mirror of
https://github.com/darlinghq/darling-gdb.git
synced 2024-12-15 08:08:55 +00:00
409f64ae05
* blockframe.c: ...Remove old-style CALL_DUMMY code... * h8300-tdep.c: * config/h8300/tm-h8300.h: start-sanitize-m32r * m32r-tdep.c: * config/m32r/tm-m32r.h: end-sanitize-m32r * sh-tdep.c: * config/sh/tm-sh.h: start-sanitize-v850 * v850-tdep.c: * config/v850/tm-v850.h: end-sanitize-v850
897 lines
24 KiB
C
897 lines
24 KiB
C
/* Target-machine dependent code for Hitachi H8/300, for GDB.
|
|
Copyright (C) 1988, 1990, 1991 Free Software Foundation, Inc.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
|
|
|
|
/*
|
|
Contributed by Steve Chamberlain
|
|
sac@cygnus.com
|
|
*/
|
|
|
|
#include "defs.h"
|
|
#include "frame.h"
|
|
#include "obstack.h"
|
|
#include "symtab.h"
|
|
#include "dis-asm.h"
|
|
#include "gdbcmd.h"
|
|
#include "gdbtypes.h"
|
|
#include "gdbcore.h"
|
|
#include "gdb_string.h"
|
|
#include "value.h"
|
|
|
|
extern int h8300hmode, h8300smode;
|
|
|
|
#undef NUM_REGS
|
|
#define NUM_REGS 11
|
|
|
|
#define UNSIGNED_SHORT(X) ((X) & 0xffff)
|
|
|
|
#define IS_PUSH(x) ((x & 0xfff0)==0x6df0)
|
|
#define IS_PUSH_FP(x) (x == 0x6df6)
|
|
#define IS_MOVE_FP(x) (x == 0x0d76 || x == 0x0ff6)
|
|
#define IS_MOV_SP_FP(x) (x == 0x0d76 || x == 0x0ff6)
|
|
#define IS_SUB2_SP(x) (x==0x1b87)
|
|
#define IS_SUB4_SP(x) (x==0x1b97)
|
|
#define IS_SUBL_SP(x) (x==0x7a37)
|
|
#define IS_MOVK_R5(x) (x==0x7905)
|
|
#define IS_SUB_R5SP(x) (x==0x1957)
|
|
|
|
/* Local function declarations. */
|
|
|
|
static CORE_ADDR examine_prologue ();
|
|
static void set_machine_hook PARAMS ((char *filename));
|
|
|
|
void h8300_frame_find_saved_regs ();
|
|
|
|
CORE_ADDR
|
|
h8300_skip_prologue (start_pc)
|
|
CORE_ADDR start_pc;
|
|
{
|
|
short int w;
|
|
int adjust = 0;
|
|
|
|
/* Skip past all push and stm insns. */
|
|
while (1)
|
|
{
|
|
w = read_memory_unsigned_integer (start_pc, 2);
|
|
/* First look for push insns. */
|
|
if (w == 0x0100 || w == 0x0110 || w == 0x0120 || w == 0x0130)
|
|
{
|
|
w = read_memory_unsigned_integer (start_pc + 2, 2);
|
|
adjust = 2;
|
|
}
|
|
|
|
if (IS_PUSH (w))
|
|
{
|
|
start_pc += 2 + adjust;
|
|
w = read_memory_unsigned_integer (start_pc, 2);
|
|
continue;
|
|
}
|
|
adjust = 0;
|
|
break;
|
|
}
|
|
|
|
/* Skip past a move to FP, either word or long sized */
|
|
w = read_memory_unsigned_integer (start_pc, 2);
|
|
if (w == 0x0100)
|
|
{
|
|
w = read_memory_unsigned_integer (start_pc + 2, 2);
|
|
adjust += 2;
|
|
}
|
|
|
|
if (IS_MOVE_FP (w))
|
|
{
|
|
start_pc += 2 + adjust;
|
|
w = read_memory_unsigned_integer (start_pc, 2);
|
|
}
|
|
|
|
/* Check for loading either a word constant into r5;
|
|
long versions are handled by the SUBL_SP below. */
|
|
if (IS_MOVK_R5 (w))
|
|
{
|
|
start_pc += 2;
|
|
w = read_memory_unsigned_integer (start_pc, 2);
|
|
}
|
|
|
|
/* Now check for subtracting r5 from sp, word sized only. */
|
|
if (IS_SUB_R5SP (w))
|
|
{
|
|
start_pc += 2 + adjust;
|
|
w = read_memory_unsigned_integer (start_pc, 2);
|
|
}
|
|
|
|
/* Check for subs #2 and subs #4. */
|
|
while (IS_SUB2_SP (w) || IS_SUB4_SP (w))
|
|
{
|
|
start_pc += 2 + adjust;
|
|
w = read_memory_unsigned_integer (start_pc, 2);
|
|
}
|
|
|
|
/* Check for a 32bit subtract. */
|
|
if (IS_SUBL_SP (w))
|
|
start_pc += 6 + adjust;
|
|
|
|
return start_pc;
|
|
}
|
|
|
|
int
|
|
gdb_print_insn_h8300 (memaddr, info)
