mirror of
https://github.com/darlinghq/darling-gdb.git
synced 2025-01-09 21:50:35 +00:00
806 lines
16 KiB
C
806 lines
16 KiB
C
/* This is a software floating point library which can be used instead of
|
|
the floating point routines in libgcc1.c for targets without hardware
|
|
floating point. */
|
|
|
|
/* Copyright (C) 1994,1997 Free Software Foundation, Inc.
|
|
|
|
This file is free software; you can redistribute it and/or modify it
|
|
under the terms of the GNU General Public License as published by the
|
|
Free Software Foundation; either version 2, or (at your option) any
|
|
later version.
|
|
|
|
In addition to the permissions in the GNU General Public License, the
|
|
Free Software Foundation gives you unlimited permission to link the
|
|
compiled version of this file with other programs, and to distribute
|
|
those programs without any restriction coming from the use of this
|
|
file. (The General Public License restrictions do apply in other
|
|
respects; for example, they cover modification of the file, and
|
|
distribution when not linked into another program.)
|
|
|
|
This file is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; see the file COPYING. If not, write to
|
|
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
|
|
|
|
/* As a special exception, if you link this library with other files,
|
|
some of which are compiled with GCC, to produce an executable,
|
|
this library does not by itself cause the resulting executable
|
|
to be covered by the GNU General Public License.
|
|
This exception does not however invalidate any other reasons why
|
|
the executable file might be covered by the GNU General Public License. */
|
|
|
|
/* This implements IEEE 754 format arithmetic, but does not provide a
|
|
mechanism for setting the rounding mode, or for generating or handling
|
|
exceptions.
|
|
|
|
The original code by Steve Chamberlain, hacked by Mark Eichin and Jim
|
|
Wilson, all of Cygnus Support. */
|
|
|
|
|
|
#ifndef SIM_FPU_C
|
|
#define SIM_FPU_C
|
|
|
|
#include "sim-main.h"
|
|
#include "sim-fpu.h"
|
|
#include "sim-assert.h"
|
|
|
|
#include <math.h>
|
|
|
|
|
|
/* Floating point number is <SIGN:1><EXP:EXPBITS><FRAC:FRACBITS> */
|
|
|
|
#define SP_NGARDS 7L
|
|
#define SP_GARDROUND 0x3f
|
|
#define SP_GARDMASK ((unsigned) 0x7f)
|
|
#define SP_GARDMSB ((unsigned) 0x40)
|
|
#define SP_EXPBITS 8
|
|
#define SP_EXPBIAS 127
|
|
#define SP_FRACBITS 23
|
|
#define SP_EXPMAX ((unsigned) 0xff)
|
|
#define SP_QUIET_NAN 0x100000L
|
|
#define SP_FRAC_NBITS 32
|
|
#define SP_FRACHIGH 0x80000000L
|
|
#define SP_FRACHIGH2 0xc0000000L
|
|
|
|
#define DP_NGARDS 8L
|
|
#define DP_GARDROUND 0x7f
|
|
#define DP_GARDMASK ((unsigned) 0xff)
|
|
#define DP_GARDMSB ((unsigned) 0x80)
|
|
#define DP_EXPBITS 11
|
|
#define DP_EXPBIAS 1023
|
|
#define DP_FRACBITS 52
|
|
#define DP_EXPMAX ((unsigned) 0x7ff)
|
|
#define DP_QUIET_NAN MSBIT64 (12) /* 0x0008000000000000LL */
|
|
#define DP_FRAC_NBITS 64
|
|
#define DP_FRACHIGH MSMASK64 (1) /* 0x8000000000000000LL */
|
|
#define DP_FRACHIGH2 MSMASK64 (2) /* 0xc000000000000000LL */
|
|
|
|
#define EXPMAX (is_double ? DP_EXPMAX : SP_EXPMAX)
|
|
#define EXPBITS (is_double ? DP_EXPBITS : SP_EXPBITS)
|
|
#define EXPBIAS (is_double ? DP_EXPBIAS : SP_EXPBIAS)
|
|
#define FRACBITS (is_double ? DP_FRACBITS : SP_FRACBITS)
|
|
#define NGARDS (is_double ? DP_NGARDS : (SP_NGARDS ))
|
|
#define SIGNBIT ((unsigned64)1 << (EXPBITS + FRACBITS))
|
|
#define FRAC_NBITS (is_double ? DP_FRAC_NBITS : SP_FRAC_NBITS)
|
|
#define GARDMASK (is_double ? DP_GARDMASK : SP_GARDMASK)
|
|
#define GARDMSB (is_double ? DP_GARDMSB : SP_GARDMSB)
|
|
#define GARDROUND (is_double ? DP_GARDROUND : SP_GARDROUND)
|
|
|
|
/* F_D_BITOFF is the number of bits offset between the MSB of the mantissa
|
|
of a float and of a double. Assumes there are only two float types.
