darling-gdb/bfd/elf64-hppa.c
Alan Modra e92d460e59 * linker.c (link_action): Ignore duplicate warning syms.
(_bfd_generic_link_write_global_symbol): Follow warning symbol link.
	* elflink.h (elf_adjust_dynstr_offsets): Likewise.
	(elf_adjust_dynamic_symbol): Likewise.
	(elf_export_symbol): Likewise.
	(elf_link_find_version_dependencies): Likewise.
	(elf_link_assign_sym_version): Likewise.
	(elf_link_sec_merge_syms): Likewise.
	(elf_link_output_extsym): Likewise.
	(elf_gc_sweep_symbol): Likewise.
	(elf_gc_propagate_vtable_entries_used): Likewise.
	(elf_gc_smash_unused_vtentry_relocs): Likewise.
	(elf_gc_allocate_got_offsets): Likewise.
	(elf_collect_hash_codes): Likewise.
	* elflink.c (elf_link_renumber_hash_table_dynsyms): Likewise.
	* elf-hppa.h (elf_hppa_unmark_useless_dynamic_symbols): Likewise.
	(elf_hppa_remark_useless_dynamic_symbols): Likewise.
	* elf-m10300.c (elf32_mn10300_finish_hash_table_entry): Likewise.
	* elf32-arm.h (elf32_arm_discard_copies): Likewise.
	* elf32-cris.c (elf_cris_adjust_gotplt_to_got): Likewise.
	(elf_cris_discard_excess_dso_dynamics): Likewise.
	* elf32-hppa.c (clobber_millicode_symbols): Likewise.
	(mark_PIC_calls): Likewise.
	(allocate_plt_static): Likewise.
	(allocate_dynrelocs): Likewise.
	(readonly_dynrelocs): Likewise.
	* elf32-i386.c (allocate_dynrelocs): Likewise.
	(readonly_dynrelocs): Likewise.
	* elf32-i370.c (i370_elf_adjust_dynindx): Likewise.
	* elf32-m68k.c (elf_m68k_discard_copies): Likewise.
	* elf32-mips.c (mips_elf_output_extsym): Likewise.
	(mips_elf_sort_hash_table_f): Likewise.
	(mips_elf_check_mips16_stubs): Likewise.
	* elf32-s390.c (allocate_dynrelocs): Likewise.
	(readonly_dynrelocs): Likewise.
	* elf32-sh.c (sh_elf_discard_copies): Likewise.
	* elf32-xstormy16.c (xstormy16_relax_plt_check): Likewise.
	(xstormy16_relax_plt_realloc): Likewise.
	* elf64-alpha.c (elf64_alpha_calc_got_offsets_for_symbol): Likewise.
	(elf64_alpha_output_extsym): Likewise.
	* elf64-hppa.c (elf64_hppa_mark_exported_functions): Likewise.
	* elf64-mips.c (mips_elf64_sort_hash_table_f): Likewise.
	(mips_elf64_check_mips16_stubs): Likewise.
	(mips_elf64_output_extsym): Likewise.
	* elf64-ppc.c (func_desc_adjust): Likewise.
	(allocate_dynrelocs): Likewise.
	(readonly_dynrelocs): Likewise.
	* elf64-s390.c (allocate_dynrelocs): Likewise.
	(readonly_dynrelocs): Likewise.
	* elf64-sh64.c (sh64_elf64_discard_copies): Likewise.
	* elf64-x86-64.c (allocate_dynrelocs): Likewise.
	(readonly_dynrelocs): Likewise.
	* elfxx-ia64.c (elfNN_ia64_global_dyn_sym_thunk): Likewise.
	* aoutx.h (aout_link_write_other_symbol): Likewise.
	* cofflink.c (_bfd_coff_write_task_globals): Likewise.
	(_bfd_coff_write_global_sym): Likewise.
	* i386linux.c (linux_tally_symbols): Likewise.
	* m68klinux.c (linux_tally_symbols): Likewise.
	* sparclinux.c (linux_tally_symbols): Likewise.
	* pdp11.c (aout_link_write_other_symbol): Likewise.
	* sunos.c (sunos_scan_dynamic_symbol): Likewise.
	* xcofflink.c (xcoff_build_ldsyms): Likewise.
	(xcoff_write_global_symbol): Likewise.

	* cofflink.c (_bfd_coff_final_link): Formatting.
	* cpu-mips.c (mips_compatible): Make static, prototype.
	* elf32-i386.c (elf_i386_check_relocs): Formatting.
	* elf32-sh.c (sh_elf_size_dynamic_sections): Likewise.
	* elf64-alpha.c (elf64_alpha_output_extsym): Likewise.
	* elf64-mips.c (mips_elf64_sort_hash_table): Likewise.
	(mips_elf64_final_link): Likewise.
	* elflink.h (elf_link_find_version_dependencies): Remove duplicate
	prototype.
2002-03-28 03:27:46 +00:00

2761 lines
79 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Support for HPPA 64-bit ELF
Copyright 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
This file is part of BFD, the Binary File Descriptor library.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
#include "alloca-conf.h"
#include "bfd.h"
#include "sysdep.h"
#include "libbfd.h"
#include "elf-bfd.h"
#include "elf/hppa.h"
#include "libhppa.h"
#include "elf64-hppa.h"
#define ARCH_SIZE 64
#define PLT_ENTRY_SIZE 0x10
#define DLT_ENTRY_SIZE 0x8
#define OPD_ENTRY_SIZE 0x20
#define ELF_DYNAMIC_INTERPRETER "/usr/lib/pa20_64/dld.sl"
/* The stub is supposed to load the target address and target's DP
value out of the PLT, then do an external branch to the target
address.
LDD PLTOFF(%r27),%r1
BVE (%r1)
LDD PLTOFF+8(%r27),%r27
Note that we must use the LDD with a 14 bit displacement, not the one
with a 5 bit displacement. */
static char plt_stub[] = {0x53, 0x61, 0x00, 0x00, 0xe8, 0x20, 0xd0, 0x00,
0x53, 0x7b, 0x00, 0x00 };
struct elf64_hppa_dyn_hash_entry
{
struct bfd_hash_entry root;
/* Offsets for this symbol in various linker sections. */
bfd_vma dlt_offset;
bfd_vma plt_offset;
bfd_vma opd_offset;
bfd_vma stub_offset;
/* The symbol table entry, if any, that this was derived from. */
struct elf_link_hash_entry *h;
/* The index of the (possibly local) symbol in the input bfd and its
associated BFD. Needed so that we can have relocs against local
symbols in shared libraries. */
long sym_indx;
bfd *owner;
/* Dynamic symbols may need to have two different values. One for
the dynamic symbol table, one for the normal symbol table.
In such cases we store the symbol's real value and section
index here so we can restore the real value before we write
the normal symbol table. */
bfd_vma st_value;
int st_shndx;
/* Used to count non-got, non-plt relocations for delayed sizing
of relocation sections. */
struct elf64_hppa_dyn_reloc_entry
{
/* Next relocation in the chain. */
struct elf64_hppa_dyn_reloc_entry *next;
/* The type of the relocation. */
int type;
/* The input section of the relocation. */
asection *sec;
/* The index of the section symbol for the input section of
the relocation. Only needed when building shared libraries. */
int sec_symndx;
/* The offset within the input section of the relocation. */
bfd_vma offset;
/* The addend for the relocation. */
bfd_vma addend;
} *reloc_entries;
/* Nonzero if this symbol needs an entry in one of the linker
sections. */
unsigned want_dlt;
unsigned want_plt;
unsigned want_opd;
unsigned want_stub;
};
struct elf64_hppa_dyn_hash_table
{
struct bfd_hash_table root;
};
struct elf64_hppa_link_hash_table
{
struct elf_link_hash_table root;
/* Shortcuts to get to the various linker defined sections. */
asection *dlt_sec;
asection *dlt_rel_sec;
asection *plt_sec;
asection *plt_rel_sec;
asection *opd_sec;
asection *opd_rel_sec;
asection *other_rel_sec;
/* Offset of __gp within .plt section. When the PLT gets large we want
to slide __gp into the PLT section so that we can continue to use
single DP relative instructions to load values out of the PLT. */
bfd_vma gp_offset;
/* Note this is not strictly correct. We should create a stub section for
each input section with calls. The stub section should be placed before
the section with the call. */
asection *stub_sec;
bfd_vma text_segment_base;
bfd_vma data_segment_base;
struct elf64_hppa_dyn_hash_table dyn_hash_table;
/* We build tables to map from an input section back to its
symbol index. This is the BFD for which we currently have
a map. */
bfd *section_syms_bfd;
/* Array of symbol numbers for each input section attached to the
current BFD. */
int *section_syms;
};
#define elf64_hppa_hash_table(p) \
((struct elf64_hppa_link_hash_table *) ((p)->hash))
typedef struct bfd_hash_entry *(*new_hash_entry_func)
PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
static boolean elf64_hppa_dyn_hash_table_init
PARAMS ((struct elf64_hppa_dyn_hash_table *ht, bfd *abfd,
new_hash_entry_func new));
static struct bfd_hash_entry *elf64_hppa_new_dyn_hash_entry
PARAMS ((struct bfd_hash_entry *entry, struct bfd_hash_table *table,
const char *string));
static struct bfd_link_hash_table *elf64_hppa_hash_table_create
PARAMS ((bfd *abfd));
static struct elf64_hppa_dyn_hash_entry *elf64_hppa_dyn_hash_lookup
PARAMS ((struct elf64_hppa_dyn_hash_table *table, const char *string,
boolean create, boolean copy));
static void elf64_hppa_dyn_hash_traverse
PARAMS ((struct elf64_hppa_dyn_hash_table *table,
boolean (*func) (struct elf64_hppa_dyn_hash_entry *, PTR),
PTR info));
static const char *get_dyn_name
PARAMS ((asection *, struct elf_link_hash_entry *,
const Elf_Internal_Rela *, char **, size_t *));
/* This must follow the definitions of the various derived linker
hash tables and shared functions. */
#include "elf-hppa.h"
static boolean elf64_hppa_object_p
PARAMS ((bfd *));
static boolean elf64_hppa_section_from_shdr
PARAMS ((bfd *, Elf64_Internal_Shdr *, char *));
static void elf64_hppa_post_process_headers
PARAMS ((bfd *, struct bfd_link_info *));
static boolean elf64_hppa_create_dynamic_sections
PARAMS ((bfd *, struct bfd_link_info *));
static boolean elf64_hppa_adjust_dynamic_symbol
PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
static boolean elf64_hppa_size_dynamic_sections
PARAMS ((bfd *, struct bfd_link_info *));
static boolean elf64_hppa_link_output_symbol_hook
PARAMS ((bfd *abfd, struct bfd_link_info *, const char *,
Elf_Internal_Sym *, asection *input_sec));
static boolean elf64_hppa_finish_dynamic_symbol
PARAMS ((bfd *, struct bfd_link_info *,
struct elf_link_hash_entry *, Elf_Internal_Sym *));
static int elf64_hppa_additional_program_headers PARAMS ((bfd *));
static boolean elf64_hppa_modify_segment_map PARAMS ((bfd *));
static boolean elf64_hppa_finish_dynamic_sections
PARAMS ((bfd *, struct bfd_link_info *));
static boolean elf64_hppa_check_relocs
PARAMS ((bfd *, struct bfd_link_info *,
asection *, const Elf_Internal_Rela *));
static boolean elf64_hppa_dynamic_symbol_p
PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *));
static boolean elf64_hppa_mark_exported_functions