|
|
bfd_vma memaddr;
|
|
disassemble_info *info;
|
|
{
|
|
if (h8300smode)
|
|
return print_insn_h8300s (memaddr, info);
|
|
else if (h8300hmode)
|
|
return print_insn_h8300h (memaddr, info);
|
|
else
|
|
return print_insn_h8300 (memaddr, info);
|
|
}
|
|
|
|
/* Given a GDB frame, determine the address of the calling function's frame.
|
|
This will be used to create a new GDB frame struct, and then
|
|
INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
|
|
|
|
For us, the frame address is its stack pointer value, so we look up
|
|
the function prologue to determine the caller's sp value, and return it. */
|
|
|
|
CORE_ADDR
|
|
h8300_frame_chain (thisframe)
|
|
struct frame_info *thisframe;
|
|
{
|
|
if (PC_IN_CALL_DUMMY(thisframe->pc, thisframe->frame, thisframe->frame))
|
|
{ /* initialize the from_pc now */
|
|
thisframe->from_pc = generic_read_register_dummy (thisframe->pc,
|
|
thisframe->frame,
|
|
PC_REGNUM);
|
|
return thisframe->frame;
|
|
}
|
|
h8300_frame_find_saved_regs (thisframe, (struct frame_saved_regs *) 0);
|
|
return thisframe->fsr->regs[SP_REGNUM];
|
|
}
|
|
|
|
/* Put here the code to store, into a struct frame_saved_regs,
|
|
the addresses of the saved registers of frame described by FRAME_INFO.
|
|
This includes special registers such as pc and fp saved in special
|
|
ways in the stack frame. sp is even more special:
|
|
the address we return for it IS the sp for the next frame.
|
|
|
|
We cache the result of doing this in the frame_cache_obstack, since
|
|
it is fairly expensive. */
|
|
|
|
void
|
|
h8300_frame_find_saved_regs (fi, fsr)
|
|
struct frame_info *fi;
|
|
struct frame_saved_regs *fsr;
|
|
{
|
|
register struct frame_saved_regs *cache_fsr;
|
|
extern struct obstack frame_cache_obstack;
|
|
CORE_ADDR ip;
|
|
struct symtab_and_line sal;
|
|
CORE_ADDR limit;
|
|
|
|
if (!fi->fsr)
|
|
{
|
|
cache_fsr = (struct frame_saved_regs *)
|
|
obstack_alloc (&frame_cache_obstack,
|
|
sizeof (struct frame_saved_regs));
|
|
memset (cache_fsr, '\0', sizeof (struct frame_saved_regs));
|
|
|
|
fi->fsr = cache_fsr;
|
|
|
|
if (PC_IN_CALL_DUMMY(fi->pc, fi->frame, fi->frame))
|
|
{ /* no more to do. */
|
|
if (fsr)
|
|
*fsr = *fi->fsr;
|
|
return;
|
|
}
|
|
/* Find the start and end of the function prologue. If the PC
|
|
is in the function prologue, we only consider the part that
|
|
has executed already. */
|
|
|
|
ip = get_pc_function_start (fi->pc);
|
|
sal = find_pc_line (ip, 0);
|
|
limit = (sal.end && sal.end < fi->pc) ? sal.end : fi->pc;
|
|
|
|
/* This will fill in fields in *fi as well as in cache_fsr. */
|
|
examine_prologue (ip, limit, fi->frame, cache_fsr, fi);
|
|
}
|
|
|
|
if (fsr)
|
|
*fsr = *fi->fsr;
|
|
}
|
|
|
|
/* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or
|
|
is not the address of a valid instruction, the address of the next
|
|
instruction beyond ADDR otherwise. *PWORD1 receives the first word
|
|
of the instruction.*/
|
|
|
|
CORE_ADDR
|
|
NEXT_PROLOGUE_INSN (addr, lim, pword1)
|
|
CORE_ADDR addr;
|
|
CORE_ADDR lim;
|
|
INSN_WORD *pword1;
|
|
{
|
|
char buf[2];
|
|
if (addr < lim + 8)
|
|
{
|
|
read_memory (addr, buf, 2);
|
|
*pword1 = extract_signed_integer (buf, 2);
|
|
|
|
return addr + 2;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Examine the prologue of a function. `ip' points to the first instruction.