|
|
(double::FRAC_BITS+double::NGARGS-(float::FRAC_BITS-float::NGARDS))
|
|
*/
|
|
#define F_D_BITOFF (is_double ? 0 : (52+8-(23+7)))
|
|
|
|
|
|
#if 0
|
|
#define (is_double ? DP_ : SP_)
|
|
#endif
|
|
|
|
#define NORMAL_EXPMIN (-(EXPBIAS)+1)
|
|
|
|
#define IMPLICIT_1 ((unsigned64)1 << (FRACBITS+NGARDS))
|
|
#define IMPLICIT_2 ((unsigned64)1 << (FRACBITS+1+NGARDS))
|
|
|
|
#define MAX_SI_INT (is_double ? LSMASK64 (63) : LSMASK64 (31))
|
|
#define MAX_USI_INT (is_double ? LSMASK64 (64) : LSMASK64 (32))
|
|
|
|
|
|
typedef enum
|
|
{
|
|
sim_fpu_class_snan,
|
|
sim_fpu_class_qnan,
|
|
sim_fpu_class_zero,
|
|
sim_fpu_class_number,
|
|
sim_fpu_class_infinity,
|
|
} sim_fpu_class;
|
|
|
|
typedef struct _sim_ufpu {
|
|
sim_fpu_class class;
|
|
int normal_exp;
|
|
int sign;
|
|
unsigned64 fraction;
|
|
union {
|
|
double d;
|
|
unsigned64 i;
|
|
} val;
|
|
} sim_ufpu;
|
|
|
|
|
|
STATIC_INLINE_SIM_FPU (unsigned64)
|
|
pack_fpu (const sim_ufpu *src, int is_double)
|
|
{
|
|
unsigned64 fraction;
|
|
unsigned64 exp;
|
|
int sign;
|
|
|
|
switch (src->class)
|
|
{
|
|
default:
|
|
/* create a NaN */
|
|
case sim_fpu_class_qnan:
|
|
case sim_fpu_class_snan:
|
|
sign = 1; /* fixme - always a qNaN */
|
|
exp = EXPMAX;
|
|
fraction = src->fraction;
|
|
break;
|
|
case sim_fpu_class_infinity:
|
|
sign = src->sign;
|
|
exp = EXPMAX;
|
|
fraction = 0;
|
|
break;
|
|
case sim_fpu_class_zero:
|
|
sign = src->sign;
|
|
exp = 0;
|
|
fraction = 0;
|
|
break;
|
|
case sim_fpu_class_number:
|
|
if (src->normal_exp < NORMAL_EXPMIN)
|
|
{
|
|
/* This number's exponent is too low to fit into the bits
|
|
available in the number, so we'll store 0 in the exponent and
|
|
shift the fraction to the right to make up for it. */
|
|
|
|
int shift = NORMAL_EXPMIN - src->normal_exp;
|
|
|
|
sign = src->sign;
|
|
exp = 0;
|
|
|
|
if (shift > (FRAC_NBITS - NGARDS))
|
|
{
|
|
/* No point shifting, since it's more that 64 out. */
|
|
fraction = 0;
|
|
}
|
|
else
|
|
{
|
|
/* Shift by the value */
|
|
fraction = src->fraction >> F_D_BITOFF;
|
|
fraction >>= shift;
|
|
fraction >>= NGARDS;
|
|
}
|
|
}
|
|
else if (src->normal_exp > EXPBIAS)
|
|
{
|
|
/* Infinity */
|
|
sign = src->sign;
|
|
exp = EXPMAX;
|
|
fraction = 0;
|
|
}
|
|
else
|
|
{
|
|
sign = src->sign;
|
|
exp = (src->normal_exp + EXPBIAS);
|
|
fraction = src->fraction >> F_D_BITOFF;
|
|