PARAMS ((struct elf_link_hash_entry *, PTR));
static boolean elf64_hppa_finalize_opd
PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
static boolean elf64_hppa_finalize_dlt
PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
static boolean allocate_global_data_dlt
PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
static boolean allocate_global_data_plt
PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
static boolean allocate_global_data_stub
PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
static boolean allocate_global_data_opd
PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
static boolean get_reloc_section
PARAMS ((bfd *, struct elf64_hppa_link_hash_table *, asection *));
static boolean count_dyn_reloc
PARAMS ((bfd *, struct elf64_hppa_dyn_hash_entry *,
int, asection *, int, bfd_vma, bfd_vma));
static boolean allocate_dynrel_entries
PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
static boolean elf64_hppa_finalize_dynreloc
PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
static boolean get_opd
PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
static boolean get_plt
PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
static boolean get_dlt
PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
static boolean get_stub
PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
static int elf64_hppa_elf_get_symbol_type
PARAMS ((Elf_Internal_Sym *, int));
static boolean
elf64_hppa_dyn_hash_table_init (ht, abfd, new)
struct elf64_hppa_dyn_hash_table *ht;
bfd *abfd ATTRIBUTE_UNUSED;
new_hash_entry_func new;
{
memset (ht, 0, sizeof (*ht));
return bfd_hash_table_init (&ht->root, new);
}
static struct bfd_hash_entry*
elf64_hppa_new_dyn_hash_entry (entry, table, string)
struct bfd_hash_entry *entry;
struct bfd_hash_table *table;
const char *string;
{
struct elf64_hppa_dyn_hash_entry *ret;
ret = (struct elf64_hppa_dyn_hash_entry *) entry;
/* Allocate the structure if it has not already been allocated by a
subclass. */
if (!ret)
ret = bfd_hash_allocate (table, sizeof (*ret));
if (!ret)
return 0;
/* Initialize our local data. All zeros, and definitely easier
than setting 8 bit fields. */
memset (ret, 0, sizeof (*ret));
/* Call the allocation method of the superclass. */
ret = ((struct elf64_hppa_dyn_hash_entry *)
bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
return &ret->root;
}
/* Create the derived linker hash table. The PA64 ELF port uses this
derived hash table to keep information specific to the PA ElF
linker (without using static variables). */
static struct bfd_link_hash_table*
elf64_hppa_hash_table_create (abfd)
bfd *abfd;
{
struct elf64_hppa_link_hash_table *ret;
ret = bfd_zalloc (abfd, (bfd_size_type) sizeof (*ret));
if (!ret)
return 0;
if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
_bfd_elf_link_hash_newfunc))
{
bfd_release (abfd, ret);
return 0;
}
if (!elf64_hppa_dyn_hash_table_init (&ret->dyn_hash_table, abfd,
elf64_hppa_new_dyn_hash_entry))
return 0;
return &ret->root.root;
}
/* Look up an entry in a PA64 ELF linker hash table. */
static struct elf64_hppa_dyn_hash_entry *
elf64_hppa_dyn_hash_lookup(table, string, create, copy)
struct elf64_hppa_dyn_hash_table *table;
const char *string;
boolean create, copy;
{
return ((struct elf64_hppa_dyn_hash_entry *)
bfd_hash_lookup (&table->root, string, create, copy));
}
/* Traverse a PA64 ELF linker hash table. */
static void
elf64_hppa_dyn_hash_traverse (table, func, info)
struct elf64_hppa_dyn_hash_table *table;
boolean (*func) PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
PTR info;
{
(bfd_hash_traverse
(&table->root,
(boolean (*) PARAMS ((struct bfd_hash_entry *, PTR))) func,
info));
}
/* Return nonzero if ABFD represents a PA2.0 ELF64 file.
Additionally we set the default architecture and machine. */
static boolean
elf64_hppa_object_p (abfd)
bfd *abfd;
{
Elf_Internal_Ehdr * i_ehdrp;
unsigned int flags;
i_ehdrp = elf_elfheader (abfd);
if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
{
if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX)
return false;
}
else
{
if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
return false;
}
flags = i_ehdrp->e_flags;
switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
{
case EFA_PARISC_1_0:
return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
case EFA_PARISC_1_1:
return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
case EFA_PARISC_2_0:
return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
case EFA_PARISC_2_0 | EF_PARISC_WIDE:
return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
}
/* Don't be fussy. */
return true;
}
/* Given section type (hdr->sh_type), return a boolean indicating
whether or not the section is an elf64-hppa specific section. */
static boolean
elf64_hppa_section_from_shdr (abfd, hdr, name)
bfd *abfd;
Elf64_Internal_Shdr *hdr;
char *name;
{
asection *newsect;
switch (hdr->sh_type)
{
case SHT_PARISC_EXT:
if (strcmp (name, ".PARISC.archext") != 0)
return false;
break;
case SHT_PARISC_UNWIND:
if (strcmp (name, ".PARISC.unwind") != 0)
return false;
break;
case SHT_PARISC_DOC:
case SHT_PARISC_ANNOT:
default:
return false;
}
if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
return false;
newsect = hdr->bfd_section;
return true;
}
/* Construct a string for use in the elf64_hppa_dyn_hash_table. The
name describes what was once potentially anonymous memory. We
allocate memory as necessary, possibly reusing PBUF/PLEN. */
static const char *
get_dyn_name (sec, h, rel, pbuf, plen)
asection *sec;
struct elf_link_hash_entry *h;
const Elf_Internal_Rela *rel;
char **pbuf;
size_t *plen;
{
size_t nlen, tlen;
char *buf;
size_t len;
if (h && rel->r_addend == 0)
return h->root.root.string;
if (h)
nlen = strlen (h->root.root.string);
else
nlen = 8 + 1 + sizeof (rel->r_info) * 2 - 8;
tlen = nlen + 1 + sizeof (rel->r_addend) * 2 + 1;
len = *plen;
buf = *pbuf;
if (len < tlen)
{
if (buf)
free (buf);
*pbuf = buf = malloc (tlen);
*plen = len = tlen;
if (!buf)
return NULL;
}
if (h)
{
memcpy (buf, h->root.root.string, nlen);
buf[nlen++] = '+';
sprintf_vma (buf + nlen, rel->r_addend);
}
else
{
nlen = sprintf (buf, "%x:%lx",
sec->id & 0xffffffff,
(long) ELF64_R_SYM (rel->r_info));
if (rel->r_addend)
{
buf[nlen++] = '+';
sprintf_vma (buf + nlen, rel->r_addend);
}
}
return buf;
}
/* SEC is a section containing relocs for an input BFD when linking; return
a suitable section for holding relocs in the output BFD for a link. */
static boolean
get_reloc_section (abfd, hppa_info, sec)
bfd *abfd;
struct elf64_hppa_link_hash_table *hppa_info;
asection *sec;
{
const char *srel_name;
asection *srel;
bfd *dynobj;
srel_name = (bfd_elf_string_from_elf_section
(abfd, elf_elfheader(abfd)->e_shstrndx,
elf_section_data(sec)->rel_hdr.sh_name));
if (srel_name == NULL)
return false;
BFD_ASSERT ((strncmp (srel_name, ".rela", 5) == 0
&& strcmp (bfd_get_section_name (abfd, sec),
srel_name+5) == 0)
|| (strncmp (srel_name, ".rel", 4) == 0
&& strcmp (bfd_get_section_name (abfd, sec),
srel_name+4) == 0));
dynobj = hppa_info->root.dynobj;
if (!dynobj)
hppa_info->root.dynobj = dynobj = abfd;
srel = bfd_get_section_by_name (dynobj, srel_name);
if (srel == NULL)
{
srel = bfd_make_section (dynobj, srel_name);
if (srel == NULL
|| !bfd_set_section_flags (dynobj, srel,
(SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
| SEC_IN_MEMORY
| SEC_LINKER_CREATED
| SEC_READONLY))
|| !bfd_set_section_alignment (dynobj, srel, 3))
return false;
}
hppa_info->other_rel_sec = srel;
return true;
}
/* Add a new entry to the list of dynamic relocations against DYN_H.
We use this to keep a record of all the FPTR relocations against a
particular symbol so that we can create FPTR relocations in the
output file. */
static boolean
count_dyn_reloc (abfd, dyn_h, type, sec, sec_symndx, offset, addend)
bfd *abfd;
struct elf64_hppa_dyn_hash_entry *dyn_h;
int type;
asection *sec;
int sec_symndx;
bfd_vma offset;
bfd_vma addend;
{
struct elf64_hppa_dyn_reloc_entry *rent;
rent = (struct elf64_hppa_dyn_reloc_entry *)
bfd_alloc (abfd, (bfd_size_type) sizeof (*rent));
if (!rent)
return false;
rent->next = dyn_h->reloc_entries;
rent->type = type;
rent->sec = sec;
rent->sec_symndx = sec_symndx;
rent->offset = offset;
rent->addend = addend;
dyn_h->reloc_entries = rent;
return true;
}
/* Scan the RELOCS and record the type of dynamic entries that each
referenced symbol needs. */
static boolean
elf64_hppa_check_relocs (abfd, info, sec, relocs)
bfd *abfd;
struct bfd_link_info *info;
asection *sec;
const Elf_Internal_Rela *relocs;
{
struct elf64_hppa_link_hash_table *hppa_info;
const Elf_Internal_Rela *relend;
Elf_Internal_Shdr *symtab_hdr;
Elf_Internal_Shdr *shndx_hdr;
const Elf_Internal_Rela *rel;
asection *dlt, *plt, *stubs;
char *buf;
size_t buf_len;
int sec_symndx;
if (info->relocateable)
return true;
/* If this is the first dynamic object found in the link, create
the special sections required for dynamic linking. */
if (! elf_hash_table (info)->dynamic_sections_created)
{
if (! bfd_elf64_link_create_dynamic_sections (abfd, info))
return false;
}
hppa_info = elf64_hppa_hash_table (info);
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
/* If necessary, build a new table holding section symbols indices
for this BFD. This is disgusting. */
if (info->shared && hppa_info->section_syms_bfd != abfd)
{
unsigned long i;
unsigned int highest_shndx;
Elf_Internal_Sym *local_syms, *isym;
Elf64_External_Sym *ext_syms, *esym;
Elf_External_Sym_Shndx *shndx_buf, *shndx;
bfd_size_type amt;
/* We're done with the old cache of section index to section symbol
index information. Free it.
