mirror of
https://github.com/darlinghq/darling-gdb.git
synced 2024-12-13 06:56:05 +00:00
4184 lines
127 KiB
C
4184 lines
127 KiB
C
/* Generic symbol file reading for the GNU debugger, GDB.
|
||
|
||
Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
|
||
2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
|
||
Free Software Foundation, Inc.
|
||
|
||
Contributed by Cygnus Support, using pieces from other GDB modules.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||
|
||
#include "defs.h"
|
||
#include "bfdlink.h"
|
||
#include "symtab.h"
|
||
#include "gdbtypes.h"
|
||
#include "gdbcore.h"
|
||
#include "frame.h"
|
||
#include "target.h"
|
||
#include "value.h"
|
||
#include "symfile.h"
|
||
#include "objfiles.h"
|
||
#include "source.h"
|
||
#include "gdbcmd.h"
|
||
#include "breakpoint.h"
|
||
#include "language.h"
|
||
#include "complaints.h"
|
||
#include "demangle.h"
|
||
#include "inferior.h" /* for write_pc */
|
||
#include "filenames.h" /* for DOSish file names */
|
||
#include "gdb-stabs.h"
|
||
#include "gdb_obstack.h"
|
||
#include "completer.h"
|
||
#include "bcache.h"
|
||
#include "hashtab.h"
|
||
#include "readline/readline.h"
|
||
#include "gdb_assert.h"
|
||
#include "block.h"
|
||
#include "observer.h"
|
||
#include "exec.h"
|
||
#include "parser-defs.h"
|
||
#include "varobj.h"
|
||
#include "elf-bfd.h"
|
||
#include "solib.h"
|
||
#include "remote.h"
|
||
|
||
#include <sys/types.h>
|
||
#include <fcntl.h>
|
||
#include "gdb_string.h"
|
||
#include "gdb_stat.h"
|
||
#include <ctype.h>
|
||
#include <time.h>
|
||
#include <sys/time.h>
|
||
|
||
|
||
int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
|
||
void (*deprecated_show_load_progress) (const char *section,
|
||
unsigned long section_sent,
|
||
unsigned long section_size,
|
||
unsigned long total_sent,
|
||
unsigned long total_size);
|
||
void (*deprecated_pre_add_symbol_hook) (const char *);
|
||
void (*deprecated_post_add_symbol_hook) (void);
|
||
|
||
static void clear_symtab_users_cleanup (void *ignore);
|
||
|
||
/* Global variables owned by this file */
|
||
int readnow_symbol_files; /* Read full symbols immediately */
|
||
|
||
/* External variables and functions referenced. */
|
||
|
||
extern void report_transfer_performance (unsigned long, time_t, time_t);
|
||
|
||
/* Functions this file defines */
|
||
|
||
#if 0
|
||
static int simple_read_overlay_region_table (void);
|
||
static void simple_free_overlay_region_table (void);
|
||
#endif
|
||
|
||
static void load_command (char *, int);
|
||
|
||
static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
|
||
|
||
static void add_symbol_file_command (char *, int);
|
||
|
||
static void add_shared_symbol_files_command (char *, int);
|
||
|
||
static void reread_separate_symbols (struct objfile *objfile);
|
||
|
||
static void cashier_psymtab (struct partial_symtab *);
|
||
|
||
bfd *symfile_bfd_open (char *);
|
||
|
||
int get_section_index (struct objfile *, char *);
|
||
|
||
static struct sym_fns *find_sym_fns (bfd *);
|
||
|
||
static void decrement_reading_symtab (void *);
|
||
|
||
static void overlay_invalidate_all (void);
|
||
|
||
void list_overlays_command (char *, int);
|
||
|
||
void map_overlay_command (char *, int);
|
||
|
||
void unmap_overlay_command (char *, int);
|
||
|
||
static void overlay_auto_command (char *, int);
|
||
|
||
static void overlay_manual_command (char *, int);
|
||
|
||
static void overlay_off_command (char *, int);
|
||
|
||
static void overlay_load_command (char *, int);
|
||
|
||
static void overlay_command (char *, int);
|
||
|
||
static void simple_free_overlay_table (void);
|
||
|
||
static void read_target_long_array (CORE_ADDR, unsigned int *, int);
|
||
|
||
static int simple_read_overlay_table (void);
|
||
|
||
static int simple_overlay_update_1 (struct obj_section *);
|
||
|
||
static void add_filename_language (char *ext, enum language lang);
|
||
|
||
static void info_ext_lang_command (char *args, int from_tty);
|
||
|
||
static char *find_separate_debug_file (struct objfile *objfile);
|
||
|
||
static void init_filename_language_table (void);
|
||
|
||
static void symfile_find_segment_sections (struct objfile *objfile);
|
||
|
||
void _initialize_symfile (void);
|
||
|
||
/* List of all available sym_fns. On gdb startup, each object file reader
|
||
calls add_symtab_fns() to register information on each format it is
|
||
prepared to read. */
|
||
|
||
static struct sym_fns *symtab_fns = NULL;
|
||
|
||
/* Flag for whether user will be reloading symbols multiple times.
|
||
Defaults to ON for VxWorks, otherwise OFF. */
|
||
|
||
#ifdef SYMBOL_RELOADING_DEFAULT
|
||
int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
|
||
#else
|
||
int symbol_reloading = 0;
|
||
#endif
|
||
static void
|
||
show_symbol_reloading (struct ui_file *file, int from_tty,
|
||
struct cmd_list_element *c, const char *value)
|
||
{
|
||
fprintf_filtered (file, _("\
|
||
Dynamic symbol table reloading multiple times in one run is %s.\n"),
|
||
value);
|
||
}
|
||
|
||
/* If non-zero, gdb will notify the user when it is loading symbols
|
||
from a file. This is almost always what users will want to have happen;
|
||
but for programs with lots of dynamically linked libraries, the output
|
||
can be more noise than signal. */
|
||
|
||
int print_symbol_loading = 1;
|
||
|
||
/* If non-zero, shared library symbols will be added automatically
|
||
when the inferior is created, new libraries are loaded, or when
|
||
attaching to the inferior. This is almost always what users will
|
||
want to have happen; but for very large programs, the startup time
|
||
will be excessive, and so if this is a problem, the user can clear
|
||
this flag and then add the shared library symbols as needed. Note
|
||
that there is a potential for confusion, since if the shared
|
||
library symbols are not loaded, commands like "info fun" will *not*
|
||
report all the functions that are actually present. */
|
||
|
||
int auto_solib_add = 1;
|
||
|
||
/* For systems that support it, a threshold size in megabytes. If
|
||
automatically adding a new library's symbol table to those already
|
||
known to the debugger would cause the total shared library symbol
|
||
size to exceed this threshhold, then the shlib's symbols are not
|
||
added. The threshold is ignored if the user explicitly asks for a
|
||
shlib to be added, such as when using the "sharedlibrary"
|
||
command. */
|
||
|
||
int auto_solib_limit;
|
||
|
||
|
||
/* This compares two partial symbols by names, using strcmp_iw_ordered
|
||
for the comparison. */
|
||
|
||
static int
|
||
compare_psymbols (const void *s1p, const void *s2p)
|
||
{
|
||
struct partial_symbol *const *s1 = s1p;
|
||
struct partial_symbol *const *s2 = s2p;
|
||
|
||
return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
|
||
SYMBOL_SEARCH_NAME (*s2));
|
||
}
|
||
|
||
void
|
||
sort_pst_symbols (struct partial_symtab *pst)
|
||
{
|
||
/* Sort the global list; don't sort the static list */
|
||
|
||
qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
|
||
pst->n_global_syms, sizeof (struct partial_symbol *),
|
||
compare_psymbols);
|
||
}
|
||
|
||
/* Make a null terminated copy of the string at PTR with SIZE characters in
|
||
the obstack pointed to by OBSTACKP . Returns the address of the copy.