/* IF the gard bits are the all zero, but the first, then we're
|
|
half way between two numbers, choose the one which makes the
|
|
lsb of the answer 0. */
|
|
if ((fraction & GARDMASK) == GARDMSB)
|
|
{
|
|
if (fraction & (1 << NGARDS))
|
|
fraction += GARDROUND + 1;
|
|
}
|
|
else
|
|
{
|
|
/* Add a one to the guards to round up */
|
|
fraction += GARDROUND;
|
|
}
|
|
if (fraction >= IMPLICIT_2)
|
|
{
|
|
fraction >>= 1;
|
|
exp += 1;
|
|
}
|
|
fraction >>= NGARDS;
|
|
}
|
|
}
|
|
|
|
return ((sign ? SIGNBIT : 0)
|
|
| (exp << FRACBITS)
|
|
| LSMASKED64 (fraction, FRACBITS));
|
|
}
|
|
|
|
|
|
STATIC_INLINE_SIM_FPU (void)
|
|
unpack_fpu (sim_ufpu *dst, unsigned64 s, int is_double)
|
|
{
|
|
unsigned64 fraction = LSMASKED64 (s, FRACBITS);
|
|
unsigned exp = LSMASKED64 (s >> FRACBITS, EXPBITS);
|
|
|
|
dst->sign = (s & SIGNBIT) != 0;
|
|
|
|
if (exp == 0)
|
|
{
|
|
/* Hmm. Looks like 0 */
|
|
if (fraction == 0)
|
|
{
|
|
/* tastes like zero */
|
|
dst->class = sim_fpu_class_zero;
|
|
}
|
|
else
|
|
{
|
|
/* Zero exponent with non zero fraction - it's denormalized,
|
|
so there isn't a leading implicit one - we'll shift it so
|
|
it gets one. */
|
|
dst->normal_exp = exp - EXPBIAS + 1;
|
|
fraction <<= NGARDS;
|
|
|
|
dst->class = sim_fpu_class_number;
|
|
while (fraction < IMPLICIT_1)
|
|
{
|
|
fraction <<= 1;
|
|
dst->normal_exp--;
|
|
}
|
|
dst->fraction = fraction << F_D_BITOFF;
|
|
}
|
|
}
|
|
else if (exp == EXPMAX)
|
|
{
|
|
/* Huge exponent*/
|
|
if (fraction == 0)
|
|
{
|
|
/* Attached to a zero fraction - means infinity */
|
|
dst->class = sim_fpu_class_infinity;
|
|
}
|
|
else
|
|
{
|
|
/* Non zero fraction, means nan */
|
|
if (dst->sign)
|
|
{
|
|
dst->class = sim_fpu_class_snan;
|
|
}
|
|
else
|
|
{
|
|
dst->class = sim_fpu_class_qnan;
|
|
}
|
|
/* Keep the fraction part as the nan number */
|
|
dst->fraction = fraction << F_D_BITOFF;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Nothing strange about this number */
|
|
dst->normal_exp = exp - EXPBIAS;
|
|
dst->class = sim_fpu_class_number;
|
|
dst->fraction = ((fraction << NGARDS) | IMPLICIT_1) << F_D_BITOFF;
|
|
}
|
|
|
|
/* sanity checks */
|
|
dst->val.i = -1;
|
|
dst->val.i = pack_fpu (dst, 1);
|
|
{
|
|
if (is_double)
|
|
{
|
|
ASSERT (dst->val.i == s);
|
|
}
|
|
else
|
|
{
|
|
unsigned32 val = pack_fpu (dst, 0);
|
|
unsigned32 org = s;
|
|
ASSERT (val == org);
|
|
}
|
|
}
|
|
}
|