|
|
`limit' is the limit of the prologue (e.g. the addr of the first
|
|
linenumber, or perhaps the program counter if we're stepping through).
|
|
`frame_sp' is the stack pointer value in use in this frame.
|
|
`fsr' is a pointer to a frame_saved_regs structure into which we put
|
|
info about the registers saved by this frame.
|
|
`fi' is a struct frame_info pointer; we fill in various fields in it
|
|
to reflect the offsets of the arg pointer and the locals pointer. */
|
|
|
|
static CORE_ADDR
|
|
examine_prologue (ip, limit, after_prolog_fp, fsr, fi)
|
|
register CORE_ADDR ip;
|
|
register CORE_ADDR limit;
|
|
CORE_ADDR after_prolog_fp;
|
|
struct frame_saved_regs *fsr;
|
|
struct frame_info *fi;
|
|
{
|
|
register CORE_ADDR next_ip;
|
|
int r;
|
|
int have_fp = 0;
|
|
INSN_WORD insn_word;
|
|
/* Number of things pushed onto stack, starts at 2/4, 'cause the
|
|
PC is already there */
|
|
unsigned int reg_save_depth = h8300hmode ? 4 : 2;
|
|
|
|
unsigned int auto_depth = 0; /* Number of bytes of autos */
|
|
|
|
char in_frame[11]; /* One for each reg */
|
|
|
|
int adjust = 0;
|
|
|
|
memset (in_frame, 1, 11);
|
|
for (r = 0; r < 8; r++)
|
|
{
|
|
fsr->regs[r] = 0;
|
|
}
|
|
if (after_prolog_fp == 0)
|
|
{
|
|
after_prolog_fp = read_register (SP_REGNUM);
|
|
}
|
|
|
|
/* If the PC isn't valid, quit now. */
|
|
if (ip == 0 || ip & (h8300hmode ? ~0xffffff : ~0xffff))
|
|
return 0;
|
|
|
|
next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
|
|
|
|
if (insn_word == 0x0100)
|
|
{
|
|
insn_word = read_memory_unsigned_integer (ip + 2, 2);
|
|
adjust = 2;
|
|
}
|
|
|
|
/* Skip over any fp push instructions */
|
|
fsr->regs[6] = after_prolog_fp;
|
|
while (next_ip && IS_PUSH_FP (insn_word))
|
|
{
|
|
ip = next_ip + adjust;
|
|
|
|
in_frame[insn_word & 0x7] = reg_save_depth;
|
|
next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
|
|
reg_save_depth += 2 + adjust;
|
|
}
|
|
|
|
/* Is this a move into the fp */
|
|
if (next_ip && IS_MOV_SP_FP (insn_word))
|
|
{
|
|
ip = next_ip;
|
|
next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
|
|
have_fp = 1;
|
|
}
|
|
|
|
/* Skip over any stack adjustment, happens either with a number of
|
|
sub#2,sp or a mov #x,r5 sub r5,sp */
|
|
|
|
if (next_ip && (IS_SUB2_SP (insn_word) || IS_SUB4_SP (insn_word)))
|
|
{
|
|
while (next_ip && (IS_SUB2_SP (insn_word) || IS_SUB4_SP (insn_word)))
|
|
{
|
|
auto_depth += IS_SUB2_SP (insn_word) ? 2 : 4;
|
|
ip = next_ip;
|
|
next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (next_ip && IS_MOVK_R5 (insn_word))