|
||
Note that the string at PTR does not have to be null terminated, I.E. it
|
||
may be part of a larger string and we are only saving a substring. */
|
||
|
||
char *
|
||
obsavestring (const char *ptr, int size, struct obstack *obstackp)
|
||
{
|
||
char *p = (char *) obstack_alloc (obstackp, size + 1);
|
||
/* Open-coded memcpy--saves function call time. These strings are usually
|
||
short. FIXME: Is this really still true with a compiler that can
|
||
inline memcpy? */
|
||
{
|
||
const char *p1 = ptr;
|
||
char *p2 = p;
|
||
const char *end = ptr + size;
|
||
while (p1 != end)
|
||
*p2++ = *p1++;
|
||
}
|
||
p[size] = 0;
|
||
return p;
|
||
}
|
||
|
||
/* Concatenate strings S1, S2 and S3; return the new string. Space is found
|
||
in the obstack pointed to by OBSTACKP. */
|
||
|
||
char *
|
||
obconcat (struct obstack *obstackp, const char *s1, const char *s2,
|
||
const char *s3)
|
||
{
|
||
int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
|
||
char *val = (char *) obstack_alloc (obstackp, len);
|
||
strcpy (val, s1);
|
||
strcat (val, s2);
|
||
strcat (val, s3);
|
||
return val;
|
||
}
|
||
|
||
/* True if we are nested inside psymtab_to_symtab. */
|
||
|
||
int currently_reading_symtab = 0;
|
||
|
||
static void
|
||
decrement_reading_symtab (void *dummy)
|
||
{
|
||
currently_reading_symtab--;
|
||
}
|
||
|
||
/* Get the symbol table that corresponds to a partial_symtab.
|
||
This is fast after the first time you do it. In fact, there
|
||
is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
|
||
case inline. */
|
||
|
||
struct symtab *
|
||
psymtab_to_symtab (struct partial_symtab *pst)
|
||
{
|
||
/* If it's been looked up before, return it. */
|
||
if (pst->symtab)
|
||
return pst->symtab;
|
||
|
||
/* If it has not yet been read in, read it. */
|
||
if (!pst->readin)
|
||
{
|
||
struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
|
||
currently_reading_symtab++;
|
||
(*pst->read_symtab) (pst);
|
||
do_cleanups (back_to);
|
||
}
|
||
|
||
return pst->symtab;
|
||
}
|
||
|
||
/* Remember the lowest-addressed loadable section we've seen.
|
||
This function is called via bfd_map_over_sections.
|
||
|
||
In case of equal vmas, the section with the largest size becomes the
|
||
lowest-addressed loadable section.
|
||
|
||
If the vmas and sizes are equal, the last section is considered the
|
||
lowest-addressed loadable section. */
|
||
|
||
void
|
||
find_lowest_section (bfd *abfd, asection *sect, void *obj)
|
||
{
|
||
asection **lowest = (asection **) obj;
|
||
|
||
if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
|
||
return;
|
||
if (!*lowest)
|
||
*lowest = sect; /* First loadable section */
|
||
else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
|
||
*lowest = sect; /* A lower loadable section */
|
||
else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
|
||
&& (bfd_section_size (abfd, (*lowest))
|
||
<= bfd_section_size (abfd, sect)))
|
||
*lowest = sect;
|
||
}
|
||
|
||
/* Create a new section_addr_info, with room for NUM_SECTIONS. */
|
||
|
||
struct section_addr_info *
|
||
alloc_section_addr_info (size_t num_sections)
|
||
{
|
||
struct section_addr_info *sap;
|
||
size_t size;
|
||
|
||
size = (sizeof (struct section_addr_info)
|
||
+ sizeof (struct other_sections) * (num_sections - 1));
|
||
sap = (struct section_addr_info *) xmalloc (size);
|
||
memset (sap, 0, size);
|
||
sap->num_sections = num_sections;
|
||
|
||
return sap;
|
||
}
|
||
|
||
|
||
/* Return a freshly allocated copy of ADDRS. The section names, if
|
||
any, are also freshly allocated copies of those in ADDRS. */
|
||
struct section_addr_info *
|
||
copy_section_addr_info (struct section_addr_info *addrs)
|
||
{
|
||
struct section_addr_info *copy
|
||
= alloc_section_addr_info (addrs->num_sections);
|
||
int i;
|
||
|
||
copy->num_sections = addrs->num_sections;
|
||
for (i = 0; i < addrs->num_sections; i++)
|
||
{
|
||
copy->other[i].addr = addrs->other[i].addr;
|
||
if (addrs->other[i].name)
|
||
copy->other[i].name = xstrdup (addrs->other[i].name);
|
||
else
|
||
copy->other[i].name = NULL;
|
||
copy->other[i].sectindex = addrs->other[i].sectindex;
|
||
}
|
||
|
||
return copy;
|
||
}
|
||
|
||
|
||
|
||
/* Build (allocate and populate) a section_addr_info struct from
|
||
an existing section table. */
|
||
|
||
extern struct section_addr_info *
|
||
build_section_addr_info_from_section_table (const struct section_table *start,
|
||
const struct section_table *end)
|
||
{
|
||
struct section_addr_info *sap;
|
||
const struct section_table *stp;
|
||
int oidx;
|
||
|
||
sap = alloc_section_addr_info (end - start);
|
||
|
||
for (stp = start, oidx = 0; stp != end; stp++)
|
||
{
|
||
if (bfd_get_section_flags (stp->bfd,
|
||
stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
|
||
&& oidx < end - start)
|
||
{
|
||
sap->other[oidx].addr = stp->addr;
|
||
sap->other[oidx].name
|
||
= xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
|
||
sap->other[oidx].sectindex = stp->the_bfd_section->index;
|
||
oidx++;
|
||
}
|
||
}
|
||
|
||
return sap;
|
||
}
|
||
|
||
|
||
/* Free all memory allocated by build_section_addr_info_from_section_table. */
|
||
|
||
extern void
|
||
free_section_addr_info (struct section_addr_info *sap)
|
||
{
|
||
int idx;
|
||
|
||
for (idx = 0; idx < sap->num_sections; idx++)
|
||
if (sap->other[idx].name)
|
||
xfree (sap->other[idx].name);
|
||
xfree (sap);
|
||
}
|
||
|
||
|
||
/* Initialize OBJFILE's sect_index_* members. */
|
||
static void
|
||
init_objfile_sect_indices (struct objfile *objfile)
|
||
{
|
||
asection *sect;
|
||
int i;
|
||
|
||
sect = bfd_get_section_by_name (objfile->obfd, ".text");
|
||
if (sect)
|
||
objfile->sect_index_text = sect->index;
|
||
|
||
sect = bfd_get_section_by_name (objfile->obfd, ".data");
|
||
if (sect)
|
||
objfile->sect_index_data = sect->index;
|
||
|
||
sect = bfd_get_section_by_name (objfile->obfd, ".bss");
|
||
if (sect)
|
||
objfile->sect_index_bss = sect->index;
|
||
|
||
sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
|
||
if (sect)
|
||
objfile->sect_index_rodata = sect->index;
|
||
|
||
/* This is where things get really weird... We MUST have valid
|
||
indices for the various sect_index_* members or gdb will abort.
