mirror of
https://github.com/darlinghq/darling-gdb.git
synced 2024-12-05 02:47:05 +00:00
01d1590bab
decl for attach_flag, it now lives in inferior.h. * hppa-pinsn.c: Reformat opcode tables. Add function prototypes. Make most functions static. * hppah-nat.c: General cleanups, remove BSD specific code (since that all lives in hppab-nat.c). * hppah-tdep.c (frame_chain_valid), tm-hppa.h (FRAME_CHAIN): Change sense of test against inside_entry_file(). This fix is from U. of Utah. * tm-hppa.h (PUSH_DUMMY_FRAME, POP_FRAME): Use char * for 2nd arg to read/write_register_bytes().
393 lines
10 KiB
C
393 lines
10 KiB
C
/* Machine-dependent hooks for the unix child process stratum. This
|
||
code is for the HP PA-RISC cpu.
|
||
|
||
Copyright 1986, 1987, 1989, 1990, 1991, 1992 Free Software Foundation, Inc.
|
||
|
||
Contributed by the Center for Software Science at the
|
||
University of Utah (pa-gdb-bugs@cs.utah.edu).
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
|
||
|
||
#include "defs.h"
|
||
#include "inferior.h"
|
||
|
||
#ifndef PT_ATTACH
|
||
#define PT_ATTACH PTRACE_ATTACH
|
||
#endif
|
||
#ifndef PT_DETACH
|
||
#define PT_DETACH PTRACE_DETACH
|
||
#endif
|
||
|
||
/* This function simply calls ptrace with the given arguments.
|
||
It exists so that all calls to ptrace are isolated in this
|
||
machine-dependent file. */
|
||
#ifdef WANT_NATIVE_TARGET
|
||
int
|
||
call_ptrace (request, pid, addr, data)
|
||
int request, pid;
|
||
PTRACE_ARG3_TYPE addr;
|
||
int data;
|
||
{
|
||
return ptrace (request, pid, addr, data);
|
||
}
|
||
#endif /* WANT_NATIVE_TARGET */
|
||
|
||
#ifdef DEBUG_PTRACE
|
||
/* For the rest of the file, use an extra level of indirection */
|
||
/* This lets us breakpoint usefully on call_ptrace. */
|
||
#define ptrace call_ptrace
|
||
#endif
|
||
|
||
void
|
||
kill_inferior ()
|
||
{
|
||
if (inferior_pid == 0)
|
||
return;
|
||
ptrace (PT_KILL, inferior_pid, (PTRACE_ARG3_TYPE) 0, 0);
|
||
wait ((int *)0);
|
||
target_mourn_inferior ();
|
||
}
|
||
|
||
#ifdef ATTACH_DETACH
|
||
|
||
/* Start debugging the process whose number is PID. */
|
||
int
|
||
attach (pid)
|
||
int pid;
|
||
{
|
||
errno = 0;
|
||
ptrace (PT_ATTACH, pid, (PTRACE_ARG3_TYPE) 0, 0);
|
||
if (errno)
|
||
perror_with_name ("ptrace");
|
||
attach_flag = 1;
|
||
return pid;
|
||
}
|
||
|
||
/* Stop debugging the process whose number is PID
|
||
and continue it with signal number SIGNAL.
|
||
SIGNAL = 0 means just continue it. */
|
||
|
||
void
|
||
detach (signal)
|
||
int signal;
|
||
{
|
||
errno = 0;
|
||
ptrace (PT_DETACH, inferior_pid, (PTRACE_ARG3_TYPE) 1, signal);
|
||
if (errno)
|
||
perror_with_name ("ptrace");
|
||
attach_flag = 0;
|
||
}
|
||
#endif /* ATTACH_DETACH */
|
||
|
||
|
||
|
||
#if !defined (FETCH_INFERIOR_REGISTERS)
|
||
|
||
/* KERNEL_U_ADDR is the amount to subtract from u.u_ar0
|
||
to get the offset in the core file of the register values. */
|
||
#if defined (KERNEL_U_ADDR_BSD)
|
||
/* Get kernel_u_addr using BSD-style nlist(). */
|
||
CORE_ADDR kernel_u_addr;
|
||
|
||
#include <a.out.gnu.h> /* For struct nlist */
|
||
|
||
void
|
||
_initialize_kernel_u_addr ()
|
||
{
|
||
struct nlist names[2];
|
||
|
||
names[0].n_un.n_name = "_u";
|
||
names[1].n_un.n_name = NULL;
|
||
if (nlist ("/vmunix", names) == 0)
|
||
kernel_u_addr = names[0].n_value;
|
||
else
|
||
fatal ("Unable to get kernel u area address.");
|
||
}
|
||
#endif /* KERNEL_U_ADDR_BSD. */
|
||
|
||
#if defined (KERNEL_U_ADDR_HPUX)
|
||
/* Get kernel_u_addr using HPUX-style nlist(). */
|
||
CORE_ADDR kernel_u_addr;
|
||
|
||
struct hpnlist {
|
||
char * n_name;
|
||
long n_value;
|
||
unsigned char n_type;
|
||
unsigned char n_length;
|
||
short n_almod;
|
||
short n_unused;
|
||
};
|
||
static struct hpnlist nl[] = {{ "_u", -1, }, { (char *) 0, }};
|
||
|
||
/* read the value of the u area from the hp-ux kernel */