|
|
{
|
|
ip = next_ip;
|
|
next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
|
|
auto_depth += insn_word;
|
|
|
|
next_ip = NEXT_PROLOGUE_INSN (next_ip, limit, &insn_word);
|
|
auto_depth += insn_word;
|
|
}
|
|
if (next_ip && IS_SUBL_SP (insn_word))
|
|
{
|
|
ip = next_ip;
|
|
auto_depth += read_memory_unsigned_integer (ip, 4);
|
|
ip += 4;
|
|
|
|
next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
|
|
}
|
|
}
|
|
|
|
/* Now examine the push insns to determine where everything lives
|
|
on the stack. */
|
|
while (1)
|
|
{
|
|
adjust = 0;
|
|
if (!next_ip)
|
|
break;
|
|
|
|
if (insn_word == 0x0100)
|
|
{
|
|
ip = next_ip;
|
|
next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
|
|
adjust = 2;
|
|
}
|
|
|
|
if (IS_PUSH (insn_word))
|
|
{
|
|
ip = next_ip;
|
|
next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
|
|
fsr->regs[r] = after_prolog_fp + auto_depth;
|
|
auto_depth += 2 + adjust;
|
|
continue;
|
|
}
|
|
|
|
/* Now check for push multiple insns. */
|
|
if (insn_word == 0x0110 || insn_word == 0x0120 || insn_word == 0x0130)
|
|
{
|
|
int count = ((insn_word >> 4) & 0xf) + 1;
|
|
int start, i;
|
|
|
|
ip = next_ip;
|
|
next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
|
|
start = insn_word & 0x7;
|
|
|
|
for (i = start; i <= start + count; i++)
|
|
{
|
|
fsr->regs[i] = after_prolog_fp + auto_depth;
|
|
auto_depth += 4;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* The args are always reffed based from the stack pointer */
|
|
fi->args_pointer = after_prolog_fp;
|
|
/* Locals are always reffed based from the fp */
|
|
fi->locals_pointer = after_prolog_fp;
|
|
/* The PC is at a known place */
|
|
fi->from_pc = read_memory_unsigned_integer (after_prolog_fp + BINWORD, BINWORD);
|
|
|
|
/* Rememeber any others too */
|
|
in_frame[PC_REGNUM] = 0;
|
|
|
|
if (have_fp)
|
|
/* We keep the old FP in the SP spot */
|
|
fsr->regs[SP_REGNUM] = read_memory_unsigned_integer (fsr->regs[6], BINWORD);
|
|
else
|
|
fsr->regs[SP_REGNUM] = after_prolog_fp + auto_depth;
|
|
|
|
return (ip);
|
|
}
|
|
|
|
void
|
|
h8300_init_extra_frame_info (fromleaf, fi)
|
|
int fromleaf;
|
|
struct frame_info *fi;
|
|
{
|
|
fi->fsr = 0; /* Not yet allocated */
|
|
fi->args_pointer = 0; /* Unknown */
|
|
fi->locals_pointer = 0; /* Unknown */
|
|
fi->from_pc = 0;
|
|
if (PC_IN_CALL_DUMMY(fi->pc, fi->frame, fi->frame))
|
|
{ /* anything special to do? */
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* Return the saved PC from this frame.