?!? Note we leak the last section_syms array. Presumably we
could free it in one of the later routines in this file. */
if (hppa_info->section_syms)
free (hppa_info->section_syms);
/* Allocate memory for the internal and external symbols. */
amt = symtab_hdr->sh_info;
amt *= sizeof (Elf_Internal_Sym);
local_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
if (local_syms == NULL)
return false;
amt = symtab_hdr->sh_info;
amt *= sizeof (Elf64_External_Sym);
ext_syms = (Elf64_External_Sym *) bfd_malloc (amt);
if (ext_syms == NULL)
{
free (local_syms);
return false;
}
/* Read in the local symbols. */
if (bfd_seek (abfd, symtab_hdr->sh_offset, SEEK_SET) != 0
|| bfd_bread (ext_syms, amt, abfd) != amt)
{
free (ext_syms);
free (local_syms);
return false;
}
shndx_buf = NULL;
shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
if (shndx_hdr->sh_size != 0)
{
amt = symtab_hdr->sh_info;
amt *= sizeof (Elf_External_Sym_Shndx);
shndx_buf = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
if (shndx_buf == NULL)
{
free (ext_syms);
free (local_syms);
return false;
}
if (bfd_seek (abfd, shndx_hdr->sh_offset, SEEK_SET) != 0
|| bfd_bread (shndx_buf, amt, abfd) != amt)
{
free (shndx_buf);
free (ext_syms);
free (local_syms);
return false;
}
}
/* Swap in the local symbols, also record the highest section index
referenced by the local symbols. */
highest_shndx = 0;
for (i = 0, isym = local_syms, esym = ext_syms, shndx = shndx_buf;
i < symtab_hdr->sh_info;
i++, esym++, isym++, shndx = (shndx != NULL ? shndx + 1 : NULL))
{
bfd_elf64_swap_symbol_in (abfd, esym, shndx, isym);
if (isym->st_shndx > highest_shndx)
highest_shndx = isym->st_shndx;
}
/* Now we can free the external symbols. */
free (shndx_buf);
free (ext_syms);
/* Allocate an array to hold the section index to section symbol index
mapping. Bump by one since we start counting at zero. */
highest_shndx++;
amt = highest_shndx;
amt *= sizeof (int);
hppa_info->section_syms = (int *) bfd_malloc (amt);
/* Now walk the local symbols again. If we find a section symbol,
record the index of the symbol into the section_syms array. */
for (isym = local_syms, i = 0; i < symtab_hdr->sh_info; i++, isym++)
{
if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
hppa_info->section_syms[isym->st_shndx] = i;
}
/* We are finished with the local symbols. Get rid of them. */
free (local_syms);
/* Record which BFD we built the section_syms mapping for. */
hppa_info->section_syms_bfd = abfd;
}
/* Record the symbol index for this input section. We may need it for
relocations when building shared libraries. When not building shared
libraries this value is never really used, but assign it to zero to
prevent out of bounds memory accesses in other routines. */
if (info->shared)
{
sec_symndx = _bfd_elf_section_from_bfd_section (abfd, sec);
/* If we did not find a section symbol for this section, then
something went terribly wrong above. */
if (sec_symndx == -1)
return false;
sec_symndx = hppa_info->section_syms[sec_symndx];
}
else
sec_symndx = 0;
dlt = plt = stubs = NULL;
buf = NULL;
buf_len = 0;
relend = relocs + sec->reloc_count;
for (rel = relocs; rel < relend; ++rel)
{
enum {
NEED_DLT = 1,
NEED_PLT = 2,
NEED_STUB = 4,
NEED_OPD = 8,
NEED_DYNREL = 16,
};
struct elf_link_hash_entry *h = NULL;
unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
struct elf64_hppa_dyn_hash_entry *dyn_h;
int need_entry;
const char *addr_name;
boolean maybe_dynamic;
int dynrel_type = R_PARISC_NONE;
static reloc_howto_type *howto;
if (r_symndx >= symtab_hdr->sh_info)
{
/* We're dealing with a global symbol -- find its hash entry
and mark it as being referenced. */
long indx = r_symndx - symtab_hdr->sh_info;
h = elf_sym_hashes (abfd)[indx];
while (h->root.type == bfd_link_hash_indirect
|| h->root.type == bfd_link_hash_warning)
h = (struct elf_link_hash_entry *) h->root.u.i.link;
h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
}
/* We can only get preliminary data on whether a symbol is
locally or externally defined, as not all of the input files
have yet been processed. Do something with what we know, as
this may help reduce memory usage and processing time later. */
maybe_dynamic = false;
if (h && ((info->shared
&& (!info->symbolic || info->allow_shlib_undefined) )
|| ! (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)
|| h->root.type == bfd_link_hash_defweak))
maybe_dynamic = true;
howto = elf_hppa_howto_table + ELF64_R_TYPE (rel->r_info);
need_entry = 0;
switch (howto->type)
{
/* These are simple indirect references to symbols through the
DLT. We need to create a DLT entry for any symbols which
appears in a DLTIND relocation. */
case R_PARISC_DLTIND21L:
case R_PARISC_DLTIND14R:
case R_PARISC_DLTIND14F:
case R_PARISC_DLTIND14WR:
case R_PARISC_DLTIND14DR:
need_entry = NEED_DLT;
break;
/* ?!? These need a DLT entry. But I have no idea what to do with
the "link time TP value. */
case R_PARISC_LTOFF_TP21L:
case R_PARISC_LTOFF_TP14R:
case R_PARISC_LTOFF_TP14F:
case R_PARISC_LTOFF_TP64:
case R_PARISC_LTOFF_TP14WR:
case R_PARISC_LTOFF_TP14DR:
case R_PARISC_LTOFF_TP16F:
case R_PARISC_LTOFF_TP16WF:
case R_PARISC_LTOFF_TP16DF:
need_entry = NEED_DLT;
break;
/* These are function calls. Depending on their precise target we
may need to make a stub for them. The stub uses the PLT, so we
need to create PLT entries for these symbols too. */
case R_PARISC_PCREL12F:
case R_PARISC_PCREL17F:
case R_PARISC_PCREL22F:
case R_PARISC_PCREL32:
case R_PARISC_PCREL64:
case R_PARISC_PCREL21L:
case R_PARISC_PCREL17R:
case R_PARISC_PCREL17C:
case R_PARISC_PCREL14R:
case R_PARISC_PCREL14F:
case R_PARISC_PCREL22C:
case R_PARISC_PCREL14WR:
case R_PARISC_PCREL14DR:
case R_PARISC_PCREL16F:
case R_PARISC_PCREL16WF:
case R_PARISC_PCREL16DF:
need_entry = (NEED_PLT | NEED_STUB);
break;
case R_PARISC_PLTOFF21L:
case R_PARISC_PLTOFF14R:
case R_PARISC_PLTOFF14F:
case R_PARISC_PLTOFF14WR:
case R_PARISC_PLTOFF14DR:
case R_PARISC_PLTOFF16F:
case R_PARISC_PLTOFF16WF:
case R_PARISC_PLTOFF16DF:
need_entry = (NEED_PLT);
break;
case R_PARISC_DIR64:
if (info->shared || maybe_dynamic)
need_entry = (NEED_DYNREL);
dynrel_type = R_PARISC_DIR64;
break;
/* This is an indirect reference through the DLT to get the address
of a OPD descriptor. Thus we need to make a DLT entry that points
to an OPD entry. */
case R_PARISC_LTOFF_FPTR21L:
case R_PARISC_LTOFF_FPTR14R:
case R_PARISC_LTOFF_FPTR14WR:
case R_PARISC_LTOFF_FPTR14DR:
case R_PARISC_LTOFF_FPTR32:
case R_PARISC_LTOFF_FPTR64:
case R_PARISC_LTOFF_FPTR16F:
case R_PARISC_LTOFF_FPTR16WF:
case R_PARISC_LTOFF_FPTR16DF:
if (info->shared || maybe_dynamic)
need_entry = (NEED_DLT | NEED_OPD);
else
need_entry = (NEED_DLT | NEED_OPD);
dynrel_type = R_PARISC_FPTR64;
break;
/* This is a simple OPD entry. */
case R_PARISC_FPTR64:
if (info->shared || maybe_dynamic)
need_entry = (NEED_OPD | NEED_DYNREL);
else
need_entry = (NEED_OPD);
dynrel_type = R_PARISC_FPTR64;
break;
/* Add more cases as needed. */
}
if (!need_entry)
continue;
/* Collect a canonical name for this address. */
addr_name = get_dyn_name (sec, h, rel, &buf, &buf_len);
/* Collect the canonical entry data for this address. */
dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
addr_name, true, true);
BFD_ASSERT (dyn_h);
/* Stash away enough information to be able to find this symbol
regardless of whether or not it is local or global. */
dyn_h->h = h;
dyn_h->owner = abfd;
dyn_h->sym_indx = r_symndx;
/* ?!? We may need to do some error checking in here. */
/* Create what's needed. */
if (need_entry & NEED_DLT)
{
if (! hppa_info->dlt_sec
&& ! get_dlt (abfd, info, hppa_info))
goto err_out;
dyn_h->want_dlt = 1;
}
if (need_entry & NEED_PLT)
{
if (! hppa_info->plt_sec
&& ! get_plt (abfd, info, hppa_info))
goto err_out;
dyn_h->want_plt = 1;
}
if (need_entry & NEED_STUB)
{
if (! hppa_info->stub_sec
&& ! get_stub (abfd, info, hppa_info))
goto err_out;
dyn_h->want_stub = 1;
}
if (need_entry & NEED_OPD)
{
if (! hppa_info->opd_sec
&& ! get_opd (abfd, info, hppa_info))
goto err_out;
dyn_h->want_opd = 1;
/* FPTRs are not allocated by the dynamic linker for PA64, though
it is possible that will change in the future. */
/* This could be a local function that had its address taken, in
which case H will be NULL. */
if (h)
h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
}
/* Add a new dynamic relocation to the chain of dynamic
relocations for this symbol. */
if ((need_entry & NEED_DYNREL) && (sec->flags & SEC_ALLOC))
{
if (! hppa_info->other_rel_sec
&& ! get_reloc_section (abfd, hppa_info, sec))
goto err_out;
if (!count_dyn_reloc (abfd, dyn_h, dynrel_type, sec,
sec_symndx, rel->r_offset, rel->r_addend))
goto err_out;
/* If we are building a shared library and we just recorded
a dynamic R_PARISC_FPTR64 relocation, then make sure the
section symbol for this section ends up in the dynamic
symbol table. */
if (info->shared && dynrel_type == R_PARISC_FPTR64
&& ! (_bfd_elf64_link_record_local_dynamic_symbol
(info, abfd, sec_symndx)))
return false;
}
}
if (buf)
free (buf);
return true;
err_out:
if (buf)
free (buf);
return false;
}
struct elf64_hppa_allocate_data
{
struct bfd_link_info *info;
bfd_size_type ofs;
};
/* Should we do dynamic things to this symbol? */
static boolean
elf64_hppa_dynamic_symbol_p (h, info)
struct elf_link_hash_entry *h;
struct bfd_link_info *info;
{
if (h == NULL)
return false;
while (h->root.type == bfd_link_hash_indirect