|
||
So if for example, there is no ".text" section, we have to
|
||
accomodate that. First, check for a file with the standard
|
||
one or two segments. */
|
||
|
||
symfile_find_segment_sections (objfile);
|
||
|
||
/* Except when explicitly adding symbol files at some address,
|
||
section_offsets contains nothing but zeros, so it doesn't matter
|
||
which slot in section_offsets the individual sect_index_* members
|
||
index into. So if they are all zero, it is safe to just point
|
||
all the currently uninitialized indices to the first slot. But
|
||
beware: if this is the main executable, it may be relocated
|
||
later, e.g. by the remote qOffsets packet, and then this will
|
||
be wrong! That's why we try segments first. */
|
||
|
||
for (i = 0; i < objfile->num_sections; i++)
|
||
{
|
||
if (ANOFFSET (objfile->section_offsets, i) != 0)
|
||
{
|
||
break;
|
||
}
|
||
}
|
||
if (i == objfile->num_sections)
|
||
{
|
||
if (objfile->sect_index_text == -1)
|
||
objfile->sect_index_text = 0;
|
||
if (objfile->sect_index_data == -1)
|
||
objfile->sect_index_data = 0;
|
||
if (objfile->sect_index_bss == -1)
|
||
objfile->sect_index_bss = 0;
|
||
if (objfile->sect_index_rodata == -1)
|
||
objfile->sect_index_rodata = 0;
|
||
}
|
||
}
|
||
|
||
/* The arguments to place_section. */
|
||
|
||
struct place_section_arg
|
||
{
|
||
struct section_offsets *offsets;
|
||
CORE_ADDR lowest;
|
||
};
|
||
|
||
/* Find a unique offset to use for loadable section SECT if
|
||
the user did not provide an offset. */
|
||
|
||
static void
|
||
place_section (bfd *abfd, asection *sect, void *obj)
|
||
{
|
||
struct place_section_arg *arg = obj;
|
||
CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
|
||
int done;
|
||
ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
|
||
|
||
/* We are only interested in allocated sections. */
|
||
if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
|
||
return;
|
||
|
||
/* If the user specified an offset, honor it. */
|
||
if (offsets[sect->index] != 0)
|
||
return;
|
||
|
||
/* Otherwise, let's try to find a place for the section. */
|
||
start_addr = (arg->lowest + align - 1) & -align;
|
||
|
||
do {
|
||
asection *cur_sec;
|
||
|
||
done = 1;
|
||
|
||
for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
|
||
{
|
||
int indx = cur_sec->index;
|
||
CORE_ADDR cur_offset;
|
||
|
||
/* We don't need to compare against ourself. */
|
||
if (cur_sec == sect)
|
||
continue;
|
||
|
||
/* We can only conflict with allocated sections. */
|
||
if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
|
||
continue;
|
||
|
||
/* If the section offset is 0, either the section has not been placed
|
||
yet, or it was the lowest section placed (in which case LOWEST
|
||
will be past its end). */
|
||
if (offsets[indx] == 0)
|
||
continue;
|
||
|
||
/* If this section would overlap us, then we must move up. */
|
||
if (start_addr + bfd_get_section_size (sect) > offsets[indx]
|
||
&& start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
|
||
{
|
||
start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
|
||
start_addr = (start_addr + align - 1) & -align;
|
||
done = 0;
|
||
break;
|
||
}
|
||
|
||
/* Otherwise, we appear to be OK. So far. */
|
||
}
|
||
}
|
||
while (!done);
|
||
|
||
offsets[sect->index] = start_addr;
|
||
arg->lowest = start_addr + bfd_get_section_size (sect);
|
||
}
|
||
|
||
/* Parse the user's idea of an offset for dynamic linking, into our idea
|
||
of how to represent it for fast symbol reading. This is the default
|
||
version of the sym_fns.sym_offsets function for symbol readers that
|
||
don't need to do anything special. It allocates a section_offsets table
|
||
for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
|
||
|
||
void
|
||
default_symfile_offsets (struct objfile *objfile,
|
||
struct section_addr_info *addrs)
|
||
{
|
||
int i;
|
||
|
||
objfile->num_sections = bfd_count_sections (objfile->obfd);
|
||
objfile->section_offsets = (struct section_offsets *)
|
||
obstack_alloc (&objfile->objfile_obstack,
|
||
SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
|
||
memset (objfile->section_offsets, 0,
|
||
SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
|
||
|
||
/* Now calculate offsets for section that were specified by the
|
||
caller. */
|
||
for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
|
||
{
|
||
struct other_sections *osp ;
|
||
|
||
osp = &addrs->other[i] ;
|
||
if (osp->addr == 0)
|
||
continue;
|
||
|
||
/* Record all sections in offsets */
|
||
/* The section_offsets in the objfile are here filled in using
|
||
the BFD index. */
|
||
(objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
|
||
}
|
||
|
||
/* For relocatable files, all loadable sections will start at zero.
|
||
The zero is meaningless, so try to pick arbitrary addresses such
|
||
that no loadable sections overlap. This algorithm is quadratic,
|
||
but the number of sections in a single object file is generally
|
||
small. */
|
||
if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
|
||
{
|
||
struct place_section_arg arg;
|
||
bfd *abfd = objfile->obfd;
|
||
asection *cur_sec;
|
||
CORE_ADDR lowest = 0;
|
||
|
||
for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
|
||
/* We do not expect this to happen; just skip this step if the
|
||
relocatable file has a section with an assigned VMA. */
|
||
if (bfd_section_vma (abfd, cur_sec) != 0)
|
||
break;
|
||
|
||
if (cur_sec == NULL)
|
||
{
|
||
CORE_ADDR *offsets = objfile->section_offsets->offsets;
|
||
|
||
/* Pick non-overlapping offsets for sections the user did not
|
||
place explicitly. */
|
||
arg.offsets = objfile->section_offsets;
|
||
arg.lowest = 0;
|
||
bfd_map_over_sections (objfile->obfd, place_section, &arg);
|
||
|
||
/* Correctly filling in the section offsets is not quite
|
||
enough. Relocatable files have two properties that
|
||
(most) shared objects do not:
|
||
|
||
- Their debug information will contain relocations. Some
|
||
shared libraries do also, but many do not, so this can not
|
||
be assumed.
|
||
|
||
- If there are multiple code sections they will be loaded
|
||
at different relative addresses in memory than they are
|
||
in the objfile, since all sections in the file will start
|
||
at address zero.
|
||
|
||
Because GDB has very limited ability to map from an
|
||
address in debug info to the correct code section,
|
||
it relies on adding SECT_OFF_TEXT to things which might be
|
||
code. If we clear all the section offsets, and set the
|
||
section VMAs instead, then symfile_relocate_debug_section
|
||
will return meaningful debug information pointing at the
|
||
correct sections.
|
||
|
||
GDB has too many different data structures for section
|
||
addresses - a bfd, objfile, and so_list all have section
|
||
tables, as does exec_ops. Some of these could probably
|
||
be eliminated. */
|
||
|
||
for (cur_sec = abfd->sections; cur_sec != NULL;
|
||
cur_sec = cur_sec->next)
|
||
{
|
||
if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
|
||
continue;
|
||
|
||
bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
|
||
exec_set_section_address (bfd_get_filename (abfd), cur_sec->index,
|
||
offsets[cur_sec->index]);
|
||
offsets[cur_sec->index] = 0;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Remember the bfd indexes for the .text, .data, .bss and
|
||
.rodata sections. */
|
||
init_objfile_sect_indices (objfile);
|
||
}
|
||
|
||
|
||
/* Divide the file into segments, which are individual relocatable units.
|
||
This is the default version of the sym_fns.sym_segments function for
|
||
symbol readers that do not have an explicit representation of segments.
|
||
It assumes that object files do not have segments, and fully linked
|
||
files have a single segment. */
|
||
|
||
struct symfile_segment_data *
|
||
default_symfile_segments (bfd *abfd)
|
||
{
|
||
int num_sections, i;
|
||
asection *sect;
|
||
struct symfile_segment_data *data;
|
||
CORE_ADDR low, high;
|
||
|
||
/* Relocatable files contain enough information to position each
|
||
loadable section independently; they should not be relocated
|
||
in segments. */
|
||
if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
|
||
return NULL;
|
||
|
||
/* Make sure there is at least one loadable section in the file. */
|
||
for (sect = abfd->sections; sect != NULL; sect = sect->next)
|
||
{
|
||
if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
|
||
continue;
|
||
|
||
break;
|
||
}
|
||
if (sect == NULL)
|
||
return NULL;
|
||
|
||
low = bfd_get_section_vma (abfd, sect);
|
||
high = low + bfd_get_section_size (sect);
|
||
|
||
data = XZALLOC (struct symfile_segment_data);
|
||
data->num_segments = 1;
|
||
data->segment_bases = XCALLOC (1, CORE_ADDR);
|
||
data->segment_sizes = XCALLOC (1, CORE_ADDR);
|
||
|
||
num_sections = bfd_count_sections (abfd);
|
||
data->segment_info = XCALLOC (num_sections, int);
|
||
|
||
for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
|
||
{
|
||
CORE_ADDR vma;
|
||
|
||
if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
|
||
continue;
|
||
|
||
vma = bfd_get_section_vma (abfd, sect);
|
||
if (vma < low)
|
||
low = vma;
|
||
if (vma + bfd_get_section_size (sect) > high)
|
||
high = vma + bfd_get_section_size (sect);
|
||
|
||
data->segment_info[i] = 1;
|
||
}
|
||
|
||
data->segment_bases[0] = low;
|
||
data->segment_sizes[0] = high - low;
|
||
|
||
return data;
|
||
}
|
||
|
||
/* Process a symbol file, as either the main file or as a dynamically
|
||
loaded file.