|
|
|
|
If the frame has a memory copy of SRP_REGNUM, use that. If not,
|
|
just use the register SRP_REGNUM itself. */
|
|
|
|
CORE_ADDR
|
|
h8300_frame_saved_pc (frame)
|
|
struct frame_info *frame;
|
|
{
|
|
if (PC_IN_CALL_DUMMY(frame->pc, frame->frame, frame->frame))
|
|
return generic_read_register_dummy (frame->pc, frame->frame, PC_REGNUM);
|
|
else
|
|
return frame->from_pc;
|
|
}
|
|
|
|
CORE_ADDR
|
|
frame_locals_address (fi)
|
|
struct frame_info *fi;
|
|
{
|
|
if (PC_IN_CALL_DUMMY(fi->pc, fi->frame, fi->frame))
|
|
return (CORE_ADDR) 0; /* Not sure what else to do... */
|
|
if (!fi->locals_pointer)
|
|
{
|
|
struct frame_saved_regs ignore;
|
|
|
|
get_frame_saved_regs (fi, &ignore);
|
|
|
|
}
|
|
return fi->locals_pointer;
|
|
}
|
|
|
|
/* Return the address of the argument block for the frame
|
|
described by FI. Returns 0 if the address is unknown. */
|
|
|
|
CORE_ADDR
|
|
frame_args_address (fi)
|
|
struct frame_info *fi;
|
|
{
|
|
if (PC_IN_CALL_DUMMY(fi->pc, fi->frame, fi->frame))
|
|
return (CORE_ADDR) 0; /* Not sure what else to do... */
|
|
if (!fi->args_pointer)
|
|
{
|
|
struct frame_saved_regs ignore;
|
|
|
|
get_frame_saved_regs (fi, &ignore);
|
|
|
|
}
|
|
|
|
return fi->args_pointer;
|
|
}
|
|
|
|
/* Function: push_arguments
|
|
Setup the function arguments for calling a function in the inferior.
|
|
|
|
On the Hitachi H8/300 architecture, there are three registers (R0 to R2)
|
|
which are dedicated for passing function arguments. Up to the first
|
|
three arguments (depending on size) may go into these registers.
|
|
The rest go on the stack.
|
|
|
|
Arguments that are smaller than WORDSIZE bytes will still take up a
|
|
whole register or a whole WORDSIZE word on the stack, and will be
|
|
right-justified in the register or the stack word. This includes
|
|
chars and small aggregate types. Note that WORDSIZE depends on the
|
|
cpu type.
|
|
|
|
Arguments that are larger than WORDSIZE bytes will be split between
|
|
two or more registers as available, but will NOT be split between a
|
|
register and the stack.
|
|
|
|
An exceptional case exists for struct arguments (and possibly other
|
|
aggregates such as arrays) -- if the size is larger than WORDSIZE
|
|
bytes but not a multiple of WORDSIZE bytes. In this case the
|
|
argument is never split between the registers and the stack, but
|
|
instead is copied in its entirety onto the stack, AND also copied
|
|
into as many registers as there is room for. In other words, space
|
|
in registers permitting, two copies of the same argument are passed
|
|
in. As far as I can tell, only the one on the stack is used,
|
|
although that may be a function of the level of compiler
|
|
optimization. I suspect this is a compiler bug. Arguments of
|
|
these odd sizes are left-justified within the word (as opposed to
|
|
arguments smaller than WORDSIZE bytes, which are right-justified).
|
|
|
|
If the function is to return an aggregate type such as a struct,
|
|
the caller must allocate space into which the callee will copy the
|
|
return value. In this case, a pointer to the return value location
|
|
is passed into the callee in register R0, which displaces one of
|
|
the other arguments passed in via registers R0 to R2. */
|
|
|
|
CORE_ADDR
|
|
h8300_push_arguments(nargs, args, sp, struct_return, struct_addr)
|
|
int nargs;
|
|
struct value **args;
|
|
CORE_ADDR sp;
|
|
unsigned char struct_return;
|
|
CORE_ADDR struct_addr;
|
|
{
|
|
int stack_align, stack_alloc, stack_offset;
|
|
int wordsize;
|
|
int argreg;
|
|
int argnum;
|
|
struct type *type;
|
|
CORE_ADDR regval;
|
|
char *val;
|
|
char valbuf[4];
|
|
int len;
|
|
|
|
if (h8300hmode || h8300smode)
|
|
{
|
|
stack_align = 3;
|
|
wordsize = 4;
|
|
}
|
|
else
|
|
{
|
|
stack_align = 1;
|
|
wordsize = 2;
|
|
}
|
|
|
|
/* first force sp to a n-byte alignment */