|| h->root.type == bfd_link_hash_warning)
h = (struct elf_link_hash_entry *) h->root.u.i.link;
if (h->dynindx == -1)
return false;
if (h->root.type == bfd_link_hash_undefweak
|| h->root.type == bfd_link_hash_defweak)
return true;
if (h->root.root.string[0] == '$' && h->root.root.string[1] == '$')
return false;
if ((info->shared && (!info->symbolic || info->allow_shlib_undefined))
|| ((h->elf_link_hash_flags
& (ELF_LINK_HASH_DEF_DYNAMIC | ELF_LINK_HASH_REF_REGULAR))
== (ELF_LINK_HASH_DEF_DYNAMIC | ELF_LINK_HASH_REF_REGULAR)))
return true;
return false;
}
/* Mark all funtions exported by this file so that we can later allocate
entries in .opd for them. */
static boolean
elf64_hppa_mark_exported_functions (h, data)
struct elf_link_hash_entry *h;
PTR data;
{
struct bfd_link_info *info = (struct bfd_link_info *)data;
struct elf64_hppa_link_hash_table *hppa_info;
hppa_info = elf64_hppa_hash_table (info);
if (h->root.type == bfd_link_hash_warning)
h = (struct elf_link_hash_entry *) h->root.u.i.link;
if (h
&& (h->root.type == bfd_link_hash_defined
|| h->root.type == bfd_link_hash_defweak)
&& h->root.u.def.section->output_section != NULL
&& h->type == STT_FUNC)
{
struct elf64_hppa_dyn_hash_entry *dyn_h;
/* Add this symbol to the PA64 linker hash table. */
dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
h->root.root.string, true, true);
BFD_ASSERT (dyn_h);
dyn_h->h = h;
if (! hppa_info->opd_sec
&& ! get_opd (hppa_info->root.dynobj, info, hppa_info))
return false;
dyn_h->want_opd = 1;
/* Put a flag here for output_symbol_hook. */
dyn_h->st_shndx = -1;
h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
}
return true;
}
/* Allocate space for a DLT entry. */
static boolean
allocate_global_data_dlt (dyn_h, data)
struct elf64_hppa_dyn_hash_entry *dyn_h;
PTR data;
{
struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
if (dyn_h->want_dlt)
{
struct elf_link_hash_entry *h = dyn_h->h;
if (x->info->shared)
{
/* Possibly add the symbol to the local dynamic symbol
table since we might need to create a dynamic relocation
against it. */
if (! h
|| (h && h->dynindx == -1))
{
bfd *owner;
owner = (h ? h->root.u.def.section->owner : dyn_h->owner);
if (! (_bfd_elf64_link_record_local_dynamic_symbol
(x->info, owner, dyn_h->sym_indx)))
return false;
}
}
dyn_h->dlt_offset = x->ofs;
x->ofs += DLT_ENTRY_SIZE;
}
return true;
}
/* Allocate space for a DLT.PLT entry. */
static boolean
allocate_global_data_plt (dyn_h, data)
struct elf64_hppa_dyn_hash_entry *dyn_h;
PTR data;
{
struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
if (dyn_h->want_plt
&& elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
&& !((dyn_h->h->root.type == bfd_link_hash_defined
|| dyn_h->h->root.type == bfd_link_hash_defweak)
&& dyn_h->h->root.u.def.section->output_section != NULL))
{
dyn_h->plt_offset = x->ofs;
x->ofs += PLT_ENTRY_SIZE;
if (dyn_h->plt_offset < 0x2000)
elf64_hppa_hash_table (x->info)->gp_offset = dyn_h->plt_offset;
}
else
dyn_h->want_plt = 0;
return true;
}
/* Allocate space for a STUB entry. */
static boolean
allocate_global_data_stub (dyn_h, data)
struct elf64_hppa_dyn_hash_entry *dyn_h;
PTR data;
{
struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
if (dyn_h->want_stub
&& elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
&& !((dyn_h->h->root.type == bfd_link_hash_defined
|| dyn_h->h->root.type == bfd_link_hash_defweak)
&& dyn_h->h->root.u.def.section->output_section != NULL))
{
dyn_h->stub_offset = x->ofs;
x->ofs += sizeof (plt_stub);
}
else
dyn_h->want_stub = 0;
return true;
}
/* Allocate space for a FPTR entry. */
static boolean
allocate_global_data_opd (dyn_h, data)
struct elf64_hppa_dyn_hash_entry *dyn_h;
PTR data;
{
struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
if (dyn_h->want_opd)
{
struct elf_link_hash_entry *h = dyn_h->h;
if (h)
while (h->root.type == bfd_link_hash_indirect
|| h->root.type == bfd_link_hash_warning)
h = (struct elf_link_hash_entry *) h->root.u.i.link;
/* We never need an opd entry for a symbol which is not
defined by this output file. */
if (h && h->root.type == bfd_link_hash_undefined)
dyn_h->want_opd = 0;
/* If we are creating a shared library, took the address of a local
function or might export this function from this object file, then
we have to create an opd descriptor. */
else if (x->info->shared
|| h == NULL
|| h->dynindx == -1
|| ((h->root.type == bfd_link_hash_defined
|| h->root.type == bfd_link_hash_defweak)
&& h->root.u.def.section->output_section != NULL))
{
/* If we are creating a shared library, then we will have to
create a runtime relocation for the symbol to properly
initialize the .opd entry. Make sure the symbol gets
added to the dynamic symbol table. */
if (x->info->shared
&& (h == NULL || (h->dynindx == -1)))
{
bfd *owner;
owner = (h ? h->root.u.def.section->owner : dyn_h->owner);
if (!_bfd_elf64_link_record_local_dynamic_symbol
(x->info, owner, dyn_h->sym_indx))
return false;
}
/* This may not be necessary or desirable anymore now that
we have some support for dealing with section symbols
in dynamic relocs. But name munging does make the result
much easier to debug. ie, the EPLT reloc will reference
a symbol like .foobar, instead of .text + offset. */
if (x->info->shared && h)
{
char *new_name;
struct elf_link_hash_entry *nh;
new_name = alloca (strlen (h->root.root.string) + 2);
new_name[0] = '.';
strcpy (new_name + 1, h->root.root.string);
nh = elf_link_hash_lookup (elf_hash_table (x->info),
new_name, true, true, true);
nh->root.type = h->root.type;
nh->root.u.def.value = h->root.u.def.value;
nh->root.u.def.section = h->root.u.def.section;
if (! bfd_elf64_link_record_dynamic_symbol (x->info, nh))
return false;
}
dyn_h->opd_offset = x->ofs;
x->ofs += OPD_ENTRY_SIZE;
}
/* Otherwise we do not need an opd entry. */
else
dyn_h->want_opd = 0;
}
return true;
}
/* HP requires the EI_OSABI field to be filled in. The assignment to
EI_ABIVERSION may not be strictly necessary. */
static void
elf64_hppa_post_process_headers (abfd, link_info)
bfd * abfd;
struct bfd_link_info * link_info ATTRIBUTE_UNUSED;
{
Elf_Internal_Ehdr * i_ehdrp;
i_ehdrp = elf_elfheader (abfd);
if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
{
i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX;
}
else
{
i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX;
i_ehdrp->e_ident[EI_ABIVERSION] = 1;
}
}
/* Create function descriptor section (.opd). This section is called .opd
because it contains "official prodecure descriptors". The "official"
refers to the fact that these descriptors are used when taking the address
of a procedure, thus ensuring a unique address for each procedure. */
static boolean
get_opd (abfd, info, hppa_info)
bfd *abfd;
struct bfd_link_info *info ATTRIBUTE_UNUSED;
struct elf64_hppa_link_hash_table *hppa_info;
{
asection *opd;
bfd *dynobj;
opd = hppa_info->opd_sec;
if (!opd)
{
dynobj = hppa_info->root.dynobj;
if (!dynobj)
hppa_info->root.dynobj = dynobj = abfd;
opd = bfd_make_section (dynobj, ".opd");
if (!opd
|| !bfd_set_section_flags (dynobj, opd,
(SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
| SEC_IN_MEMORY
| SEC_LINKER_CREATED))
|| !bfd_set_section_alignment (abfd, opd, 3))
{
BFD_ASSERT (0);
return false;
}
hppa_info->opd_sec = opd;
}
return true;
}
/* Create the PLT section. */
static boolean
get_plt (abfd, info, hppa_info)
bfd *abfd;
struct bfd_link_info *info ATTRIBUTE_UNUSED;
struct elf64_hppa_link_hash_table *hppa_info;
{
asection *plt;
bfd *dynobj;
plt = hppa_info->plt_sec;
if (!plt)
{
dynobj = hppa_info->root.dynobj;
if (!dynobj)
hppa_info->root.dynobj = dynobj = abfd;
plt = bfd_make_section (dynobj, ".plt");
if (!plt
|| !bfd_set_section_flags (dynobj, plt,
(SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
| SEC_IN_MEMORY
| SEC_LINKER_CREATED))
|| !bfd_set_section_alignment (abfd, plt, 3))
{
BFD_ASSERT (0);
return false;
}
hppa_info->plt_sec = plt;
}
return true;
}
/* Create the DLT section. */
static boolean
get_dlt (abfd, info, hppa_info)
bfd *abfd;
struct bfd_link_info *info ATTRIBUTE_UNUSED;
struct elf64_hppa_link_hash_table *hppa_info;
{
asection *dlt;
bfd *dynobj;
dlt = hppa_info->dlt_sec;
if (!dlt)
{
dynobj = hppa_info->root.dynobj;
if (!dynobj)
hppa_info->root.dynobj = dynobj = abfd;
dlt = bfd_make_section (dynobj, ".dlt");
if (!dlt
|| !bfd_set_section_flags (dynobj, dlt,
(SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
| SEC_IN_MEMORY
| SEC_LINKER_CREATED))
|| !bfd_set_section_alignment (abfd, dlt, 3))
{
BFD_ASSERT (0);
return false;
}
hppa_info->dlt_sec = dlt;
}
return true;
}
/* Create the stubs section. */
static boolean
get_stub (abfd, info, hppa_info)
bfd *abfd;
struct bfd_link_info *info ATTRIBUTE_UNUSED;
struct elf64_hppa_link_hash_table *hppa_info;
{
asection *stub;
bfd *dynobj;
stub = hppa_info->stub_sec;
if (!stub)
{
dynobj = hppa_info->root.dynobj;
if (!dynobj)
hppa_info->root.dynobj = dynobj = abfd;
stub = bfd_make_section (dynobj, ".stub");
if (!stub
|| !bfd_set_section_flags (dynobj, stub,
(SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
| SEC_IN_MEMORY
| SEC_READONLY
| SEC_LINKER_CREATED))
|| !bfd_set_section_alignment (abfd, stub, 3))
{
BFD_ASSERT (0);
return false;
}
hppa_info->stub_sec = stub;
}
return true;
}
/* Create sections necessary for dynamic linking. This is only a rough
cut and will likely change as we learn more about the somewhat
unusual dynamic linking scheme HP uses.