|
||
|
||
OBJFILE is where the symbols are to be read from.
|
||
|
||
ADDRS is the list of section load addresses. If the user has given
|
||
an 'add-symbol-file' command, then this is the list of offsets and
|
||
addresses he or she provided as arguments to the command; or, if
|
||
we're handling a shared library, these are the actual addresses the
|
||
sections are loaded at, according to the inferior's dynamic linker
|
||
(as gleaned by GDB's shared library code). We convert each address
|
||
into an offset from the section VMA's as it appears in the object
|
||
file, and then call the file's sym_offsets function to convert this
|
||
into a format-specific offset table --- a `struct section_offsets'.
|
||
If ADDRS is non-zero, OFFSETS must be zero.
|
||
|
||
OFFSETS is a table of section offsets already in the right
|
||
format-specific representation. NUM_OFFSETS is the number of
|
||
elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
|
||
assume this is the proper table the call to sym_offsets described
|
||
above would produce. Instead of calling sym_offsets, we just dump
|
||
it right into objfile->section_offsets. (When we're re-reading
|
||
symbols from an objfile, we don't have the original load address
|
||
list any more; all we have is the section offset table.) If
|
||
OFFSETS is non-zero, ADDRS must be zero.
|
||
|
||
MAINLINE is nonzero if this is the main symbol file, or zero if
|
||
it's an extra symbol file such as dynamically loaded code.
|
||
|
||
VERBO is nonzero if the caller has printed a verbose message about
|
||
the symbol reading (and complaints can be more terse about it). */
|
||
|
||
void
|
||
syms_from_objfile (struct objfile *objfile,
|
||
struct section_addr_info *addrs,
|
||
struct section_offsets *offsets,
|
||
int num_offsets,
|
||
int mainline,
|
||
int verbo)
|
||
{
|
||
struct section_addr_info *local_addr = NULL;
|
||
struct cleanup *old_chain;
|
||
|
||
gdb_assert (! (addrs && offsets));
|
||
|
||
init_entry_point_info (objfile);
|
||
objfile->sf = find_sym_fns (objfile->obfd);
|
||
|
||
if (objfile->sf == NULL)
|
||
return; /* No symbols. */
|
||
|
||
/* Make sure that partially constructed symbol tables will be cleaned up
|
||
if an error occurs during symbol reading. */
|
||
old_chain = make_cleanup_free_objfile (objfile);
|
||
|
||
/* If ADDRS and OFFSETS are both NULL, put together a dummy address
|
||
list. We now establish the convention that an addr of zero means
|
||
no load address was specified. */
|
||
if (! addrs && ! offsets)
|
||
{
|
||
local_addr
|
||
= alloc_section_addr_info (bfd_count_sections (objfile->obfd));
|
||
make_cleanup (xfree, local_addr);
|
||
addrs = local_addr;
|
||
}
|
||
|
||
/* Now either addrs or offsets is non-zero. */
|
||
|
||
if (mainline)
|
||
{
|
||
/* We will modify the main symbol table, make sure that all its users
|
||
will be cleaned up if an error occurs during symbol reading. */
|
||
make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
|
||
|
||
/* Since no error yet, throw away the old symbol table. */
|
||
|
||
if (symfile_objfile != NULL)
|
||
{
|
||
free_objfile (symfile_objfile);
|
||
symfile_objfile = NULL;
|
||
}
|
||
|
||
/* Currently we keep symbols from the add-symbol-file command.
|
||
If the user wants to get rid of them, they should do "symbol-file"
|
||
without arguments first. Not sure this is the best behavior
|
||
(PR 2207). */
|
||
|
||
(*objfile->sf->sym_new_init) (objfile);
|
||
}
|
||
|
||
/* Convert addr into an offset rather than an absolute address.
|
||
We find the lowest address of a loaded segment in the objfile,
|
||
and assume that <addr> is where that got loaded.
|
||
|
||
We no longer warn if the lowest section is not a text segment (as
|
||
happens for the PA64 port. */
|
||
if (!mainline && addrs && addrs->other[0].name)
|
||
{
|
||
asection *lower_sect;
|
||
asection *sect;
|
||
CORE_ADDR lower_offset;
|
||
int i;
|
||
|
||
/* Find lowest loadable section to be used as starting point for
|
||
continguous sections. FIXME!! won't work without call to find
|
||
.text first, but this assumes text is lowest section. */
|
||
lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
|
||
if (lower_sect == NULL)
|
||
bfd_map_over_sections (objfile->obfd, find_lowest_section,
|
||
&lower_sect);
|
||
if (lower_sect == NULL)
|
||
{
|
||
warning (_("no loadable sections found in added symbol-file %s"),
|
||
objfile->name);
|
||
lower_offset = 0;
|
||
}
|
||
else
|
||
lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
|
||
|
||
/* Calculate offsets for the loadable sections.
|
||
FIXME! Sections must be in order of increasing loadable section
|
||
so that contiguous sections can use the lower-offset!!!
|
||
|
||
Adjust offsets if the segments are not contiguous.
|
||
If the section is contiguous, its offset should be set to
|
||
the offset of the highest loadable section lower than it
|
||
(the loadable section directly below it in memory).
|
||
this_offset = lower_offset = lower_addr - lower_orig_addr */
|
||
|
||
for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
|
||
{
|
||
if (addrs->other[i].addr != 0)
|
||
{
|
||
sect = bfd_get_section_by_name (objfile->obfd,
|
||
addrs->other[i].name);
|
||
if (sect)
|
||
{
|
||
addrs->other[i].addr
|
||
-= bfd_section_vma (objfile->obfd, sect);
|
||
lower_offset = addrs->other[i].addr;
|
||
/* This is the index used by BFD. */
|
||
addrs->other[i].sectindex = sect->index ;
|
||
}
|
||
else
|
||
{
|
||
warning (_("section %s not found in %s"),
|
||
addrs->other[i].name,
|
||
objfile->name);
|
||
addrs->other[i].addr = 0;
|
||
}
|
||
}
|
||
else
|
||
addrs->other[i].addr = lower_offset;
|
||
}
|
||
}
|
||
|
||
/* Initialize symbol reading routines for this objfile, allow complaints to
|
||
appear for this new file, and record how verbose to be, then do the
|
||
initial symbol reading for this file. */
|
||
|
||
(*objfile->sf->sym_init) (objfile);
|
||
clear_complaints (&symfile_complaints, 1, verbo);
|
||
|
||
if (addrs)
|
||
(*objfile->sf->sym_offsets) (objfile, addrs);
|
||
else
|
||
{
|
||
size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
|
||
|
||
/* Just copy in the offset table directly as given to us. */
|
||
objfile->num_sections = num_offsets;
|
||
objfile->section_offsets
|
||
= ((struct section_offsets *)
|
||
obstack_alloc (&objfile->objfile_obstack, size));
|
||
memcpy (objfile->section_offsets, offsets, size);
|
||
|
||
init_objfile_sect_indices (objfile);
|
||
}
|
||
|
||
(*objfile->sf->sym_read) (objfile, mainline);
|
||
|
||
/* Discard cleanups as symbol reading was successful. */
|
||
|
||
discard_cleanups (old_chain);
|
||
xfree (local_addr);
|
||
}
|
||
|
||
/* Perform required actions after either reading in the initial
|
||
symbols for a new objfile, or mapping in the symbols from a reusable
|
||
objfile. */
|
||
|
||
void
|
||
new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
|
||
{
|
||
|
||
/* If this is the main symbol file we have to clean up all users of the
|
||
old main symbol file. Otherwise it is sufficient to fixup all the
|
||
breakpoints that may have been redefined by this symbol file. */
|
||
if (mainline)
|
||
{
|
||
/* OK, make it the "real" symbol file. */
|
||
symfile_objfile = objfile;
|
||
|
||
clear_symtab_users ();
|
||
}
|
||
else
|
||
{
|
||
breakpoint_re_set ();
|
||
}
|
||
|
||
/* We're done reading the symbol file; finish off complaints. */
|
||
clear_complaints (&symfile_complaints, 0, verbo);
|
||
}
|
||
|
||
/* Process a symbol file, as either the main file or as a dynamically
|
||
loaded file.