|
|
sp = sp & ~stack_align;
|
|
|
|
/* Now make sure there's space on the stack */
|
|
for (argnum = 0, stack_alloc = 0;
|
|
argnum < nargs; argnum++)
|
|
stack_alloc += ((TYPE_LENGTH(VALUE_TYPE(args[argnum])) + stack_align)
|
|
& ~stack_align);
|
|
sp -= stack_alloc; /* make room on stack for args */
|
|
/* we may over-allocate a little here, but that won't hurt anything */
|
|
|
|
argreg = ARG0_REGNUM;
|
|
if (struct_return) /* "struct return" pointer takes up one argreg */
|
|
{
|
|
write_register (argreg++, struct_addr);
|
|
}
|
|
|
|
/* Now load as many as possible of the first arguments into
|
|
registers, and push the rest onto the stack. There are 3N bytes
|
|
in three registers available. Loop thru args from first to last. */
|
|
|
|
for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
|
|
{
|
|
type = VALUE_TYPE (args[argnum]);
|
|
len = TYPE_LENGTH (type);
|
|
memset(valbuf, 0, sizeof(valbuf));
|
|
if (len < wordsize)
|
|
{
|
|
/* the purpose of this is to right-justify the value within the word */
|
|
memcpy(valbuf + (wordsize - len),
|
|
(char *) VALUE_CONTENTS (args[argnum]), len);
|
|
val = valbuf;
|
|
}
|
|
else
|
|
val = (char *) VALUE_CONTENTS (args[argnum]);
|
|
|
|
if (len > (ARGLAST_REGNUM+1 - argreg) * REGISTER_RAW_SIZE(ARG0_REGNUM) ||
|
|
(len > wordsize && (len & stack_align) != 0))
|
|
{ /* passed on the stack */
|
|
write_memory (sp + stack_offset, val,
|
|
len < wordsize ? wordsize : len);
|
|
stack_offset += (len + stack_align) & ~stack_align;
|
|
}
|
|
/* NOTE WELL!!!!! This is not an "else if" clause!!!
|
|
That's because some *&^%$ things get passed on the stack
|
|
AND in the registers! */
|
|
if (len <= (ARGLAST_REGNUM+1 - argreg) * REGISTER_RAW_SIZE(ARG0_REGNUM))
|
|
while (len > 0)
|
|
{ /* there's room in registers */
|
|
regval = extract_address (val, wordsize);
|
|
write_register (argreg, regval);
|
|
len -= wordsize;
|
|
val += wordsize;
|
|
argreg++;
|
|
}
|
|
}
|
|
return sp;
|
|
}
|
|
|
|
/* Function: push_return_address
|
|
Setup the return address for a dummy frame, as called by
|
|
call_function_by_hand. Only necessary when you are using an
|
|
empty CALL_DUMMY, ie. the target will not actually be executing
|
|
a JSR/BSR instruction. */
|
|
|
|
CORE_ADDR
|
|
h8300_push_return_address (pc, sp)
|
|
CORE_ADDR pc;
|
|
CORE_ADDR sp;
|
|
{
|
|
unsigned char buf[4];
|
|
int wordsize;
|
|
|
|
if (h8300hmode || h8300smode)
|
|
wordsize = 4;
|
|
else
|
|
wordsize = 2;
|
|
|
|
sp -= wordsize;
|
|
store_unsigned_integer (buf, wordsize, CALL_DUMMY_ADDRESS ());
|
|
write_memory (sp, buf, wordsize);
|
|
return sp;
|
|
}
|
|
|
|
/* Function: pop_frame
|
|
Restore the machine to the state it had before the current frame
|
|
was created. Usually used either by the "RETURN" command, or by
|
|
call_function_by_hand after the dummy_frame is finished. */
|
|
|
|
void
|
|
h8300_pop_frame ()
|
|
{
|
|
unsigned regnum;
|
|
struct frame_saved_regs fsr;
|
|
struct frame_info *frame = get_current_frame ();
|
|
|
|
if (PC_IN_CALL_DUMMY(frame->pc, frame->frame, frame->frame))
|
|
{
|
|
generic_pop_dummy_frame();
|
|
}
|
|
else
|
|
{
|
|
get_frame_saved_regs (frame, &fsr);
|
|
|
|
for (regnum = 0; regnum < 8; regnum++)
|
|
{
|
|
/* Don't forget SP_REGNUM is a frame_saved_regs struct is the
|
|
actual value we want, not the address of the value we want. */
|
|
if (fsr.regs[regnum] && regnum != SP_REGNUM)
|
|
write_register (regnum,
|
|
read_memory_integer(fsr.regs[regnum], BINWORD));
|
|
else if (fsr.regs[regnum] && regnum == SP_REGNUM)
|
|
write_register (regnum, frame->frame + 2 * BINWORD);
|
|
}
|
|
|
|
/* Don't forget the update the PC too! */
|
|
write_pc (frame->from_pc);
|
|
}
|
|
flush_cached_frames ();
|
|
}
|
|
|
|
/* Function: extract_return_value
|
|
Figure out where in REGBUF the called function has left its return value.
