ASSERT_DECL) \
|
|
{ \
|
|
vec_assert (size_ >= 0 && VEC_OP(T,length) (*vec_) <= (unsigned)size_, \
|
|
"safe_grow"); \
|
|
VEC_OP (T,reserve) \
|
|
(vec_, (int)(*vec_ ? (*vec_)->num : 0) - size_ VEC_ASSERT_PASS); \
|
|
(*vec_)->num = size_; \
|
|
} \
|
|
\
|
|
static inline T *VEC_OP (T,safe_push) \
|
|
(VEC(T) **vec_, const T *obj_ VEC_ASSERT_DECL) \
|
|
{ \
|
|
VEC_OP (T,reserve) (vec_, 1 VEC_ASSERT_PASS); \
|
|
\
|
|
return VEC_OP (T,quick_push) (*vec_, obj_ VEC_ASSERT_PASS); \
|
|
} \
|
|
\
|
|
static inline T *VEC_OP (T,safe_insert) \
|
|
(VEC(T) **vec_, unsigned ix_, const T *obj_ VEC_ASSERT_DECL) \
|
|
{ \
|
|
VEC_OP (T,reserve) (vec_, 1 VEC_ASSERT_PASS); \
|
|
\
|
|
return VEC_OP (T,quick_insert) (*vec_, ix_, obj_ VEC_ASSERT_PASS); \
|
|
}
|
|
|
|
#endif /* GDB_VEC_H */
|