.stub:
Contains code to implement cross-space calls. The first time one
of the stubs is used it will call into the dynamic linker, later
calls will go straight to the target.
The only stub we support right now looks like
ldd OFFSET(%dp),%r1
bve %r0(%r1)
ldd OFFSET+8(%dp),%dp
Other stubs may be needed in the future. We may want the remove
the break/nop instruction. It is only used right now to keep the
offset of a .plt entry and a .stub entry in sync.
.dlt:
This is what most people call the .got. HP used a different name.
Losers.
.rela.dlt:
Relocations for the DLT.
.plt:
Function pointers as address,gp pairs.
.rela.plt:
Should contain dynamic IPLT (and EPLT?) relocations.
.opd:
FPTRS
.rela.opd:
EPLT relocations for symbols exported from shared libraries. */
static boolean
elf64_hppa_create_dynamic_sections (abfd, info)
bfd *abfd;
struct bfd_link_info *info;
{
asection *s;
if (! get_stub (abfd, info, elf64_hppa_hash_table (info)))
return false;
if (! get_dlt (abfd, info, elf64_hppa_hash_table (info)))
return false;
if (! get_plt (abfd, info, elf64_hppa_hash_table (info)))
return false;
if (! get_opd (abfd, info, elf64_hppa_hash_table (info)))
return false;
s = bfd_make_section(abfd, ".rela.dlt");
if (s == NULL
|| !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
| SEC_HAS_CONTENTS
| SEC_IN_MEMORY
| SEC_READONLY
| SEC_LINKER_CREATED))
|| !bfd_set_section_alignment (abfd, s, 3))
return false;
elf64_hppa_hash_table (info)->dlt_rel_sec = s;
s = bfd_make_section(abfd, ".rela.plt");
if (s == NULL
|| !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
| SEC_HAS_CONTENTS
| SEC_IN_MEMORY
| SEC_READONLY
| SEC_LINKER_CREATED))
|| !bfd_set_section_alignment (abfd, s, 3))
return false;
elf64_hppa_hash_table (info)->plt_rel_sec = s;
s = bfd_make_section(abfd, ".rela.data");
if (s == NULL
|| !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
| SEC_HAS_CONTENTS
| SEC_IN_MEMORY
| SEC_READONLY
| SEC_LINKER_CREATED))
|| !bfd_set_section_alignment (abfd, s, 3))
return false;
elf64_hppa_hash_table (info)->other_rel_sec = s;
s = bfd_make_section(abfd, ".rela.opd");
if (s == NULL
|| !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
| SEC_HAS_CONTENTS
| SEC_IN_MEMORY
| SEC_READONLY
| SEC_LINKER_CREATED))
|| !bfd_set_section_alignment (abfd, s, 3))
return false;
elf64_hppa_hash_table (info)->opd_rel_sec = s;
return true;
}
/* Allocate dynamic relocations for those symbols that turned out
to be dynamic. */
static boolean
allocate_dynrel_entries (dyn_h, data)
struct elf64_hppa_dyn_hash_entry *dyn_h;
PTR data;
{
struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
struct elf64_hppa_link_hash_table *hppa_info;
struct elf64_hppa_dyn_reloc_entry *rent;
boolean dynamic_symbol, shared;
hppa_info = elf64_hppa_hash_table (x->info);
dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info);
shared = x->info->shared;
/* We may need to allocate relocations for a non-dynamic symbol
when creating a shared library. */
if (!dynamic_symbol && !shared)
return true;
/* Take care of the normal data relocations. */
for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
{
switch (rent->type)
{
case R_PARISC_FPTR64:
/* Allocate one iff we are not building a shared library and
!want_opd, which by this point will be true only if we're
actually allocating one statically in the main executable. */
if (!x->info->shared && dyn_h->want_opd)
continue;
break;
}
hppa_info->other_rel_sec->_raw_size += sizeof (Elf64_External_Rela);
/* Make sure this symbol gets into the dynamic symbol table if it is
not already recorded. ?!? This should not be in the loop since
the symbol need only be added once. */
if (dyn_h->h == 0 || dyn_h->h->dynindx == -1)
if (!_bfd_elf64_link_record_local_dynamic_symbol
(x->info, rent->sec->owner, dyn_h->sym_indx))
return false;
}
/* Take care of the GOT and PLT relocations. */
if ((dynamic_symbol || shared) && dyn_h->want_dlt)
hppa_info->dlt_rel_sec->_raw_size += sizeof (Elf64_External_Rela);
/* If we are building a shared library, then every symbol that has an
opd entry will need an EPLT relocation to relocate the symbol's address
and __gp value based on the runtime load address. */
if (shared && dyn_h->want_opd)
hppa_info->opd_rel_sec->_raw_size += sizeof (Elf64_External_Rela);
if (dyn_h->want_plt && dynamic_symbol)
{
bfd_size_type t = 0;
/* Dynamic symbols get one IPLT relocation. Local symbols in
shared libraries get two REL relocations. Local symbols in
main applications get nothing. */
if (dynamic_symbol)
t = sizeof (Elf64_External_Rela);
else if (shared)
t = 2 * sizeof (Elf64_External_Rela);
hppa_info->plt_rel_sec->_raw_size += t;
}
return true;
}
/* Adjust a symbol defined by a dynamic object and referenced by a
regular object. */
static boolean
elf64_hppa_adjust_dynamic_symbol (info, h)
struct bfd_link_info *info ATTRIBUTE_UNUSED;
struct elf_link_hash_entry *h;
{
/* ??? Undefined symbols with PLT entries should be re-defined
to be the PLT entry. */
/* If this is a weak symbol, and there is a real definition, the
processor independent code will have arranged for us to see the
real definition first, and we can just use the same value. */
if (h->weakdef != NULL)
{
BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
|| h->weakdef->root.type == bfd_link_hash_defweak);
h->root.u.def.section = h->weakdef->root.u.def.section;
h->root.u.def.value = h->weakdef->root.u.def.value;
return true;
}
/* If this is a reference to a symbol defined by a dynamic object which
is not a function, we might allocate the symbol in our .dynbss section
and allocate a COPY dynamic relocation.
But PA64 code is canonically PIC, so as a rule we can avoid this sort
of hackery. */
return true;
}
/* Set the final sizes of the dynamic sections and allocate memory for
the contents of our special sections. */
static boolean
elf64_hppa_size_dynamic_sections (output_bfd, info)
bfd *output_bfd;
struct bfd_link_info *info;
{
bfd *dynobj;
asection *s;
boolean plt;
boolean relocs;
boolean reltext;
struct elf64_hppa_allocate_data data;
struct elf64_hppa_link_hash_table *hppa_info;
hppa_info = elf64_hppa_hash_table (info);
dynobj = elf_hash_table (info)->dynobj;
BFD_ASSERT (dynobj != NULL);
if (elf_hash_table (info)->dynamic_sections_created)
{
/* Set the contents of the .interp section to the interpreter. */
if (! info->shared)
{
s = bfd_get_section_by_name (dynobj, ".interp");
BFD_ASSERT (s != NULL);
s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
}
}
else
{
/* We may have created entries in the .rela.got section.
However, if we are not creating the dynamic sections, we will
not actually use these entries. Reset the size of .rela.dlt,
which will cause it to get stripped from the output file
below. */
s = bfd_get_section_by_name (dynobj, ".rela.dlt");
if (s != NULL)
s->_raw_size = 0;
}
/* Allocate the GOT entries. */
data.info = info;
if (elf64_hppa_hash_table (info)->dlt_sec)
{
data.ofs = 0x0;
elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
allocate_global_data_dlt, &data);
hppa_info->dlt_sec->_raw_size = data.ofs;
data.ofs = 0x0;
elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
allocate_global_data_plt, &data);
hppa_info->plt_sec->_raw_size = data.ofs;
data.ofs = 0x0;
elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
allocate_global_data_stub, &data);
hppa_info->stub_sec->_raw_size = data.ofs;
}
/* Mark each function this program exports so that we will allocate
space in the .opd section for each function's FPTR.