|
|
Copy that into VALBUF. Be sure to account for CPU type. */
|
|
|
|
void
|
|
h8300_extract_return_value (type, regbuf, valbuf)
|
|
struct type *type;
|
|
char *regbuf;
|
|
char *valbuf;
|
|
{
|
|
int wordsize, len;
|
|
|
|
if (h8300smode || h8300hmode)
|
|
wordsize = 4;
|
|
else
|
|
wordsize = 2;
|
|
|
|
len = TYPE_LENGTH(type);
|
|
|
|
switch (len) {
|
|
case 1: /* (char) */
|
|
case 2: /* (short), (int) */
|
|
memcpy (valbuf, regbuf + REGISTER_BYTE(0) + (wordsize - len), len);
|
|
break;
|
|
case 4: /* (long), (float) */
|
|
if (h8300smode || h8300hmode)
|
|
{
|
|
memcpy (valbuf, regbuf + REGISTER_BYTE(0), 4);
|
|
}
|
|
else
|
|
{
|
|
memcpy (valbuf, regbuf + REGISTER_BYTE(0), 2);
|
|
memcpy (valbuf+2, regbuf + REGISTER_BYTE(1), 2);
|
|
}
|
|
break;
|
|
case 8: /* (double) (doesn't seem to happen, which is good,
|
|
because this almost certainly isn't right. */
|
|
error ("I don't know how a double is returned.");
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Function: store_return_value
|
|
Place the appropriate value in the appropriate registers.
|
|
Primarily used by the RETURN command. */
|
|
|
|
void
|
|
h8300_store_return_value (type, valbuf)
|
|
struct type *type;
|
|
char *valbuf;
|
|
{
|
|
int wordsize, len, regval;
|
|
|
|
if (h8300hmode || h8300smode)
|
|
wordsize = 4;
|
|
else
|
|
wordsize = 2;
|
|
|
|
len = TYPE_LENGTH(type);
|
|
switch (len) {
|
|
case 1: /* char */
|
|
case 2: /* short, int */
|
|
regval = extract_address(valbuf, len);
|
|
write_register (0, regval);
|
|
break;
|
|
case 4: /* long, float */
|
|
regval = extract_address(valbuf, len);
|
|
if (h8300smode || h8300hmode)
|
|
{
|
|
write_register (0, regval);
|
|
}
|
|
else
|
|
{
|
|
write_register (0, regval >> 16);
|
|
write_register (1, regval & 0xffff);
|
|
}
|
|
break;
|
|
case 8: /* presumeably double, but doesn't seem to happen */
|
|
error ("I don't know how to return a double.");
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Function: get_saved_register
|
|
Just call the generic_get_saved_register function. */
|
|
|
|
void
|
|
get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lval)
|
|
char *raw_buffer;
|
|
int *optimized;
|
|
CORE_ADDR *addrp;
|
|
struct frame_info *frame;
|
|
int regnum;
|
|
enum lval_type *lval;
|
|
{
|
|
generic_get_saved_register (raw_buffer, optimized, addrp,
|
|
frame, regnum, lval);
|
|
}
|
|
|
|
struct cmd_list_element *setmemorylist;
|
|
|
|
static void
|
|
h8300_command(args, from_tty)
|
|
{
|
|
extern int h8300hmode;
|
|
h8300hmode = 0;
|
|
h8300smode = 0;
|
|
}
|
|
|
|
static void
|
|
h8300h_command(args, from_tty)
|
|
{
|
|
extern int h8300hmode;
|
|
h8300hmode = 1;
|
|
h8300smode = 0;
|
|
}
|
|
static void
|
|
h8300s_command(args, from_tty)
|
|
{
|
|
extern int h8300smode;
|
|
extern int h8300hmode;
|
|
h8300smode = 1;
|
|
h8300hmode = 1;
|
|
}
|
|
|
|
|
|
static void