|
|
|
STATIC_INLINE_SIM_FPU (sim_fpu)
|
|
ufpu2fpu (const sim_ufpu *d)
|
|
{
|
|
sim_fpu ans;
|
|
ans.val.i = pack_fpu (d, 1);
|
|
return ans;
|
|
}
|
|
|
|
|
|
STATIC_INLINE_SIM_FPU (sim_ufpu)
|
|
fpu2ufpu (const sim_fpu *d)
|
|
{
|
|
sim_ufpu ans;
|
|
unpack_fpu (&ans, d->val.i, 1);
|
|
return ans;
|
|
}
|
|
|
|
#if 0
|
|
STATIC_INLINE_SIM_FPU (int)
|
|
is_ufpu_number (const sim_ufpu *d)
|
|
{
|
|
switch (d->class)
|
|
{
|
|
case sim_fpu_class_zero:
|
|
case sim_fpu_class_number:
|
|
return 1;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
|
|
STATIC_INLINE_SIM_FPU (int)
|
|
is_ufpu_nan (const sim_ufpu *d)
|
|
{
|
|
switch (d->class)
|
|
{
|
|
case sim_fpu_class_qnan:
|
|
case sim_fpu_class_snan:
|
|
return 1;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
|
|
STATIC_INLINE_SIM_FPU (int)
|
|
is_ufpu_zero (const sim_ufpu *d)
|
|
{
|
|
switch (d->class)
|
|
{
|
|
case sim_fpu_class_zero:
|
|
return 1;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
|
|
STATIC_INLINE_SIM_FPU (int)
|
|
is_ufpu_inf (const sim_ufpu *d)
|
|
{
|
|
switch (d->class)
|
|
{
|
|
case sim_fpu_class_infinity:
|
|
return 1;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
|
|
STATIC_INLINE_SIM_FPU (sim_fpu)
|
|
fpu_nan (void)
|
|
{
|
|
sim_ufpu tmp;
|
|
tmp.class = sim_fpu_class_snan;
|
|
tmp.fraction = 0;
|
|
tmp.sign = 1;
|
|
tmp.normal_exp = 0;
|
|
return ufpu2fpu (&tmp);
|
|
}
|
|
|
|
|
|
STATIC_INLINE_SIM_FPU (signed64)
|
|
fpu2i (sim_fpu s, int is_double)
|
|
{
|
|
sim_ufpu a = fpu2ufpu (&s);
|
|
unsigned64 tmp;
|
|
if (is_ufpu_zero (&a))
|
|
return 0;
|
|
if (is_ufpu_nan (&a))
|
|
return 0;
|
|
/* get reasonable MAX_SI_INT... */
|
|
if (is_ufpu_inf (&a))
|
|
return a.sign ? MAX_SI_INT : (-MAX_SI_INT)-1;
|
|
/* it is a number, but a small one */
|
|
if (a.normal_exp < 0)
|
|
return 0;
|
|
if (a.normal_exp > (FRAC_NBITS - 2))
|
|
return a.sign ? (-MAX_SI_INT)-1 : MAX_SI_INT;
|
|
if (a.normal_exp > (FRACBITS + NGARDS + F_D_BITOFF))
|
|
tmp = (a.fraction << (a.normal_exp - (FRACBITS + NGARDS)));
|
|
else
|
|
tmp = (a.fraction >> ((FRACBITS + NGARDS + F_D_BITOFF) - a.normal_exp));
|
|
return a.sign ? (-tmp) : (tmp);
|
|
}
|
|
|
|
STATIC_INLINE_SIM_FPU (unsigned64)
|
|
fpu2u (sim_fpu s, int is_double)
|
|
{
|
|
sim_ufpu a = fpu2ufpu (&s);
|
|
unsigned64 tmp;
|
|
if (is_ufpu_zero (&a))
|
|
return 0;
|
|
if (is_ufpu_nan (&a))
|
|
return 0;
|
|
