darling-gdb/gdb/tm-merlin.h
John Gilmore 7d9884b927 * defs.h: Incorporate param.h. All users changed.
* param-no-tm.h:  Change users to define TM_FILE_OVERRIDE instead.
* param.h, param-no-tm.h:  Removed.
* Update copyrights in all changed files.
* dbxread.c, dwarfread.c, inflow.c, infrun.c, m2-exp.y, putenv.c,
solib.c, symtab.h, tm-umax.h, valprint.c:  Lint.
* tm-convex.h, tm-hp300hpux.h, tm-merlin.h, tm-sparc.h,
xm-merlin.h:  Avoid host include files in target descriptions.
* getpagesize.h:  Removed, libiberty copes now.
1991-11-21 18:42:05 +00:00

351 lines
12 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Definitions to target GDB to a merlin under utek 2.1
Copyright (C) 1986, 1987, 1989, 1991 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
#define TARGET_BYTE_ORDER LITTLE_ENDIAN
/* Define this if the C compiler puts an underscore at the front
of external names before giving them to the linker. */
#define NAMES_HAVE_UNDERSCORE
/* Offset from address of function to start of its code.
Zero on most machines. */
#define FUNCTION_START_OFFSET 0
/* Advance PC across any function entry prologue instructions
to reach some "real" code. */
#define SKIP_PROLOGUE(pc) \
{ register int op = read_memory_integer (pc, 1); \
if (op == 0x82) \
{ op = read_memory_integer (pc+2,1); \
if ((op & 0x80) == 0) pc += 3; \
else if ((op & 0xc0) == 0x80) pc += 4; \
else pc += 6; \
}}
/* Immediately after a function call, return the saved pc.
Can't always go through the frames for this because on some machines
the new frame is not set up until the new function executes
some instructions. */
#define SAVED_PC_AFTER_CALL(frame) \
read_memory_integer (read_register (SP_REGNUM), 4)
/* Address of end of stack space. */
#define STACK_END_ADDR (0x800000)
/* Stack grows downward. */
#define INNER_THAN <
/* Sequence of bytes for breakpoint instruction. */
#define BREAKPOINT {0xf2}
/* Amount PC must be decremented by after a breakpoint.
This is often the number of bytes in BREAKPOINT
but not always. */
#define DECR_PC_AFTER_BREAK 0
/* Nonzero if instruction at PC is a return instruction. */
#define ABOUT_TO_RETURN(pc) (read_memory_integer (pc, 1) == 0x12)
/* Return 1 if P points to an invalid floating point value. */
#define INVALID_FLOAT(p, len) 0
/* Define this to say that the "svc" insn is followed by
codes in memory saying which kind of system call it is. */
#define NS32K_SVC_IMMED_OPERANDS
/* Say how long (ordinary) registers are. */
#define REGISTER_TYPE long
/* Number of machine registers */
#define NUM_REGS 25
#define NUM_GENERAL_REGS 8
/* Initializer for an array of names of registers.
There should be NUM_REGS strings in this initializer. */
#define REGISTER_NAMES {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
"pc", "sp", "fp", "ps", \
"fsr", \
"f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
"l0", "l1", "l2", "l3", "l4", \
}
/* Register numbers of various important registers.