|
||
|
||
ABFD is a BFD already open on the file, as from symfile_bfd_open.
|
||
This BFD will be closed on error, and is always consumed by this function.
|
||
|
||
FROM_TTY says how verbose to be.
|
||
|
||
MAINLINE specifies whether this is the main symbol file, or whether
|
||
it's an extra symbol file such as dynamically loaded code.
|
||
|
||
ADDRS, OFFSETS, and NUM_OFFSETS are as described for
|
||
syms_from_objfile, above. ADDRS is ignored when MAINLINE is
|
||
non-zero.
|
||
|
||
Upon success, returns a pointer to the objfile that was added.
|
||
Upon failure, jumps back to command level (never returns). */
|
||
static struct objfile *
|
||
symbol_file_add_with_addrs_or_offsets (bfd *abfd, int from_tty,
|
||
struct section_addr_info *addrs,
|
||
struct section_offsets *offsets,
|
||
int num_offsets,
|
||
int mainline, int flags)
|
||
{
|
||
struct objfile *objfile;
|
||
struct partial_symtab *psymtab;
|
||
char *debugfile = NULL;
|
||
struct section_addr_info *orig_addrs = NULL;
|
||
struct cleanup *my_cleanups;
|
||
const char *name = bfd_get_filename (abfd);
|
||
|
||
my_cleanups = make_cleanup_bfd_close (abfd);
|
||
|
||
/* Give user a chance to burp if we'd be
|
||
interactively wiping out any existing symbols. */
|
||
|
||
if ((have_full_symbols () || have_partial_symbols ())
|
||
&& mainline
|
||
&& from_tty
|
||
&& !query (_("Load new symbol table from \"%s\"? "), name))
|
||
error (_("Not confirmed."));
|
||
|
||
objfile = allocate_objfile (abfd, flags);
|
||
discard_cleanups (my_cleanups);
|
||
|
||
if (addrs)
|
||
{
|
||
orig_addrs = copy_section_addr_info (addrs);
|
||
make_cleanup_free_section_addr_info (orig_addrs);
|
||
}
|
||
|
||
/* We either created a new mapped symbol table, mapped an existing
|
||
symbol table file which has not had initial symbol reading
|
||
performed, or need to read an unmapped symbol table. */
|
||
if (from_tty || info_verbose)
|
||
{
|
||
if (deprecated_pre_add_symbol_hook)
|
||
deprecated_pre_add_symbol_hook (name);
|
||
else
|
||
{
|
||
if (print_symbol_loading)
|
||
{
|
||
printf_unfiltered (_("Reading symbols from %s..."), name);
|
||
wrap_here ("");
|
||
gdb_flush (gdb_stdout);
|
||
}
|
||
}
|
||
}
|
||
syms_from_objfile (objfile, addrs, offsets, num_offsets,
|
||
mainline, from_tty);
|
||
|
||
/* We now have at least a partial symbol table. Check to see if the
|
||
user requested that all symbols be read on initial access via either
|
||
the gdb startup command line or on a per symbol file basis. Expand
|
||
all partial symbol tables for this objfile if so. */
|
||
|
||
if ((flags & OBJF_READNOW) || readnow_symbol_files)
|
||
{
|
||
if ((from_tty || info_verbose) && print_symbol_loading)
|
||
{
|
||
printf_unfiltered (_("expanding to full symbols..."));
|
||
wrap_here ("");
|
||
gdb_flush (gdb_stdout);
|
||
}
|
||
|
||
for (psymtab = objfile->psymtabs;
|
||
psymtab != NULL;
|
||
psymtab = psymtab->next)
|
||
{
|
||
psymtab_to_symtab (psymtab);
|
||
}
|
||
}
|
||
|
||
/* If the file has its own symbol tables it has no separate debug info.
|
||
`.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to SYMTABS/PSYMTABS.
|
||
`.gnu_debuglink' may no longer be present with `.note.gnu.build-id'. */
|
||
if (objfile->psymtabs == NULL)
|
||
debugfile = find_separate_debug_file (objfile);
|
||
if (debugfile)
|
||
{
|
||
if (addrs != NULL)
|
||
{
|
||
objfile->separate_debug_objfile
|
||
= symbol_file_add (debugfile, from_tty, orig_addrs, 0, flags);
|
||
}
|
||
else
|
||
{
|
||
objfile->separate_debug_objfile
|
||
= symbol_file_add (debugfile, from_tty, NULL, 0, flags);
|
||
}
|
||
objfile->separate_debug_objfile->separate_debug_objfile_backlink
|
||
= objfile;
|
||
|
||
/* Put the separate debug object before the normal one, this is so that
|
||
usage of the ALL_OBJFILES_SAFE macro will stay safe. */
|
||
put_objfile_before (objfile->separate_debug_objfile, objfile);
|
||
|
||
xfree (debugfile);
|
||
}
|
||
|
||
if (!have_partial_symbols () && !have_full_symbols ()
|
||
&& print_symbol_loading)
|
||
{
|
||
wrap_here ("");
|
||
printf_unfiltered (_("(no debugging symbols found)"));
|
||
if (from_tty || info_verbose)
|
||
printf_unfiltered ("...");
|
||
else
|
||
printf_unfiltered ("\n");
|
||
wrap_here ("");
|
||
}
|
||
|
||
if (from_tty || info_verbose)
|
||
{
|
||
if (deprecated_post_add_symbol_hook)
|
||
deprecated_post_add_symbol_hook ();
|
||
else
|
||
{
|
||
if (print_symbol_loading)
|
||
printf_unfiltered (_("done.\n"));
|
||
}
|
||
}
|
||
|
||
/* We print some messages regardless of whether 'from_tty ||
|
||
info_verbose' is true, so make sure they go out at the right
|
||
time. */
|
||
gdb_flush (gdb_stdout);
|
||
|
||
do_cleanups (my_cleanups);
|
||
|
||
if (objfile->sf == NULL)
|
||
return objfile; /* No symbols. */
|
||
|
||
new_symfile_objfile (objfile, mainline, from_tty);
|
||
|
||
observer_notify_new_objfile (objfile);
|
||
|
||
bfd_cache_close_all ();
|
||
return (objfile);
|
||
}
|
||
|
||
|
||
/* Process the symbol file ABFD, as either the main file or as a
|
||
dynamically loaded file.
|
||
|
||
See symbol_file_add_with_addrs_or_offsets's comments for
|
||
details. */
|
||
struct objfile *
|
||
symbol_file_add_from_bfd (bfd *abfd, int from_tty,
|
||
struct section_addr_info *addrs,
|
||
int mainline, int flags)
|
||
{
|
||
return symbol_file_add_with_addrs_or_offsets (abfd,
|
||
from_tty, addrs, 0, 0,
|
||
mainline, flags);
|
||
}
|
||
|
||
|
||
/* Process a symbol file, as either the main file or as a dynamically
|
||
loaded file. See symbol_file_add_with_addrs_or_offsets's comments
|
||
for details. */
|
||
struct objfile *
|
||
symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
|
||
int mainline, int flags)
|
||
{
|
||
return symbol_file_add_from_bfd (symfile_bfd_open (name), from_tty,
|
||
addrs, mainline, flags);
|
||
}
|
||
|
||
|
||
/* Call symbol_file_add() with default values and update whatever is
|
||
affected by the loading of a new main().
|
||
Used when the file is supplied in the gdb command line
|
||
and by some targets with special loading requirements.