|
||
void _initialize_kernel_u_addr ()
|
||
{
|
||
struct user u;
|
||
nlist ("/hp-ux", &nl);
|
||
kernel_u_addr = nl[0].n_value;
|
||
}
|
||
#endif /* KERNEL_U_ADDR_HPUX. */
|
||
|
||
#if !defined (offsetof)
|
||
#define offsetof(TYPE, MEMBER) ((unsigned long) &((TYPE *)0)->MEMBER)
|
||
#endif
|
||
|
||
/* U_REGS_OFFSET is the offset of the registers within the u area. */
|
||
#if !defined (U_REGS_OFFSET)
|
||
#define U_REGS_OFFSET \
|
||
ptrace (PT_READ_U, inferior_pid, \
|
||
(PTRACE_ARG3_TYPE) (offsetof (struct user, u_ar0)), 0) \
|
||
- KERNEL_U_ADDR
|
||
#endif
|
||
|
||
/* Registers we shouldn't try to fetch. */
|
||
#if !defined (CANNOT_FETCH_REGISTER)
|
||
#define CANNOT_FETCH_REGISTER(regno) 0
|
||
#endif
|
||
|
||
/* Fetch one register. */
|
||
|
||
static void
|
||
fetch_register (regno)
|
||
int regno;
|
||
{
|
||
register unsigned int regaddr;
|
||
char buf[MAX_REGISTER_RAW_SIZE];
|
||
char mess[128]; /* For messages */
|
||
register int i;
|
||
|
||
/* Offset of registers within the u area. */
|
||
unsigned int offset;
|
||
|
||
if (CANNOT_FETCH_REGISTER (regno))
|
||
{
|
||
bzero (buf, REGISTER_RAW_SIZE (regno)); /* Supply zeroes */
|
||
supply_register (regno, buf);
|
||
return;
|
||
}
|
||
|
||
offset = U_REGS_OFFSET;
|
||
|
||
regaddr = register_addr (regno, offset);
|
||
for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof (int))
|
||
{
|
||
errno = 0;
|
||
*(int *) &buf[i] = ptrace (PT_RUREGS, inferior_pid,
|
||
(PTRACE_ARG3_TYPE) regaddr, 0);
|
||
regaddr += sizeof (int);
|
||
if (errno != 0)
|
||
{
|
||
sprintf (mess, "reading register %s (#%d)", reg_names[regno], regno);
|
||
perror_with_name (mess);
|
||
}
|
||
}
|
||
supply_register (regno, buf);
|
||
}
|
||
|
||
#endif /* !defined (FETCH_INFERIOR_REGISTERS). */
|
||
/* Fetch all registers, or just one, from the child process. */
|
||
|
||
#ifndef FETCH_INFERIOR_REGISTERS
|
||
void
|
||
fetch_inferior_registers (regno)
|
||
int regno;
|
||
{
|
||
if (regno == -1)
|
||
for (regno = 0; regno < NUM_REGS; regno++)
|
||
fetch_register (regno);
|
||
else
|
||
fetch_register (regno);
|
||
}
|
||
|
||
/* Registers we shouldn't try to store. */
|
||
#if !defined (CANNOT_STORE_REGISTER)
|
||
#define CANNOT_STORE_REGISTER(regno) 0
|
||
#endif
|
||
|
||
/* Store our register values back into the inferior.
|
||
If REGNO is -1, do this for all registers.
|
||
Otherwise, REGNO specifies which register (so we can save time). */
|
||
|
||
void
|
||
store_inferior_registers (regno)
|
||
int regno;
|
||
{
|
||
register unsigned int regaddr;
|
||
char buf[80];
|
||
extern char registers[];
|
||
register int i;
|
||
|
||
unsigned int offset = U_REGS_OFFSET;
|
||
|
||
if (regno >= 0)
|
||
{
|
||
regaddr = register_addr (regno, offset);
|
||
for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof(int))
|
||
{
|
||
errno = 0;
|
||
ptrace (PT_WRITE_U, inferior_pid, (PTRACE_ARG3_TYPE) regaddr,
|
||
*(int *) ®isters[REGISTER_BYTE (regno) + i]);
|
||
if (errno != 0)
|
||
{
|
||
sprintf (buf, "writing register number %d(%d)", regno, i);
|
||
perror_with_name (buf);
|
||
}
|
||
regaddr += sizeof(int);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
for (regno = 0; regno < NUM_REGS; regno++)
|
||
{
|
||
if (CANNOT_STORE_REGISTER (regno))
|
||
continue;
|
||
regaddr = register_addr (regno, offset);
|
||
for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof(int))
|
||
{
|
||
errno = 0;
|
||
ptrace (PT_WRITE_U, inferior_pid, (PTRACE_ARG3_TYPE) regaddr,
|
||
*(int *) ®isters[REGISTER_BYTE (regno) + i]);
|
||
if (errno != 0)
|
||
{
|
||
sprintf (buf, "writing register number %d(%d)", regno, i);
|
||
perror_with_name (buf);
|
||
}
|
||
regaddr += sizeof(int);
|
||
}
|
||
}
|
||
}
|
||
return;
|
||
}
|
||
#endif /* !defined(FETCH_INFERIOR_REGISTERS) */
|
||
|
||
/* Resume execution of the inferior process.