/* get reasonable MAX_USI_INT... */
|
|
if (is_ufpu_inf (&a))
|
|
return a.sign ? MAX_USI_INT : 0;
|
|
/* it is a negative number */
|
|
if (a.sign)
|
|
return 0;
|
|
/* it is a number, but a small one */
|
|
if (a.normal_exp < 0)
|
|
return 0;
|
|
if (a.normal_exp > (FRAC_NBITS - 1))
|
|
return MAX_USI_INT;
|
|
if (a.normal_exp > (FRACBITS + NGARDS + F_D_BITOFF))
|
|
tmp = (a.fraction << (a.normal_exp - (FRACBITS + NGARDS + F_D_BITOFF)));
|
|
else
|
|
tmp = (a.fraction >> ((FRACBITS + NGARDS + F_D_BITOFF) - a.normal_exp));
|
|
return tmp;
|
|
}
|
|
|
|
|
|
/* register <-> sim_fpu */
|
|
|
|
INLINE_SIM_FPU (sim_fpu)
|
|
sim_fpu_32to (unsigned32 s)
|
|
{
|
|
sim_ufpu tmp;
|
|
unpack_fpu (&tmp, s, 0);
|
|
return ufpu2fpu (&tmp);
|
|
}
|
|
|
|
|
|
INLINE_SIM_FPU (sim_fpu)
|
|
sim_fpu_64to (unsigned64 s)
|
|
{
|
|
sim_fpu ans;
|
|
ans.val.i = s;
|
|
return ans;
|
|
}
|
|
|
|
|
|
INLINE_SIM_FPU (unsigned32)
|
|
sim_fpu_to32 (sim_fpu l)
|
|
{
|
|
/* convert to single safely */
|
|
sim_ufpu tmp = fpu2ufpu (&l);
|
|
return pack_fpu (&tmp, 0);
|
|
}
|
|
|
|
|
|
INLINE_SIM_FPU (unsigned64)
|
|
sim_fpu_to64 (sim_fpu s)
|
|
{
|
|
return s.val.i;
|
|
}
|
|
|
|
|
|
/* Arithmetic ops */
|
|
|
|
INLINE_SIM_FPU (sim_fpu)
|
|
sim_fpu_add (sim_fpu l,
|
|
sim_fpu r)
|
|
{
|
|
sim_fpu ans;
|
|
ans.val.d = l.val.d + r.val.d;
|
|
return ans;
|
|
}
|
|
|
|
|
|
INLINE_SIM_FPU (sim_fpu)
|
|
sim_fpu_sub (sim_fpu l,
|
|
sim_fpu r)
|
|
{
|
|
sim_fpu ans;
|
|
ans.val.d = l.val.d - r.val.d;
|
|
return ans;
|
|
}
|
|
|
|
|
|
INLINE_SIM_FPU (sim_fpu)
|
|
sim_fpu_mul (sim_fpu l,
|
|
sim_fpu r)
|
|
{
|
|
sim_fpu ans;
|
|
ans.val.d = l.val.d * r.val.d;
|
|
return ans;
|
|
}
|
|
|
|
|
|
INLINE_SIM_FPU (sim_fpu)
|
|
sim_fpu_div (sim_fpu l,
|
|
sim_fpu r)
|
|
{
|
|
const int is_double = 1;
|
|
sim_ufpu a = fpu2ufpu (&l);
|
|
sim_ufpu b = fpu2ufpu (&r);
|
|
unsigned64 bit;
|
|
unsigned64 numerator;
|
|
unsigned64 denominator;
|
|
unsigned64 quotient;
|
|
|
|
if (is_ufpu_nan (&a))
|
|
{
|
|
return ufpu2fpu (&a);
|
|
}
|
|
if (is_ufpu_nan (&b))
|
|
{
|
|
return ufpu2fpu (&b);
|
|
}
|
|
if (is_ufpu_inf (&a) || is_ufpu_zero (&a))
|
|
{
|
|
if (a.class == b.class)
|
|
return fpu_nan ();
|
|
return l;
|
|
}
|
|
a.sign = a.sign ^ b.sign;
|
|
|
|
if (is_ufpu_inf (&b))
|
|
{
|
|
a.fraction = 0;
|
|
a.normal_exp = 0;
|
|
return ufpu2fpu (&a);
|
|
}
|
|
if (is_ufpu_zero (&b))
|
|
{
|