We have to traverse the main linker hash table since we have to
find functions which may not have been mentioned in any relocs. */
elf_link_hash_traverse (elf_hash_table (info),
elf64_hppa_mark_exported_functions,
info);
/* Allocate space for entries in the .opd section. */
if (elf64_hppa_hash_table (info)->opd_sec)
{
data.ofs = 0;
elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
allocate_global_data_opd, &data);
hppa_info->opd_sec->_raw_size = data.ofs;
}
/* Now allocate space for dynamic relocations, if necessary. */
if (hppa_info->root.dynamic_sections_created)
elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
allocate_dynrel_entries, &data);
/* The sizes of all the sections are set. Allocate memory for them. */
plt = false;
relocs = false;
reltext = false;
for (s = dynobj->sections; s != NULL; s = s->next)
{
const char *name;
boolean strip;
if ((s->flags & SEC_LINKER_CREATED) == 0)
continue;
/* It's OK to base decisions on the section name, because none
of the dynobj section names depend upon the input files. */
name = bfd_get_section_name (dynobj, s);
strip = 0;
if (strcmp (name, ".plt") == 0)
{
if (s->_raw_size == 0)
{
/* Strip this section if we don't need it; see the
comment below. */
strip = true;
}
else
{
/* Remember whether there is a PLT. */
plt = true;
}
}
else if (strcmp (name, ".dlt") == 0)
{
if (s->_raw_size == 0)
{
/* Strip this section if we don't need it; see the
comment below. */
strip = true;
}
}
else if (strcmp (name, ".opd") == 0)
{
if (s->_raw_size == 0)
{
/* Strip this section if we don't need it; see the
comment below. */
strip = true;
}
}
else if (strncmp (name, ".rela", 4) == 0)
{
if (s->_raw_size == 0)
{
/* If we don't need this section, strip it from the
output file. This is mostly to handle .rela.bss and
.rela.plt. We must create both sections in
create_dynamic_sections, because they must be created
before the linker maps input sections to output
sections. The linker does that before
adjust_dynamic_symbol is called, and it is that
function which decides whether anything needs to go
into these sections. */
strip = true;
}
else
{
asection *target;
/* Remember whether there are any reloc sections other
than .rela.plt. */
if (strcmp (name, ".rela.plt") != 0)
{
const char *outname;
relocs = true;
/* If this relocation section applies to a read only
section, then we probably need a DT_TEXTREL
entry. The entries in the .rela.plt section
really apply to the .got section, which we
created ourselves and so know is not readonly. */
outname = bfd_get_section_name (output_bfd,
s->output_section);
target = bfd_get_section_by_name (output_bfd, outname + 4);
if (target != NULL
&& (target->flags & SEC_READONLY) != 0
&& (target->flags & SEC_ALLOC) != 0)
reltext = true;
}
/* We use the reloc_count field as a counter if we need
to copy relocs into the output file. */
s->reloc_count = 0;
}
}
else if (strncmp (name, ".dlt", 4) != 0
&& strcmp (name, ".stub") != 0
&& strcmp (name, ".got") != 0)
{
/* It's not one of our sections, so don't allocate space. */
continue;
}
if (strip)
{
_bfd_strip_section_from_output (info, s);
continue;
}
/* Allocate memory for the section contents if it has not
been allocated already. We use bfd_zalloc here in case
unused entries are not reclaimed before the section's
contents are written out. This should not happen, but this
way if it does, we get a R_PARISC_NONE reloc instead of
garbage. */
if (s->contents == NULL)
{
s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
if (s->contents == NULL && s->_raw_size != 0)
return false;
}
}
if (elf_hash_table (info)->dynamic_sections_created)
{
/* Always create a DT_PLTGOT. It actually has nothing to do with
the PLT, it is how we communicate the __gp value of a load
module to the dynamic linker. */
#define add_dynamic_entry(TAG, VAL) \
bfd_elf64_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
if (!add_dynamic_entry (DT_HP_DLD_FLAGS, 0)
|| !add_dynamic_entry (DT_PLTGOT, 0))
return false;
/* Add some entries to the .dynamic section. We fill in the
values later, in elf64_hppa_finish_dynamic_sections, but we
must add the entries now so that we get the correct size for
the .dynamic section. The DT_DEBUG entry is filled in by the
dynamic linker and used by the debugger. */
if (! info->shared)
{
if (!add_dynamic_entry (DT_DEBUG, 0)
|| !add_dynamic_entry (DT_HP_DLD_HOOK, 0)
|| !add_dynamic_entry (DT_HP_LOAD_MAP, 0))
return false;
}
if (plt)
{
if (!add_dynamic_entry (DT_PLTRELSZ, 0)
|| !add_dynamic_entry (DT_PLTREL, DT_RELA)
|| !add_dynamic_entry (DT_JMPREL, 0))
return false;
}
if (relocs)
{
if (!add_dynamic_entry (DT_RELA, 0)
|| !add_dynamic_entry (DT_RELASZ, 0)
|| !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
return false;
}
if (reltext)
{
if (!add_dynamic_entry (DT_TEXTREL, 0))
return false;
info->flags |= DF_TEXTREL;
}
}
#undef add_dynamic_entry
return true;
}
/* Called after we have output the symbol into the dynamic symbol
table, but before we output the symbol into the normal symbol
table.
For some symbols we had to change their address when outputting
the dynamic symbol table. We undo that change here so that
the symbols have their expected value in the normal symbol
table. Ick. */
static boolean
elf64_hppa_link_output_symbol_hook (abfd, info, name, sym, input_sec)
bfd *abfd ATTRIBUTE_UNUSED;
struct bfd_link_info *info;
const char *name;
Elf_Internal_Sym *sym;
asection *input_sec ATTRIBUTE_UNUSED;
{
struct elf64_hppa_link_hash_table *hppa_info;
struct elf64_hppa_dyn_hash_entry *dyn_h;
/* We may be called with the file symbol or section symbols.
They never need munging, so it is safe to ignore them. */
if (!name)
return true;
/* Get the PA dyn_symbol (if any) associated with NAME. */
hppa_info = elf64_hppa_hash_table (info);
dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
name, false, false);
/* Function symbols for which we created .opd entries *may* have been
munged by finish_dynamic_symbol and have to be un-munged here.
Note that finish_dynamic_symbol sometimes turns dynamic symbols
into non-dynamic ones, so we initialize st_shndx to -1 in
mark_exported_functions and check to see if it was overwritten
here instead of just checking dyn_h->h->dynindx. */
if (dyn_h && dyn_h->want_opd && dyn_h->st_shndx != -1)
{
/* Restore the saved value and section index. */
sym->st_value = dyn_h->st_value;
sym->st_shndx = dyn_h->st_shndx;
}
return true;
}
/* Finish up dynamic symbol handling. We set the contents of various
dynamic sections here. */
static boolean
elf64_hppa_finish_dynamic_symbol (output_bfd, info, h, sym)
bfd *output_bfd;
struct bfd_link_info *info;
struct elf_link_hash_entry *h;
Elf_Internal_Sym *sym;
{
asection *stub, *splt, *sdlt, *sopd, *spltrel, *sdltrel;
struct elf64_hppa_link_hash_table *hppa_info;
struct elf64_hppa_dyn_hash_entry *dyn_h;
hppa_info = elf64_hppa_hash_table (info);
dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
h->root.root.string, false, false);
stub = hppa_info->stub_sec;
splt = hppa_info->plt_sec;
sdlt = hppa_info->dlt_sec;
sopd = hppa_info->opd_sec;
spltrel = hppa_info->plt_rel_sec;
sdltrel = hppa_info->dlt_rel_sec;
BFD_ASSERT (stub != NULL && splt != NULL
&& sopd != NULL && sdlt != NULL)
/* Incredible. It is actually necessary to NOT use the symbol's real
value when building the dynamic symbol table for a shared library.
At least for symbols that refer to functions.
We will store a new value and section index into the symbol long
enough to output it into the dynamic symbol table, then we restore
the original values (in elf64_hppa_link_output_symbol_hook). */
if (dyn_h && dyn_h->want_opd)
{
/* Save away the original value and section index so that we
can restore them later. */
dyn_h->st_value = sym->st_value;
dyn_h->st_shndx = sym->st_shndx;
/* For the dynamic symbol table entry, we want the value to be
address of this symbol's entry within the .opd section. */
sym->st_value = (dyn_h->opd_offset
+ sopd->output_offset
+ sopd->output_section->vma);
sym->st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
sopd->output_section);
}
/* Initialize a .plt entry if requested. */
if (dyn_h && dyn_h->want_plt
&& elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
{
bfd_vma value;
Elf_Internal_Rela rel;
/* We do not actually care about the value in the PLT entry
if we are creating a shared library and the symbol is
still undefined, we create a dynamic relocation to fill
in the correct value. */
if (info->shared && h->root.type == bfd_link_hash_undefined)
value = 0;
else
value = (h->root.u.def.value + h->root.u.def.section->vma);
/* Fill in the entry in the procedure linkage table.
The format of a plt entry is
<funcaddr> <__gp>.
plt_offset is the offset within the PLT section at which to
install the PLT entry.
We are modifying the in-memory PLT contents here, so we do not add
in the output_offset of the PLT section. */
bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset);
value = _bfd_get_gp_value (splt->output_section->owner);
bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset + 0x8);
/* Create a dynamic IPLT relocation for this entry.
We are creating a relocation in the output file's PLT section,
which is included within the DLT secton. So we do need to include
the PLT's output_offset in the computation of the relocation's
address. */
rel.r_offset = (dyn_h->plt_offset + splt->output_offset
+ splt->output_section->vma);
rel.r_info = ELF64_R_INFO (h->dynindx, R_PARISC_IPLT);
rel.r_addend = 0;
bfd_elf64_swap_reloca_out (splt->output_section->owner, &rel,
(((Elf64_External_Rela *)
spltrel->contents)
+ spltrel->reloc_count));
spltrel->reloc_count++;
}
/* Initialize an external call stub entry if requested. */
if (dyn_h && dyn_h->want_stub
&& elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
{
bfd_vma value;
int insn;
unsigned int max_offset;
/* Install the generic stub template.
We are modifying the contents of the stub section, so we do not
need to include the stub section's output_offset here. */
memcpy (stub->contents + dyn_h->stub_offset, plt_stub, sizeof (plt_stub));
/* Fix up the first ldd instruction.