|
||
If STEP is nonzero, single-step it.
|
||
If SIGNAL is nonzero, give it that signal. */
|
||
|
||
void
|
||
child_resume (step, signal)
|
||
int step;
|
||
int signal;
|
||
{
|
||
errno = 0;
|
||
|
||
/* An address of (PTRACE_ARG3_TYPE) 1 tells ptrace to continue from where
|
||
it was. (If GDB wanted it to start some other way, we have already
|
||
written a new PC value to the child.) */
|
||
|
||
if (step)
|
||
ptrace (PT_STEP, inferior_pid, (PTRACE_ARG3_TYPE) 1, signal);
|
||
else
|
||
ptrace (PT_CONTINUE, inferior_pid, (PTRACE_ARG3_TYPE) 1, signal);
|
||
|
||
if (errno)
|
||
perror_with_name ("ptrace");
|
||
}
|
||
|
||
/* NOTE! I tried using PTRACE_READDATA, etc., to read and write memory
|
||
in the NEW_SUN_PTRACE case.
|
||
It ought to be straightforward. But it appears that writing did
|
||
not write the data that I specified. I cannot understand where
|
||
it got the data that it actually did write. */
|
||
|
||
/* Copy LEN bytes to or from inferior's memory starting at MEMADDR
|
||
to debugger memory starting at MYADDR. Copy to inferior if
|
||
WRITE is nonzero.
|
||
|
||
Returns the length copied, which is either the LEN argument or zero.
|
||
This xfer function does not do partial moves, since child_ops
|
||
doesn't allow memory operations to cross below us in the target stack
|
||
anyway. */
|
||
|
||
int
|
||
child_xfer_memory (memaddr, myaddr, len, write, target)
|
||
CORE_ADDR memaddr;
|
||
char *myaddr;
|
||
int len;
|
||
int write;
|
||
struct target_ops *target; /* ignored */
|
||
{
|
||
register int i;
|
||
/* Round starting address down to longword boundary. */
|
||
register CORE_ADDR addr = memaddr & - sizeof (int);
|
||
/* Round ending address up; get number of longwords that makes. */
|
||
register int count
|
||
= (((memaddr + len) - addr) + sizeof (int) - 1) / sizeof (int);
|
||
/* Allocate buffer of that many longwords. */
|
||
register int *buffer = (int *) alloca (count * sizeof (int));
|
||
|
||
if (write)
|
||
{
|
||
/* Fill start and end extra bytes of buffer with existing memory data. */
|
||
|
||
if (addr != memaddr || len < (int)sizeof (int)) {
|
||
/* Need part of initial word -- fetch it. */
|
||
buffer[0] = ptrace (PT_READ_I, inferior_pid, (PTRACE_ARG3_TYPE) addr,
|
||
0);
|
||
}
|
||
|
||
if (count > 1) /* FIXME, avoid if even boundary */
|
||
{
|
||
buffer[count - 1]
|
||
= ptrace (PT_READ_I, inferior_pid,
|
||
(PTRACE_ARG3_TYPE) (addr + (count - 1) * sizeof (int)),
|
||
0);
|
||
}
|
||
|
||
/* Copy data to be written over corresponding part of buffer */
|
||
|
||
bcopy (myaddr, (char *) buffer + (memaddr & (sizeof (int) - 1)), len);
|
||
|
||
/* Write the entire buffer. */
|
||
|
||
for (i = 0; i < count; i++, addr += sizeof (int))
|
||
{
|
||
errno = 0;
|
||
ptrace (PT_WRITE_D, inferior_pid, (PTRACE_ARG3_TYPE) addr,
|
||
buffer[i]);
|
||
if (errno)
|
||
{
|
||
/* Using the appropriate one (I or D) is necessary for
|
||
Gould NP1, at least. */
|
||
errno = 0;
|
||
ptrace (PT_WRITE_I, inferior_pid, (PTRACE_ARG3_TYPE) addr,
|
||
buffer[i]);
|
||
}
|
||
if (errno)
|
||
return 0;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Read all the longwords */
|
||
for (i = 0; i < count; i++, addr += sizeof (int))
|
||
{
|
||
errno = 0;
|
||
buffer[i] = ptrace (PT_READ_I, inferior_pid,
|
||
(PTRACE_ARG3_TYPE) addr, 0);
|
||
if (errno)
|
||
return 0;
|
||
QUIT;
|
||
}
|
||
|
||
/* Copy appropriate bytes out of the buffer. */
|
||
bcopy ((char *) buffer + (memaddr & (sizeof (int) - 1)), myaddr, len);
|
||
}
|
||
return len;
|
||
}
|
||
|