Note that some of these values are "real" register numbers,
and correspond to the general registers of the machine,
and some are "phony" register numbers which are too large
to be actual register numbers as far as the user is concerned
but do serve to get the desired values when passed to read_register. */
#define AP_REGNUM FP_REGNUM
#define FP_REGNUM 10 /* Contains address of executing stack frame */
#define SP_REGNUM 9 /* Contains address of top of stack */
#define PC_REGNUM 8 /* Contains program counter */
#define PS_REGNUM 11 /* Contains processor status */
#define FPS_REGNUM 12 /* Floating point status register */
#define FP0_REGNUM 13 /* Floating point register 0 */
#define LP0_REGNUM 21 /* Double register 0 (same as FP0) */
/* Total amount of space needed to store our copies of the machine's
register state, the array `registers'. */
#define REGISTER_BYTES ((NUM_REGS - 4) * sizeof (int) + 4 * sizeof (double))
/* Index within `registers' of the first byte of the space for
register N. */
#define REGISTER_BYTE(N) ((N) >= LP0_REGNUM ? \
LP0_REGNUM * 4 + ((N) - LP0_REGNUM) * 8 : (N) * 4)
/* Number of bytes of storage in the actual machine representation
for register N. On the 32000, all regs are 4 bytes
except for the doubled floating registers. */
#define REGISTER_RAW_SIZE(N) ((N) >= LP0_REGNUM ? 8 : 4)
/* Number of bytes of storage in the program's representation
for register N. On the 32000, all regs are 4 bytes
except for the doubled floating registers. */
#define REGISTER_VIRTUAL_SIZE(N) ((N) >= LP0_REGNUM ? 8 : 4)
/* Largest value REGISTER_RAW_SIZE can have. */
#define MAX_REGISTER_RAW_SIZE 8
/* Largest value REGISTER_VIRTUAL_SIZE can have. */
#define MAX_REGISTER_VIRTUAL_SIZE 8
/* Nonzero if register N requires conversion
from raw format to virtual format. */
#define REGISTER_CONVERTIBLE(N) 0
/* Convert data from raw format for register REGNUM
to virtual format for register REGNUM. */
#define REGISTER_CONVERT_TO_VIRTUAL(REGNUM,FROM,TO) \
bcopy ((FROM), (TO), REGISTER_VIRTUAL_SIZE(REGNUM));
/* Convert data from virtual format for register REGNUM
to raw format for register REGNUM. */
#define REGISTER_CONVERT_TO_RAW(REGNUM,FROM,TO) \
bcopy ((FROM), (TO), REGISTER_VIRTUAL_SIZE(REGNUM));
/* Return the GDB type object for the "standard" data type
of data in register N. */
#define REGISTER_VIRTUAL_TYPE(N) \
((N) >= FP0_REGNUM ? \
((N) >= LP0_REGNUM ? \
builtin_type_double \
: builtin_type_float) \
: builtin_type_int)
/* Store the address of the place in which to copy the structure the
subroutine will return. This is called from call_function.
On this machine this is a no-op, as gcc doesn't run on it yet.
This calling convention is not used. */
#define STORE_STRUCT_RETURN(ADDR, SP)
/* Extract from an array REGBUF containing the (raw) register state
a function return value of type TYPE, and copy that, in virtual format,
into VALBUF. */
#define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
bcopy (REGBUF, VALBUF, TYPE_LENGTH (TYPE))
/* Write into appropriate registers a function return value
of type TYPE, given in virtual format. */
#define STORE_RETURN_VALUE(TYPE,VALBUF) \
write_register_bytes (0, VALBUF, TYPE_LENGTH (TYPE))
/* Extract from an array REGBUF containing the (raw) register state
the address in which a function should return its structure value,
as a CORE_ADDR (or an expression that can be used as one). */
#define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) (*(int *)(REGBUF))
/* Describe the pointer in each stack frame to the previous stack frame
(its caller). */
/* FRAME_CHAIN takes a frame's nominal address
and produces the frame's chain-pointer.
However, if FRAME_CHAIN_VALID returns zero,
it means the given frame is the outermost one and has no caller. */
/* In the case of the Merlin, the frame's nominal address is the FP value,
and at that address is saved previous FP value as a 4-byte word. */
#define FRAME_CHAIN(thisframe) \
(outside_startup_file ((thisframe)->pc) ? \
read_memory_integer ((thisframe)->frame, 4) :\
0)
#define FRAME_CHAIN_VALID(chain, thisframe) \
(chain != 0 && (outside_startup_file (FRAME_SAVED_PC (thisframe))))
/* Define other aspects of the stack frame. */
#define FRAME_SAVED_PC(FRAME) (read_memory_integer ((FRAME)->frame + 4, 4))
/* compute base of arguments */
#define FRAME_ARGS_ADDRESS(fi) ((fi)->frame)
#define FRAME_LOCALS_ADDRESS(fi) ((fi)->frame)
/* Return number of args passed to a frame.