|
||
The auxiliary function, symbol_file_add_main_1(), has the flags
|
||
argument for the switches that can only be specified in the symbol_file
|
||
command itself. */
|
||
|
||
void
|
||
symbol_file_add_main (char *args, int from_tty)
|
||
{
|
||
symbol_file_add_main_1 (args, from_tty, 0);
|
||
}
|
||
|
||
static void
|
||
symbol_file_add_main_1 (char *args, int from_tty, int flags)
|
||
{
|
||
symbol_file_add (args, from_tty, NULL, 1, flags);
|
||
|
||
/* Getting new symbols may change our opinion about
|
||
what is frameless. */
|
||
reinit_frame_cache ();
|
||
|
||
set_initial_language ();
|
||
}
|
||
|
||
void
|
||
symbol_file_clear (int from_tty)
|
||
{
|
||
if ((have_full_symbols () || have_partial_symbols ())
|
||
&& from_tty
|
||
&& (symfile_objfile
|
||
? !query (_("Discard symbol table from `%s'? "),
|
||
symfile_objfile->name)
|
||
: !query (_("Discard symbol table? "))))
|
||
error (_("Not confirmed."));
|
||
|
||
free_all_objfiles ();
|
||
|
||
/* solib descriptors may have handles to objfiles. Since their
|
||
storage has just been released, we'd better wipe the solib
|
||
descriptors as well. */
|
||
no_shared_libraries (NULL, from_tty);
|
||
|
||
symfile_objfile = NULL;
|
||
if (from_tty)
|
||
printf_unfiltered (_("No symbol file now.\n"));
|
||
}
|
||
|
||
struct build_id
|
||
{
|
||
size_t size;
|
||
gdb_byte data[1];
|
||
};
|
||
|
||
/* Locate NT_GNU_BUILD_ID from ABFD and return its content. */
|
||
|
||
static struct build_id *
|
||
build_id_bfd_get (bfd *abfd)
|
||
{
|
||
struct build_id *retval;
|
||
|
||
if (!bfd_check_format (abfd, bfd_object)
|
||
|| bfd_get_flavour (abfd) != bfd_target_elf_flavour
|
||
|| elf_tdata (abfd)->build_id == NULL)
|
||
return NULL;
|
||
|
||
retval = xmalloc (sizeof *retval - 1 + elf_tdata (abfd)->build_id_size);
|
||
retval->size = elf_tdata (abfd)->build_id_size;
|
||
memcpy (retval->data, elf_tdata (abfd)->build_id, retval->size);
|
||
|
||
return retval;
|
||
}
|
||
|
||
/* Return if FILENAME has NT_GNU_BUILD_ID matching the CHECK value. */
|
||
|
||
static int
|
||
build_id_verify (const char *filename, struct build_id *check)
|
||
{
|
||
bfd *abfd;
|
||
struct build_id *found = NULL;
|
||
int retval = 0;
|
||
|
||
/* We expect to be silent on the non-existing files. */
|
||
if (remote_filename_p (filename))
|
||
abfd = remote_bfd_open (filename, gnutarget);
|
||
else
|
||
abfd = bfd_openr (filename, gnutarget);
|
||
if (abfd == NULL)
|
||
return 0;
|
||
|
||
found = build_id_bfd_get (abfd);
|
||
|
||
if (found == NULL)
|
||
warning (_("File \"%s\" has no build-id, file skipped"), filename);
|
||
else if (found->size != check->size
|
||
|| memcmp (found->data, check->data, found->size) != 0)
|
||
warning (_("File \"%s\" has a different build-id, file skipped"), filename);
|
||
else
|
||
retval = 1;
|
||
|
||
if (!bfd_close (abfd))
|
||
warning (_("cannot close \"%s\": %s"), filename,
|
||
bfd_errmsg (bfd_get_error ()));
|
||
|
||
xfree (found);
|
||
|
||
return retval;
|
||
}
|
||
|
||
static char *
|
||
build_id_to_debug_filename (struct build_id *build_id)
|
||
{
|
||
char *link, *s, *retval = NULL;
|
||
gdb_byte *data = build_id->data;
|
||
size_t size = build_id->size;
|
||
|
||
/* DEBUG_FILE_DIRECTORY/.build-id/ab/cdef */
|
||
link = xmalloc (strlen (debug_file_directory) + (sizeof "/.build-id/" - 1) + 1
|
||
+ 2 * size + (sizeof ".debug" - 1) + 1);
|
||
s = link + sprintf (link, "%s/.build-id/", debug_file_directory);
|
||
if (size > 0)
|
||
{
|
||
size--;
|
||
s += sprintf (s, "%02x", (unsigned) *data++);
|
||
}
|
||
if (size > 0)
|
||
*s++ = '/';
|
||
while (size-- > 0)
|
||
s += sprintf (s, "%02x", (unsigned) *data++);
|
||
strcpy (s, ".debug");
|
||
|
||
/* lrealpath() is expensive even for the usually non-existent files. */
|
||
if (access (link, F_OK) == 0)
|
||
retval = lrealpath (link);
|
||
xfree (link);
|
||
|
||
if (retval != NULL && !build_id_verify (retval, build_id))
|
||
{
|
||
xfree (retval);
|
||
retval = NULL;
|
||
}
|
||
|
||
return retval;
|
||
}
|
||
|
||
static char *
|
||
get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
|
||
{
|
||
asection *sect;
|
||
bfd_size_type debuglink_size;
|
||
unsigned long crc32;
|
||
char *contents;
|
||
int crc_offset;
|
||
unsigned char *p;
|
||
|
||
sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
|
||
|
||
if (sect == NULL)
|
||
return NULL;
|
||
|
||
debuglink_size = bfd_section_size (objfile->obfd, sect);
|
||
|
||
contents = xmalloc (debuglink_size);
|
||
bfd_get_section_contents (objfile->obfd, sect, contents,
|
||
(file_ptr)0, (bfd_size_type)debuglink_size);
|
||
|
||
/* Crc value is stored after the filename, aligned up to 4 bytes. */
|
||
crc_offset = strlen (contents) + 1;
|
||
crc_offset = (crc_offset + 3) & ~3;
|
||
|
||
crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
|
||
|
||
*crc32_out = crc32;
|
||
return contents;
|
||
}
|
||
|
||
static int
|
||
separate_debug_file_exists (const char *name, unsigned long crc)
|
||
{
|
||
unsigned long file_crc = 0;
|
||
bfd *abfd;
|
||
gdb_byte buffer[8*1024];
|
||
int count;
|
||
|
||
if (remote_filename_p (name))
|
||
abfd = remote_bfd_open (name, gnutarget);
|
||
else
|
||
abfd = bfd_openr (name, gnutarget);
|
||
|
||
if (!abfd)
|
||
return 0;
|
||
|
||
while ((count = bfd_bread (buffer, sizeof (buffer), abfd)) > 0)
|
||
file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
|
||
|
||
bfd_close (abfd);
|
||
|
||
return crc == file_crc;
|
||
}
|
||
|
||
char *debug_file_directory = NULL;
|
||
static void
|
||
show_debug_file_directory (struct ui_file *file, int from_tty,
|
||
struct cmd_list_element *c, const char *value)
|
||
{
|
||
fprintf_filtered (file, _("\
|
||
The directory where separate debug symbols are searched for is \"%s\".\n"),
|
||
value);
|
||
}
|
||
|
||
#if ! defined (DEBUG_SUBDIRECTORY)
|
||
#define DEBUG_SUBDIRECTORY ".debug"
|
||
#endif
|
||
|
||
static char *
|
||
find_separate_debug_file (struct objfile *objfile)
|
||
{
|
||
asection *sect;
|
||
char *basename;
|
||
char *dir;
|
||
char *debugfile;
|
||
char *name_copy;
|
||
char *canon_name;
|
||
bfd_size_type debuglink_size;
|
||
unsigned long crc32;
|
||
int i;
|
||
struct build_id *build_id;
|
||
|
||
build_id = build_id_bfd_get (objfile->obfd);
|
||
if (build_id != NULL)
|
||
{
|
||
char *build_id_name;
|
||
|
||
build_id_name = build_id_to_debug_filename (build_id);
|
||
xfree (build_id);
|
||
/* Prevent looping on a stripped .debug file. */
|
||
if (build_id_name != NULL && strcmp (build_id_name, objfile->name) == 0)
|
||
{
|
||
warning (_("\"%s\": separate debug info file has no debug info"),
|
||
build_id_name);
|
||
xfree (build_id_name);
|
||
}
|
||
else if (build_id_name != NULL)
|
||
return build_id_name;
|
||
}
|
||
|
||
basename = get_debug_link_info (objfile, &crc32);
|
||
|
||
if (basename == NULL)
|
||
return NULL;
|
||
|
||
dir = xstrdup (objfile->name);
|
||
|
||