We are modifying the contents of the STUB section in memory,
so we do not need to include its output offset in this computation.
Note the plt_offset value is the value of the PLT entry relative to
the start of the PLT section. These instructions will reference
data relative to the value of __gp, which may not necessarily have
the same address as the start of the PLT section.
gp_offset contains the offset of __gp within the PLT section. */
value = dyn_h->plt_offset - hppa_info->gp_offset;
insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset);
if (output_bfd->arch_info->mach >= 25)
{
/* Wide mode allows 16 bit offsets. */
max_offset = 32768;
insn &= ~ 0xfff1;
insn |= re_assemble_16 ((int) value);
}
else
{
max_offset = 8192;
insn &= ~ 0x3ff1;
insn |= re_assemble_14 ((int) value);
}
if ((value & 7) || value + max_offset >= 2*max_offset - 8)
{
(*_bfd_error_handler) (_("stub entry for %s cannot load .plt, dp offset = %ld"),
dyn_h->root.string,
(long) value);
return false;
}
bfd_put_32 (stub->owner, (bfd_vma) insn,
stub->contents + dyn_h->stub_offset);
/* Fix up the second ldd instruction. */
value += 8;
insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset + 8);
if (output_bfd->arch_info->mach >= 25)
{
insn &= ~ 0xfff1;
insn |= re_assemble_16 ((int) value);
}
else
{
insn &= ~ 0x3ff1;
insn |= re_assemble_14 ((int) value);
}
bfd_put_32 (stub->owner, (bfd_vma) insn,
stub->contents + dyn_h->stub_offset + 8);
}
/* Millicode symbols should not be put in the dynamic
symbol table under any circumstances. */
if (ELF_ST_TYPE (sym->st_info) == STT_PARISC_MILLI)
h->dynindx = -1;
return true;
}
/* The .opd section contains FPTRs for each function this file
exports. Initialize the FPTR entries. */
static boolean
elf64_hppa_finalize_opd (dyn_h, data)
struct elf64_hppa_dyn_hash_entry *dyn_h;
PTR data;
{
struct bfd_link_info *info = (struct bfd_link_info *)data;
struct elf64_hppa_link_hash_table *hppa_info;
struct elf_link_hash_entry *h = dyn_h->h;
asection *sopd;
asection *sopdrel;
hppa_info = elf64_hppa_hash_table (info);
sopd = hppa_info->opd_sec;
sopdrel = hppa_info->opd_rel_sec;
if (h && dyn_h && dyn_h->want_opd)
{
bfd_vma value;
/* The first two words of an .opd entry are zero.
We are modifying the contents of the OPD section in memory, so we
do not need to include its output offset in this computation. */
memset (sopd->contents + dyn_h->opd_offset, 0, 16);
value = (h->root.u.def.value
+ h->root.u.def.section->output_section->vma
+ h->root.u.def.section->output_offset);
/* The next word is the address of the function. */
bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 16);
/* The last word is our local __gp value. */
value = _bfd_get_gp_value (sopd->output_section->owner);
bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 24);
}
/* If we are generating a shared library, we must generate EPLT relocations
for each entry in the .opd, even for static functions (they may have
had their address taken). */
if (info->shared && dyn_h && dyn_h->want_opd)
{
Elf64_Internal_Rela rel;
int dynindx;
/* We may need to do a relocation against a local symbol, in
which case we have to look up it's dynamic symbol index off
the local symbol hash table. */
if (h && h->dynindx != -1)
dynindx = h->dynindx;
else
dynindx
= _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
dyn_h->sym_indx);
/* The offset of this relocation is the absolute address of the
.opd entry for this symbol. */
rel.r_offset = (dyn_h->opd_offset + sopd->output_offset
+ sopd->output_section->vma);
/* If H is non-null, then we have an external symbol.
It is imperative that we use a different dynamic symbol for the
EPLT relocation if the symbol has global scope.
In the dynamic symbol table, the function symbol will have a value
which is address of the function's .opd entry.
Thus, we can not use that dynamic symbol for the EPLT relocation
(if we did, the data in the .opd would reference itself rather
than the actual address of the function). Instead we have to use
a new dynamic symbol which has the same value as the original global
function symbol.
We prefix the original symbol with a "." and use the new symbol in
the EPLT relocation. This new symbol has already been recorded in
the symbol table, we just have to look it up and use it.
We do not have such problems with static functions because we do
not make their addresses in the dynamic symbol table point to
the .opd entry. Ultimately this should be safe since a static
function can not be directly referenced outside of its shared
library.
We do have to play similar games for FPTR relocations in shared
libraries, including those for static symbols. See the FPTR
handling in elf64_hppa_finalize_dynreloc. */
if (h)
{
char *new_name;
struct elf_link_hash_entry *nh;
new_name = alloca (strlen (h->root.root.string) + 2);
new_name[0] = '.';
strcpy (new_name + 1, h->root.root.string);
nh = elf_link_hash_lookup (elf_hash_table (info),
new_name, false, false, false);
/* All we really want from the new symbol is its dynamic
symbol index. */
dynindx = nh->dynindx;
}
rel.r_addend = 0;
rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_EPLT);
bfd_elf64_swap_reloca_out (sopd->output_section->owner, &rel,
(((Elf64_External_Rela *)
sopdrel->contents)
+ sopdrel->reloc_count));
sopdrel->reloc_count++;
}
return true;
}
/* The .dlt section contains addresses for items referenced through the
dlt. Note that we can have a DLTIND relocation for a local symbol, thus
we can not depend on finish_dynamic_symbol to initialize the .dlt. */
static boolean
elf64_hppa_finalize_dlt (dyn_h, data)
struct elf64_hppa_dyn_hash_entry *dyn_h;
PTR data;
{
struct bfd_link_info *info = (struct bfd_link_info *)data;
struct elf64_hppa_link_hash_table *hppa_info;
asection *sdlt, *sdltrel;
struct elf_link_hash_entry *h = dyn_h->h;
hppa_info = elf64_hppa_hash_table (info);
sdlt = hppa_info->dlt_sec;
sdltrel = hppa_info->dlt_rel_sec;
/* H/DYN_H may refer to a local variable and we know it's
address, so there is no need to create a relocation. Just install
the proper value into the DLT, note this shortcut can not be
skipped when building a shared library. */
if (! info->shared && h && dyn_h && dyn_h->want_dlt)
{
bfd_vma value;
/* If we had an LTOFF_FPTR style relocation we want the DLT entry
to point to the FPTR entry in the .opd section.
We include the OPD's output offset in this computation as
we are referring to an absolute address in the resulting
object file. */
if (dyn_h->want_opd)
{
value = (dyn_h->opd_offset
+ hppa_info->opd_sec->output_offset
+ hppa_info->opd_sec->output_section->vma);
}
else
{
value = (h->root.u.def.value
+ h->root.u.def.section->output_offset);
if (h->root.u.def.section->output_section)
value += h->root.u.def.section->output_section->vma;
else
value += h->root.u.def.section->vma;
}
/* We do not need to include the output offset of the DLT section
here because we are modifying the in-memory contents. */
bfd_put_64 (sdlt->owner, value, sdlt->contents + dyn_h->dlt_offset);
}
/* Create a relocation for the DLT entry assocated with this symbol.
When building a shared library the symbol does not have to be dynamic. */
if (dyn_h->want_dlt
&& (elf64_hppa_dynamic_symbol_p (dyn_h->h, info) || info->shared))
{
Elf64_Internal_Rela rel;
int dynindx;
/* We may need to do a relocation against a local symbol, in
which case we have to look up it's dynamic symbol index off
the local symbol hash table. */
if (h && h->dynindx != -1)
dynindx = h->dynindx;
else
dynindx
= _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
dyn_h->sym_indx);
/* Create a dynamic relocation for this entry. Do include the output
offset of the DLT entry since we need an absolute address in the
resulting object file. */
rel.r_offset = (dyn_h->dlt_offset + sdlt->output_offset
+ sdlt->output_section->vma);
if (h && h->type == STT_FUNC)
rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_FPTR64);
else
rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_DIR64);
rel.r_addend = 0;
bfd_elf64_swap_reloca_out (sdlt->output_section->owner, &rel,
(((Elf64_External_Rela *)
sdltrel->contents)
+ sdltrel->reloc_count));
sdltrel->reloc_count++;
}
return true;
}
/* Finalize the dynamic relocations. Specifically the FPTR relocations
for dynamic functions used to initialize static data. */
static boolean
elf64_hppa_finalize_dynreloc (dyn_h, data)
struct elf64_hppa_dyn_hash_entry *dyn_h;
PTR data;
{
struct bfd_link_info *info = (struct bfd_link_info *)data;
struct elf64_hppa_link_hash_table *hppa_info;
struct elf_link_hash_entry *h;
int dynamic_symbol;
dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, info);
if (!dynamic_symbol && !info->shared)
return true;
if (dyn_h->reloc_entries)
{
struct elf64_hppa_dyn_reloc_entry *rent;
int dynindx;
hppa_info = elf64_hppa_hash_table (info);
h = dyn_h->h;
/* We may need to do a relocation against a local symbol, in
which case we have to look up it's dynamic symbol index off
the local symbol hash table. */
if (h && h->dynindx != -1)
dynindx = h->dynindx;
else
dynindx
= _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
dyn_h->sym_indx);
for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
{
Elf64_Internal_Rela rel;
switch (rent->type)
{
case R_PARISC_FPTR64:
/* Allocate one iff we are not building a shared library and
!want_opd, which by this point will be true only if we're
actually allocating one statically in the main executable. */
if (!info->shared && dyn_h->want_opd)
continue;
break;
}
/* Create a dynamic relocation for this entry.
We need the output offset for the reloc's section because
we are creating an absolute address in the resulting object
file. */
rel.r_offset = (rent->offset + rent->sec->output_offset
+ rent->sec->output_section->vma);
/* An FPTR64 relocation implies that we took the address of
a function and that the function has an entry in the .opd
section. We want the FPTR64 relocation to reference the
entry in .opd.
We could munge the symbol value in the dynamic symbol table
(in fact we already do for functions with global scope) to point
to the .opd entry. Then we could use that dynamic symbol in
this relocation.
Or we could do something sensible, not munge the symbol's
address and instead just use a different symbol to reference
the .opd entry. At least that seems sensible until you
realize there's no local dynamic symbols we can use for that
purpose. Thus the hair in the check_relocs routine.