|
|
set_machine (args, from_tty)
|
|
char *args;
|
|
int from_tty;
|
|
{
|
|
printf_unfiltered ("\"set machine\" must be followed by h8300, h8300h");
|
|
printf_unfiltered ("or h8300s");
|
|
help_list (setmemorylist, "set memory ", -1, gdb_stdout);
|
|
}
|
|
|
|
/* set_machine_hook is called as the exec file is being opened, but
|
|
before the symbol file is opened. This allows us to set the
|
|
h8300hmode flag based on the machine type specified in the exec
|
|
file. This in turn will cause subsequently defined pointer types
|
|
to be 16 or 32 bits as appropriate for the machine. */
|
|
|
|
static void
|
|
set_machine_hook (filename)
|
|
char *filename;
|
|
{
|
|
if (bfd_get_mach (exec_bfd) == bfd_mach_h8300s)
|
|
{
|
|
h8300smode = 1;
|
|
h8300hmode = 1;
|
|
}
|
|
else
|
|
if (bfd_get_mach (exec_bfd) == bfd_mach_h8300h)
|
|
{
|
|
h8300smode = 0;
|
|
h8300hmode = 1;
|
|
}
|
|
else
|
|
{
|
|
h8300smode = 0;
|
|
h8300hmode = 0;
|
|
}
|
|
}
|
|
|
|
void
|
|
_initialize_h8300m ()
|
|
{
|
|
add_prefix_cmd ("machine", no_class, set_machine,
|
|
"set the machine type",
|
|
&setmemorylist, "set machine ", 0,
|
|
&setlist);
|
|
|
|
add_cmd ("h8300", class_support, h8300_command,
|
|
"Set machine to be H8/300.", &setmemorylist);
|
|
|
|
add_cmd ("h8300h", class_support, h8300h_command,
|
|
"Set machine to be H8/300H.", &setmemorylist);
|
|
|
|
add_cmd ("h8300s", class_support, h8300s_command,
|
|
"Set machine to be H8/300S.", &setmemorylist);
|
|
|
|
/* Add a hook to set the machine type when we're loading a file. */
|
|
|
|
specify_exec_file_hook(set_machine_hook);
|
|
}
|
|
|
|
|
|
|
|
void
|
|
print_register_hook (regno)
|
|
{
|
|
if (regno == 8)
|
|
{
|
|
/* CCR register */
|
|
int C, Z, N, V;
|
|
unsigned char b[4];
|
|
unsigned char l;
|
|
read_relative_register_raw_bytes (regno, b);
|
|
l = b[REGISTER_VIRTUAL_SIZE(8) -1];
|
|
printf_unfiltered ("\t");
|
|
printf_unfiltered ("I-%d - ", (l & 0x80) != 0);
|
|
printf_unfiltered ("H-%d - ", (l & 0x20) != 0);
|
|
N = (l & 0x8) != 0;
|
|
Z = (l & 0x4) != 0;
|
|
V = (l & 0x2) != 0;
|
|
C = (l & 0x1) != 0;
|
|
printf_unfiltered ("N-%d ", N);
|
|
printf_unfiltered ("Z-%d ", Z);
|
|
printf_unfiltered ("V-%d ", V);
|
|
printf_unfiltered ("C-%d ", C);
|
|
if ((C | Z) == 0)
|
|
printf_unfiltered ("u> ");
|
|
if ((C | Z) == 1)
|
|
printf_unfiltered ("u<= ");
|
|
if ((C == 0))
|
|
printf_unfiltered ("u>= ");
|
|
if (C == 1)
|
|
printf_unfiltered ("u< ");
|
|
if (Z == 0)
|
|
printf_unfiltered ("!= ");
|
|
if (Z == 1)
|
|
printf_unfiltered ("== ");
|
|
if ((N ^ V) == 0)
|
|
printf_unfiltered (">= ");
|
|
if ((N ^ V) == 1)
|
|
printf_unfiltered ("< ");
|
|
if ((Z | (N ^ V)) == 0)
|
|
printf_unfiltered ("> ");
|
|
if ((Z | (N ^ V)) == 1)
|
|
printf_unfiltered ("<= ");
|
|
}
|
|
}
|
|
|
|
void
|
|
_initialize_h8300_tdep ()
|
|
{
|
|
tm_print_insn = gdb_print_insn_h8300;
|
|
}
|