Can return -1, meaning no way to tell. */
#define FRAME_NUM_ARGS(numargs, fi) \
{ CORE_ADDR pc; \
int insn; \
int addr_mode; \
int width; \
\
pc = FRAME_SAVED_PC (fi); \
insn = read_memory_integer (pc,2); \
addr_mode = (insn >> 11) & 0x1f; \
insn = insn & 0x7ff; \
if ((insn & 0x7fc) == 0x57c \
&& addr_mode == 0x14) /* immediate */ \
{ if (insn == 0x57c) /* adjspb */ \
width = 1; \
else if (insn == 0x57d) /* adjspw */ \
width = 2; \
else if (insn == 0x57f) /* adjspd */ \
width = 4; \
numargs = read_memory_integer (pc+2,width); \
if (width > 1) \
flip_bytes (&numargs, width); \
numargs = - sign_extend (numargs, width*8) / 4; } \
else numargs = -1; \
}
/* Return number of bytes at start of arglist that are not really args. */
#define FRAME_ARGS_SKIP 8
/* Put here the code to store, into a struct frame_saved_regs,
the addresses of the saved registers of frame described by FRAME_INFO.
This includes special registers such as pc and fp saved in special
ways in the stack frame. sp is even more special:
the address we return for it IS the sp for the next frame. */
#define FRAME_FIND_SAVED_REGS(frame_info, frame_saved_regs) \
{ int regmask,regnum; \
int localcount; \
CORE_ADDR enter_addr; \
CORE_ADDR next_addr; \
\
enter_addr = get_pc_function_start ((frame_info)->pc); \
regmask = read_memory_integer (enter_addr+1, 1); \
localcount = ns32k_localcount (enter_addr); \
next_addr = (frame_info)->frame + localcount; \
for (regnum = 0; regnum < 8; regnum++, regmask >>= 1) \
(frame_saved_regs).regs[regnum] \
= (regmask & 1) ? (next_addr -= 4) : 0; \
(frame_saved_regs).regs[SP_REGNUM] = (frame_info)->frame + 4; \
(frame_saved_regs).regs[PC_REGNUM] = (frame_info)->frame + 4; \
(frame_saved_regs).regs[FP_REGNUM] \
= read_memory_integer ((frame_info)->frame, 4); }
/* Things needed for making the inferior call functions. */
/* Push an empty stack frame, to record the current PC, etc. */
#define PUSH_DUMMY_FRAME \
{ register CORE_ADDR sp = read_register (SP_REGNUM); \
register int regnum; \
sp = push_word (sp, read_register (PC_REGNUM)); \
sp = push_word (sp, read_register (FP_REGNUM)); \
write_register (FP_REGNUM, sp); \
for (regnum = 0; regnum < 8; regnum++) \
sp = push_word (sp, read_register (regnum)); \
write_register (SP_REGNUM, sp); \
}
/* Discard from the stack the innermost frame, restoring all registers. */
#define POP_FRAME \
{ register FRAME frame = get_current_frame (); \
register CORE_ADDR fp; \
register int regnum; \
struct frame_saved_regs fsr; \
struct frame_info *fi; \
fi = get_frame_info (frame); \
fp = fi->frame; \
get_frame_saved_regs (fi, &fsr); \
for (regnum = 0; regnum < 8; regnum++) \
if (fsr.regs[regnum]) \
write_register (regnum, read_memory_integer (fsr.regs[regnum], 4)); \
write_register (FP_REGNUM, read_memory_integer (fp, 4)); \
write_register (PC_REGNUM, read_memory_integer (fp + 4, 4)); \
write_register (SP_REGNUM, fp + 8); \
flush_cached_frames (); \
set_current_frame (create_new_frame (read_register (FP_REGNUM),\
read_pc ())); \
}
/* This sequence of words is the instructions
enter 0xff,0 82 ff 00
jsr @0x00010203 7f ae c0 01 02 03
adjspd 0x69696969 7f a5 01 02 03 04
bpt f2
Note this is 16 bytes. */
#define CALL_DUMMY { 0x7f00ff82, 0x0201c0ae, 0x01a57f03, 0xf2040302 }
#define CALL_DUMMY_START_OFFSET 3
#define CALL_DUMMY_LENGTH 16
#define CALL_DUMMY_ADDR 5
#define CALL_DUMMY_NARGS 11
/* Insert the specified number of args and function address
into a call sequence of the above form stored at DUMMYNAME. */
#define FIX_CALL_DUMMY(dummyname, pc, fun, nargs, args, type, gcc_p) \
{ int flipped = fun | 0xc0000000; \
flip_bytes (&flipped, 4); \
*((int *) (((char *) dummyname)+CALL_DUMMY_ADDR)) = flipped; \
flipped = - nargs * 4; \
flip_bytes (&flipped, 4); \
*((int *) (((char *) dummyname)+CALL_DUMMY_NARGS)) = flipped; \
}