|
a.class = sim_fpu_class_infinity;
|
|
return ufpu2fpu (&a);
|
|
}
|
|
|
|
/* Calculate the mantissa by multiplying both 64bit numbers to get a
|
|
128 bit number */
|
|
{
|
|
/* quotient =
|
|
( numerator / denominator) * 2^(numerator exponent - denominator exponent)
|
|
*/
|
|
|
|
a.normal_exp = a.normal_exp - b.normal_exp;
|
|
numerator = a.fraction;
|
|
denominator = b.fraction;
|
|
|
|
if (numerator < denominator)
|
|
{
|
|
/* Fraction will be less than 1.0 */
|
|
numerator *= 2;
|
|
a.normal_exp--;
|
|
}
|
|
bit = IMPLICIT_1;
|
|
quotient = 0;
|
|
/* ??? Does divide one bit at a time. Optimize. */
|
|
while (bit)
|
|
{
|
|
if (numerator >= denominator)
|
|
{
|
|
quotient |= bit;
|
|
numerator -= denominator;
|
|
}
|
|
bit >>= 1;
|
|
numerator *= 2;
|
|
}
|
|
|
|
if ((quotient & GARDMASK) == GARDMSB)
|
|
{
|
|
if (quotient & (1 << NGARDS))
|
|
{
|
|
/* half way, so round to even */
|
|
quotient += GARDROUND + 1;
|
|
}
|
|
else if (numerator)
|
|
{
|
|
/* but we really weren't half way, more bits exist */
|
|
quotient += GARDROUND + 1;
|
|
}
|
|
}
|
|
|
|
a.fraction = quotient;
|
|
return ufpu2fpu (&a);
|
|
}
|
|
}
|
|
|
|
|
|
INLINE_SIM_FPU (sim_fpu)
|
|
sim_fpu_inv (sim_fpu r)
|
|
{
|
|
sim_fpu ans;
|
|
ans.val.d = 1 / r.val.d;
|
|
return ans;
|
|
}
|
|
|
|
|
|
INLINE_SIM_FPU (sim_fpu)
|
|
sim_fpu_sqrt (sim_fpu r)
|
|
{
|
|
sim_fpu ans;
|
|
ans.val.d = sqrt (r.val.d);
|
|
return ans;
|
|
}
|
|
|
|
|
|
/* int/long -> sim_fpu */
|
|
|
|
INLINE_SIM_FPU (sim_fpu)
|
|
sim_fpu_i32to (signed32 s)
|
|
{
|
|
sim_fpu ans;
|
|
ans.val.d = s;
|
|
return ans;
|
|
}
|
|
|
|
|
|
INLINE_SIM_FPU (signed32)
|
|
sim_fpu_to32i (sim_fpu s)
|
|
{
|
|
return fpu2i (s, 0);
|
|
}
|
|
|
|
|
|
INLINE_SIM_FPU (sim_fpu)
|
|
sim_fpu_u32to (unsigned32 s)
|
|
{
|
|
sim_fpu ans;
|
|
ans.val.d = s;
|
|
return ans;
|
|
}
|
|
|
|
|
|
INLINE_SIM_FPU (unsigned32)
|
|
sim_fpu_to32u (sim_fpu s)
|
|
{
|
|
return fpu2u (s, 0);
|
|
}
|
|
|
|
|
|
INLINE_SIM_FPU (sim_fpu)
|
|
sim_fpu_i64to (signed64 s)
|
|
{
|
|
sim_fpu ans;
|
|
ans.val.d = s;
|
|
return ans;
|
|
}
|
|
|
|
|
|
INLINE_SIM_FPU (signed64)
|
|
sim_fpu_to64i (sim_fpu s)
|
|
{
|
|
return fpu2i (s, 1);
|
|
}
|
|
|
|
|
|
INLINE_SIM_FPU (sim_fpu)
|
|
sim_fpu_u64to (unsigned64 s)
|
|
{
|
|
sim_fpu ans;
|
|
ans.val.d = s;
|
|
return ans;
|
|
}
|
|
|
|
|
|
INLINE_SIM_FPU (unsigned64)
|
|
sim_fpu_to64u (sim_fpu s)
|
|