/* Strip off the final filename part, leaving the directory name,
|
||
followed by a slash. Objfile names should always be absolute and
|
||
tilde-expanded, so there should always be a slash in there
|
||
somewhere. */
|
||
for (i = strlen(dir) - 1; i >= 0; i--)
|
||
{
|
||
if (IS_DIR_SEPARATOR (dir[i]))
|
||
break;
|
||
}
|
||
gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
|
||
dir[i+1] = '\0';
|
||
|
||
debugfile = alloca (strlen (debug_file_directory) + 1
|
||
+ strlen (dir)
|
||
+ strlen (DEBUG_SUBDIRECTORY)
|
||
+ strlen ("/")
|
||
+ strlen (basename)
|
||
+ 1);
|
||
|
||
/* First try in the same directory as the original file. */
|
||
strcpy (debugfile, dir);
|
||
strcat (debugfile, basename);
|
||
|
||
if (separate_debug_file_exists (debugfile, crc32))
|
||
{
|
||
xfree (basename);
|
||
xfree (dir);
|
||
return xstrdup (debugfile);
|
||
}
|
||
|
||
/* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
|
||
strcpy (debugfile, dir);
|
||
strcat (debugfile, DEBUG_SUBDIRECTORY);
|
||
strcat (debugfile, "/");
|
||
strcat (debugfile, basename);
|
||
|
||
if (separate_debug_file_exists (debugfile, crc32))
|
||
{
|
||
xfree (basename);
|
||
xfree (dir);
|
||
return xstrdup (debugfile);
|
||
}
|
||
|
||
/* Then try in the global debugfile directory. */
|
||
strcpy (debugfile, debug_file_directory);
|
||
strcat (debugfile, "/");
|
||
strcat (debugfile, dir);
|
||
strcat (debugfile, basename);
|
||
|
||
if (separate_debug_file_exists (debugfile, crc32))
|
||
{
|
||
xfree (basename);
|
||
xfree (dir);
|
||
return xstrdup (debugfile);
|
||
}
|
||
|
||
/* If the file is in the sysroot, try using its base path in the
|
||
global debugfile directory. */
|
||
canon_name = lrealpath (dir);
|
||
if (canon_name
|
||
&& strncmp (canon_name, gdb_sysroot, strlen (gdb_sysroot)) == 0
|
||
&& IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
|
||
{
|
||
strcpy (debugfile, debug_file_directory);
|
||
strcat (debugfile, canon_name + strlen (gdb_sysroot));
|
||
strcat (debugfile, "/");
|
||
strcat (debugfile, basename);
|
||
|
||
if (separate_debug_file_exists (debugfile, crc32))
|
||
{
|
||
xfree (canon_name);
|
||
xfree (basename);
|
||
xfree (dir);
|
||
return xstrdup (debugfile);
|
||
}
|
||
}
|
||
|
||
if (canon_name)
|
||
xfree (canon_name);
|
||
|
||
xfree (basename);
|
||
xfree (dir);
|
||
return NULL;
|
||
}
|
||
|
||
|
||
/* This is the symbol-file command. Read the file, analyze its
|
||
symbols, and add a struct symtab to a symtab list. The syntax of
|
||
the command is rather bizarre:
|
||
|
||
1. The function buildargv implements various quoting conventions
|
||
which are undocumented and have little or nothing in common with
|
||
the way things are quoted (or not quoted) elsewhere in GDB.
|
||
|
||
2. Options are used, which are not generally used in GDB (perhaps
|
||
"set mapped on", "set readnow on" would be better)
|
||
|
||
3. The order of options matters, which is contrary to GNU
|
||
conventions (because it is confusing and inconvenient). */
|
||
|
||
void
|
||
symbol_file_command (char *args, int from_tty)
|
||
{
|
||
dont_repeat ();
|
||
|
||
if (args == NULL)
|
||
{
|
||
symbol_file_clear (from_tty);
|
||
}
|
||
else
|
||
{
|
||
char **argv = gdb_buildargv (args);
|
||
int flags = OBJF_USERLOADED;
|
||
struct cleanup *cleanups;
|
||
char *name = NULL;
|
||
|
||
cleanups = make_cleanup_freeargv (argv);
|
||
while (*argv != NULL)
|
||
{
|
||
if (strcmp (*argv, "-readnow") == 0)
|
||
flags |= OBJF_READNOW;
|
||
else if (**argv == '-')
|
||
error (_("unknown option `%s'"), *argv);
|
||
else
|
||
{
|
||
symbol_file_add_main_1 (*argv, from_tty, flags);
|
||
name = *argv;
|
||
}
|
||
|
||
argv++;
|
||
}
|
||
|
||
if (name == NULL)
|
||
error (_("no symbol file name was specified"));
|
||
|
||
do_cleanups (cleanups);
|
||
}
|
||
}
|
||
|
||
/* Set the initial language.
|
||
|
||
FIXME: A better solution would be to record the language in the
|
||
psymtab when reading partial symbols, and then use it (if known) to
|
||
set the language. This would be a win for formats that encode the
|
||
language in an easily discoverable place, such as DWARF. For
|
||
stabs, we can jump through hoops looking for specially named
|
||
symbols or try to intuit the language from the specific type of
|
||
stabs we find, but we can't do that until later when we read in
|
||
full symbols. */
|
||
|
||
void
|
||
set_initial_language (void)
|
||
{
|
||
struct partial_symtab *pst;
|
||
enum language lang = language_unknown;
|
||
|
||
pst = find_main_psymtab ();
|
||
if (pst != NULL)
|
||
{
|
||
if (pst->filename != NULL)
|
||
lang = deduce_language_from_filename (pst->filename);
|
||
|
||
if (lang == language_unknown)
|
||
{
|
||
/* Make C the default language */
|
||
lang = language_c;
|
||
}
|
||
|
||
set_language (lang);
|
||
expected_language = current_language; /* Don't warn the user. */
|
||
}
|
||
}
|
||
|
||
/* Open the file specified by NAME and hand it off to BFD for
|
||
preliminary analysis. Return a newly initialized bfd *, which
|
||
includes a newly malloc'd` copy of NAME (tilde-expanded and made
|
||
absolute). In case of trouble, error() is called. */
|
||
|
||
bfd *
|
||
symfile_bfd_open (char *name)
|
||
{
|
||
bfd *sym_bfd;
|
||
int desc;
|
||
char *absolute_name;
|
||
|
||
if (remote_filename_p (name))
|
||
{
|
||
name = xstrdup (name);
|
||
sym_bfd = remote_bfd_open (name, gnutarget);
|
||
if (!sym_bfd)
|
||
{
|
||
make_cleanup (xfree, name);
|
||
error (_("`%s': can't open to read symbols: %s."), name,
|
||
bfd_errmsg (bfd_get_error ()));
|
||
}
|
||
|
||
if (!bfd_check_format (sym_bfd, bfd_object))
|
||
{
|
||
bfd_close (sym_bfd);
|
||
make_cleanup (xfree, name);
|
||
error (_("`%s': can't read symbols: %s."), name,
|
||
bfd_errmsg (bfd_get_error ()));
|
||
}
|
||
|
||
return sym_bfd;
|
||
}
|
||
|
||
name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
|
||
|
||
/* Look down path for it, allocate 2nd new malloc'd copy. */
|
||
desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
|
||
O_RDONLY | O_BINARY, 0, &absolute_name);
|
||
#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
|
||
if (desc < 0)
|
||
{
|
||
char *exename = alloca (strlen (name) + 5);
|
||
strcat (strcpy (exename, name), ".exe");
|
||
desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
|
||
O_RDONLY | O_BINARY, 0, &absolute_name);
|
||
}
|
||
#endif
|
||
if (desc < 0)
|
||
{
|
||
make_cleanup (xfree, name);
|
||
perror_with_name (name);
|
||
}
|
||
|
||
/* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
|
||
bfd. It'll be freed in free_objfile(). */
|
||
xfree (name);
|
||
name = absolute_name;
|
||
|
||
sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
|
||
if (!sym_bfd)
|
||
{
|
||
close (desc);
|
||
make_cleanup (xfree, name);
|
||
error (_("`%s': can't open to read symbols: %s."), name,
|
||
bfd_errmsg (bfd_get_error ()));
|
||
}
|
||
bfd_set_cacheable (sym_bfd, 1);
|
||
|