We use a section symbol recorded by check_relocs as the
base symbol for the relocation. The addend is the difference
between the section symbol and the address of the .opd entry. */
if (info->shared && rent->type == R_PARISC_FPTR64)
{
bfd_vma value, value2;
/* First compute the address of the opd entry for this symbol. */
value = (dyn_h->opd_offset
+ hppa_info->opd_sec->output_section->vma
+ hppa_info->opd_sec->output_offset);
/* Compute the value of the start of the section with
the relocation. */
value2 = (rent->sec->output_section->vma
+ rent->sec->output_offset);
/* Compute the difference between the start of the section
with the relocation and the opd entry. */
value -= value2;
/* The result becomes the addend of the relocation. */
rel.r_addend = value;
/* The section symbol becomes the symbol for the dynamic
relocation. */
dynindx
= _bfd_elf_link_lookup_local_dynindx (info,
rent->sec->owner,
rent->sec_symndx);
}
else
rel.r_addend = rent->addend;
rel.r_info = ELF64_R_INFO (dynindx, rent->type);
bfd_elf64_swap_reloca_out (hppa_info->other_rel_sec->output_section->owner,
&rel,
(((Elf64_External_Rela *)
hppa_info->other_rel_sec->contents)
+ hppa_info->other_rel_sec->reloc_count));
hppa_info->other_rel_sec->reloc_count++;
}
}
return true;
}
/* Finish up the dynamic sections. */
static boolean
elf64_hppa_finish_dynamic_sections (output_bfd, info)
bfd *output_bfd;
struct bfd_link_info *info;
{
bfd *dynobj;
asection *sdyn;
struct elf64_hppa_link_hash_table *hppa_info;
hppa_info = elf64_hppa_hash_table (info);
/* Finalize the contents of the .opd section. */
elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
elf64_hppa_finalize_opd,
info);
elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
elf64_hppa_finalize_dynreloc,
info);
/* Finalize the contents of the .dlt section. */
dynobj = elf_hash_table (info)->dynobj;
/* Finalize the contents of the .dlt section. */
elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
elf64_hppa_finalize_dlt,
info);
sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
if (elf_hash_table (info)->dynamic_sections_created)
{
Elf64_External_Dyn *dyncon, *dynconend;
BFD_ASSERT (sdyn != NULL);
dyncon = (Elf64_External_Dyn *) sdyn->contents;
dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
for (; dyncon < dynconend; dyncon++)
{
Elf_Internal_Dyn dyn;
asection *s;
bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
switch (dyn.d_tag)
{
default:
break;
case DT_HP_LOAD_MAP:
/* Compute the absolute address of 16byte scratchpad area
for the dynamic linker.
By convention the linker script will allocate the scratchpad
area at the start of the .data section. So all we have to
to is find the start of the .data section. */
s = bfd_get_section_by_name (output_bfd, ".data");
dyn.d_un.d_ptr = s->vma;
bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
break;
case DT_PLTGOT:
/* HP's use PLTGOT to set the GOT register. */
dyn.d_un.d_ptr = _bfd_get_gp_value (output_bfd);
bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
break;
case DT_JMPREL:
s = hppa_info->plt_rel_sec;
dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
break;
case DT_PLTRELSZ:
s = hppa_info->plt_rel_sec;
dyn.d_un.d_val = s->_raw_size;
bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
break;
case DT_RELA:
s = hppa_info->other_rel_sec;
if (! s)
s = hppa_info->dlt_rel_sec;
dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
break;
case DT_RELASZ:
s = hppa_info->other_rel_sec;
dyn.d_un.d_val = s->_raw_size;
s = hppa_info->dlt_rel_sec;
dyn.d_un.d_val += s->_raw_size;
s = hppa_info->opd_rel_sec;
dyn.d_un.d_val += s->_raw_size;
/* There is some question about whether or not the size of
the PLT relocs should be included here. HP's tools do
it, so we'll emulate them. */
s = hppa_info->plt_rel_sec;
dyn.d_un.d_val += s->_raw_size;
bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
break;
}
}
}
return true;
}
/* Return the number of additional phdrs we will need.
The generic ELF code only creates PT_PHDRs for executables. The HP
dynamic linker requires PT_PHDRs for dynamic libraries too.
This routine indicates that the backend needs one additional program
header for that case.
Note we do not have access to the link info structure here, so we have
to guess whether or not we are building a shared library based on the
existence of a .interp section. */
static int
elf64_hppa_additional_program_headers (abfd)
bfd *abfd;
{
asection *s;
/* If we are creating a shared library, then we have to create a
PT_PHDR segment. HP's dynamic linker chokes without it. */
s = bfd_get_section_by_name (abfd, ".interp");
if (! s)
return 1;
return 0;
}
/* Allocate and initialize any program headers required by this
specific backend.
The generic ELF code only creates PT_PHDRs for executables. The HP
dynamic linker requires PT_PHDRs for dynamic libraries too.
This allocates the PT_PHDR and initializes it in a manner suitable
for the HP linker.
Note we do not have access to the link info structure here, so we have
to guess whether or not we are building a shared library based on the
existence of a .interp section. */
static boolean
elf64_hppa_modify_segment_map (abfd)
bfd *abfd;
{
struct elf_segment_map *m;
asection *s;
s = bfd_get_section_by_name (abfd, ".interp");
if (! s)
{
for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
if (m->p_type == PT_PHDR)
break;
if (m == NULL)
{
m = ((struct elf_segment_map *)
bfd_zalloc (abfd, (bfd_size_type) sizeof *m));
if (m == NULL)
return false;
m->p_type = PT_PHDR;
m->p_flags = PF_R | PF_X;
m->p_flags_valid = 1;
m->p_paddr_valid = 1;
m->includes_phdrs = 1;
m->next = elf_tdata (abfd)->segment_map;
elf_tdata (abfd)->segment_map = m;
}
}
for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
if (m->p_type == PT_LOAD)
{
unsigned int i;
for (i = 0; i < m->count; i++)
{
/* The code "hint" is not really a hint. It is a requirement
for certain versions of the HP dynamic linker. Worse yet,
it must be set even if the shared library does not have
any code in its "text" segment (thus the check for .hash
to catch this situation). */
if (m->sections[i]->flags & SEC_CODE
|| (strcmp (m->sections[i]->name, ".hash") == 0))
m->p_flags |= (PF_X | PF_HP_CODE);
}
}
return true;
}
/* Called when writing out an object file to decide the type of a
symbol. */
static int
elf64_hppa_elf_get_symbol_type (elf_sym, type)
Elf_Internal_Sym *elf_sym;
int type;
{
if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
return STT_PARISC_MILLI;
else
return type;
}
/* The hash bucket size is the standard one, namely 4. */
const struct elf_size_info hppa64_elf_size_info =
{
sizeof (Elf64_External_Ehdr),
sizeof (Elf64_External_Phdr),
sizeof (Elf64_External_Shdr),
sizeof (Elf64_External_Rel),
sizeof (Elf64_External_Rela),
sizeof (Elf64_External_Sym),
sizeof (Elf64_External_Dyn),
sizeof (Elf_External_Note),
4,
1,
64, 8,
ELFCLASS64, EV_CURRENT,
bfd_elf64_write_out_phdrs,
bfd_elf64_write_shdrs_and_ehdr,
bfd_elf64_write_relocs,
bfd_elf64_swap_symbol_out,
bfd_elf64_slurp_reloc_table,
bfd_elf64_slurp_symbol_table,
bfd_elf64_swap_dyn_in,
bfd_elf64_swap_dyn_out,
NULL,
NULL,
NULL,
NULL
};
#define TARGET_BIG_SYM bfd_elf64_hppa_vec
#define TARGET_BIG_NAME "elf64-hppa"
#define ELF_ARCH bfd_arch_hppa
#define ELF_MACHINE_CODE EM_PARISC
/* This is not strictly correct. The maximum page size for PA2.0 is
64M. But everything still uses 4k. */
#define ELF_MAXPAGESIZE 0x1000
#define bfd_elf64_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
#define bfd_elf64_bfd_is_local_label_name elf_hppa_is_local_label_name
#define elf_info_to_howto elf_hppa_info_to_howto
#define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
#define elf_backend_section_from_shdr elf64_hppa_section_from_shdr
#define elf_backend_object_p elf64_hppa_object_p
#define elf_backend_final_write_processing \
elf_hppa_final_write_processing
#define elf_backend_fake_sections elf_hppa_fake_sections
#define elf_backend_add_symbol_hook elf_hppa_add_symbol_hook
#define elf_backend_relocate_section elf_hppa_relocate_section
#define bfd_elf64_bfd_final_link elf_hppa_final_link
#define elf_backend_create_dynamic_sections \
elf64_hppa_create_dynamic_sections
#define elf_backend_post_process_headers elf64_hppa_post_process_headers
#define elf_backend_adjust_dynamic_symbol \
elf64_hppa_adjust_dynamic_symbol
#define elf_backend_size_dynamic_sections \
elf64_hppa_size_dynamic_sections
#define elf_backend_finish_dynamic_symbol \
elf64_hppa_finish_dynamic_symbol
#define elf_backend_finish_dynamic_sections \
elf64_hppa_finish_dynamic_sections
/* Stuff for the BFD linker: */
#define bfd_elf64_bfd_link_hash_table_create \
elf64_hppa_hash_table_create
#define elf_backend_check_relocs \
elf64_hppa_check_relocs
#define elf_backend_size_info \
hppa64_elf_size_info
#define elf_backend_additional_program_headers \
elf64_hppa_additional_program_headers
#define elf_backend_modify_segment_map \
elf64_hppa_modify_segment_map
#define elf_backend_link_output_symbol_hook \
elf64_hppa_link_output_symbol_hook
#define elf_backend_want_got_plt 0
#define elf_backend_plt_readonly 0
#define elf_backend_want_plt_sym 0
#define elf_backend_got_header_size 0
#define elf_backend_plt_header_size 0
#define elf_backend_type_change_ok true
#define elf_backend_get_symbol_type elf64_hppa_elf_get_symbol_type
#include "elf64-target.h"
#undef TARGET_BIG_SYM
#define TARGET_BIG_SYM bfd_elf64_hppa_linux_vec
#undef TARGET_BIG_NAME
#define TARGET_BIG_NAME "elf64-hppa-linux"
#define INCLUDED_TARGET_FILE 1
#include "elf64-target.h"