{
|
|
return fpu2u (s, 1);
|
|
}
|
|
|
|
|
|
/* sim_fpu -> host format */
|
|
|
|
INLINE_SIM_FPU (float)
|
|
sim_fpu_2f (sim_fpu f)
|
|
{
|
|
return f.val.d;
|
|
}
|
|
|
|
|
|
INLINE_SIM_FPU (double)
|
|
sim_fpu_2d (sim_fpu s)
|
|
{
|
|
return s.val.d;
|
|
}
|
|
|
|
|
|
INLINE_SIM_FPU (sim_fpu)
|
|
sim_fpu_f2 (float f)
|
|
{
|
|
sim_fpu ans;
|
|
ans.val.d = f;
|
|
return ans;
|
|
}
|
|
|
|
|
|
INLINE_SIM_FPU (sim_fpu)
|
|
sim_fpu_d2 (double d)
|
|
{
|
|
sim_fpu ans;
|
|
ans.val.d = d;
|
|
return ans;
|
|
}
|
|
|
|
|
|
/* General */
|
|
|
|
INLINE_SIM_FPU (int)
|
|
sim_fpu_is_nan (sim_fpu d)
|
|
{
|
|
sim_ufpu tmp = fpu2ufpu (&d);
|
|
return is_ufpu_nan (&tmp);
|
|
}
|
|
|
|
|
|
/* Compare operators */
|
|
|
|
INLINE_SIM_FPU (int)
|
|
sim_fpu_is_lt (sim_fpu l,
|
|
sim_fpu r)
|
|
{
|
|
sim_ufpu tl = fpu2ufpu (&l);
|
|
sim_ufpu tr = fpu2ufpu (&r);
|
|
if (!is_ufpu_nan (&tl) && !is_ufpu_nan (&tr))
|
|
return (l.val.d < r.val.d);
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
INLINE_SIM_FPU (int)
|
|
sim_fpu_is_le (sim_fpu l,
|
|
sim_fpu r)
|
|
{
|
|
sim_ufpu tl = fpu2ufpu (&l);
|
|
sim_ufpu tr = fpu2ufpu (&r);
|
|
if (!is_ufpu_nan (&tl) && !is_ufpu_nan (&tr))
|
|
return (l.val.d <= r.val.d);
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
INLINE_SIM_FPU (int)
|
|
sim_fpu_is_eq (sim_fpu l,
|
|
sim_fpu r)
|
|
{
|
|
sim_ufpu tl = fpu2ufpu (&l);
|
|
sim_ufpu tr = fpu2ufpu (&r);
|
|
if (!is_ufpu_nan (&tl) && !is_ufpu_nan (&tr))
|
|
return (l.val.d == r.val.d);
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
INLINE_SIM_FPU (int)
|
|
sim_fpu_is_ne (sim_fpu l,
|
|
sim_fpu r)
|
|
{
|
|
sim_ufpu tl = fpu2ufpu (&l);
|
|
sim_ufpu tr = fpu2ufpu (&r);
|
|
if (!is_ufpu_nan (&tl) && !is_ufpu_nan (&tr))
|
|
return (l.val.d != r.val.d);
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
INLINE_SIM_FPU (int)
|
|
sim_fpu_is_ge (sim_fpu l,
|
|
sim_fpu r)
|
|
{
|
|
sim_ufpu tl = fpu2ufpu (&l);
|
|
sim_ufpu tr = fpu2ufpu (&r);
|
|
if (!is_ufpu_nan (&tl) && !is_ufpu_nan (&tr))
|
|
return (l.val.d >= r.val.d);
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
INLINE_SIM_FPU (int)
|
|
sim_fpu_is_gt (sim_fpu l,
|
|
sim_fpu r)
|
|
{
|
|
sim_ufpu tl = fpu2ufpu (&l);
|
|
sim_ufpu tr = fpu2ufpu (&r);
|
|
if (!is_ufpu_nan (&tl) && !is_ufpu_nan (&tr))
|
|
return (l.val.d > r.val.d);
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
#endif
|