||
if (!bfd_check_format (sym_bfd, bfd_object))
|
||
{
|
||
/* FIXME: should be checking for errors from bfd_close (for one
|
||
thing, on error it does not free all the storage associated
|
||
with the bfd). */
|
||
bfd_close (sym_bfd); /* This also closes desc. */
|
||
make_cleanup (xfree, name);
|
||
error (_("`%s': can't read symbols: %s."), name,
|
||
bfd_errmsg (bfd_get_error ()));
|
||
}
|
||
|
||
return sym_bfd;
|
||
}
|
||
|
||
/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
|
||
the section was not found. */
|
||
|
||
int
|
||
get_section_index (struct objfile *objfile, char *section_name)
|
||
{
|
||
asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
|
||
|
||
if (sect)
|
||
return sect->index;
|
||
else
|
||
return -1;
|
||
}
|
||
|
||
/* Link SF into the global symtab_fns list. Called on startup by the
|
||
_initialize routine in each object file format reader, to register
|
||
information about each format the the reader is prepared to
|
||
handle. */
|
||
|
||
void
|
||
add_symtab_fns (struct sym_fns *sf)
|
||
{
|
||
sf->next = symtab_fns;
|
||
symtab_fns = sf;
|
||
}
|
||
|
||
/* Initialize OBJFILE to read symbols from its associated BFD. It
|
||
either returns or calls error(). The result is an initialized
|
||
struct sym_fns in the objfile structure, that contains cached
|
||
information about the symbol file. */
|
||
|
||
static struct sym_fns *
|
||
find_sym_fns (bfd *abfd)
|
||
{
|
||
struct sym_fns *sf;
|
||
enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
|
||
|
||
if (our_flavour == bfd_target_srec_flavour
|
||
|| our_flavour == bfd_target_ihex_flavour
|
||
|| our_flavour == bfd_target_tekhex_flavour)
|
||
return NULL; /* No symbols. */
|
||
|
||
for (sf = symtab_fns; sf != NULL; sf = sf->next)
|
||
if (our_flavour == sf->sym_flavour)
|
||
return sf;
|
||
|
||
error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
|
||
bfd_get_target (abfd));
|
||
}
|
||
|
||
|
||
/* This function runs the load command of our current target. */
|
||
|
||
static void
|
||
load_command (char *arg, int from_tty)
|
||
{
|
||
/* The user might be reloading because the binary has changed. Take
|
||
this opportunity to check. */
|
||
reopen_exec_file ();
|
||
reread_symbols ();
|
||
|
||
if (arg == NULL)
|
||
{
|
||
char *parg;
|
||
int count = 0;
|
||
|
||
parg = arg = get_exec_file (1);
|
||
|
||
/* Count how many \ " ' tab space there are in the name. */
|
||
while ((parg = strpbrk (parg, "\\\"'\t ")))
|
||
{
|
||
parg++;
|
||
count++;
|
||
}
|
||
|
||
if (count)
|
||
{
|
||
/* We need to quote this string so buildargv can pull it apart. */
|
||
char *temp = xmalloc (strlen (arg) + count + 1 );
|
||
char *ptemp = temp;
|
||
char *prev;
|
||
|
||
make_cleanup (xfree, temp);
|
||
|
||
prev = parg = arg;
|
||
while ((parg = strpbrk (parg, "\\\"'\t ")))
|
||
{
|
||
strncpy (ptemp, prev, parg - prev);
|
||
ptemp += parg - prev;
|
||
prev = parg++;
|
||
*ptemp++ = '\\';
|
||
}
|
||
strcpy (ptemp, prev);
|
||
|
||
arg = temp;
|
||
}
|
||
}
|
||
|
||
target_load (arg, from_tty);
|
||
|
||
/* After re-loading the executable, we don't really know which
|
||
overlays are mapped any more. */
|
||
overlay_cache_invalid = 1;
|
||
}
|
||
|
||
/* This version of "load" should be usable for any target. Currently
|
||
it is just used for remote targets, not inftarg.c or core files,
|
||
on the theory that only in that case is it useful.
|
||
|
||
Avoiding xmodem and the like seems like a win (a) because we don't have
|
||
to worry about finding it, and (b) On VMS, fork() is very slow and so
|
||
we don't want to run a subprocess. On the other hand, I'm not sure how
|
||
performance compares. */
|
||
|
||
static int validate_download = 0;
|
||
|
||
/* Callback service function for generic_load (bfd_map_over_sections). */
|
||
|
||
static void
|
||
add_section_size_callback (bfd *abfd, asection *asec, void *data)
|
||
{
|
||
bfd_size_type *sum = data;
|
||
|
||
*sum += bfd_get_section_size (asec);
|
||
}
|
||
|
||
/* Opaque data for load_section_callback. */
|
||
struct load_section_data {
|
||
unsigned long load_offset;
|
||
struct load_progress_data *progress_data;
|
||
VEC(memory_write_request_s) *requests;
|
||
};
|
||
|
||
/* Opaque data for load_progress. */
|
||
struct load_progress_data {
|
||
/* Cumulative data. */
|
||
unsigned long write_count;
|
||
unsigned long data_count;
|
||
bfd_size_type total_size;
|
||
};
|
||
|
||
/* Opaque data for load_progress for a single section. */
|
||
struct load_progress_section_data {
|
||
struct load_progress_data *cumulative;
|
||
|
||
/* Per-section data. */
|
||
const char *section_name;
|
||
ULONGEST section_sent;
|
||
ULONGEST section_size;
|
||
CORE_ADDR lma;
|
||
gdb_byte *buffer;
|
||
};
|
||
|
||
/* Target write callback routine for progress reporting. */
|
||
|
||
static void
|
||
load_progress (ULONGEST bytes, void *untyped_arg)
|
||
{
|
||
struct load_progress_section_data *args = untyped_arg;
|
||
struct load_progress_data *totals;
|
||
|
||
if (args == NULL)
|
||
/* Writing padding data. No easy way to get at the cumulative
|
||
stats, so just ignore this. */
|
||
return;
|
||
|
||
totals = args->cumulative;
|
||
|
||
if (bytes == 0 && args->section_sent == 0)
|
||
{
|
||
/* The write is just starting. Let the user know we've started
|
||
this section. */
|
||
ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
|
||
args->section_name, paddr_nz (args->section_size),
|
||
paddr_nz (args->lma));
|
||
return;
|
||
}
|
||
|
||
if (validate_download)
|
||
{
|
||
/* Broken memories and broken monitors manifest themselves here
|
||
when bring new computers to life. This doubles already slow
|
||
downloads. */
|
||
/* NOTE: cagney/1999-10-18: A more efficient implementation
|
||
might add a verify_memory() method to the target vector and
|
||
then use that. remote.c could implement that method using
|
||
the ``qCRC'' packet. */
|
||
gdb_byte *check = xmalloc (bytes);
|
||
struct cleanup *verify_cleanups = make_cleanup (xfree, check);
|
||
|
||
if (target_read_memory (args->lma, check, bytes) != 0)
|
||
error (_("Download verify read failed at 0x%s"),
|
||
paddr (args->lma));
|
||
if (memcmp (args->buffer, check, bytes) != 0)
|
||
error (_("Download verify compare failed at 0x%s"),
|
||
paddr (args->lma));
|
||
do_cleanups (verify_cleanups);
|
||
}
|
||
totals->data_count += bytes;
|
||
args->lma += bytes;
|
||
args->buffer += bytes;
|
||
totals->write_count += 1;
|
||
args->section_sent += bytes;
|
||
if (quit_flag
|
||
|| (deprecated_ui_load_progress_hook != NULL
|
||
&& deprecated_ui_load_progress_hook (args->section_name,
|
||
args->section_sent)))
|
||
error (_("Canceled the download"));
|
||
|
||
if (deprecated_show_load_progress != NULL)
|
||
deprecated_show_load_progress (args->section_name,
|
||
args->section_sent,
|
||
args->section_size,
|
||
totals->data_count,
|
||
totals->total_size);
|
||
}
|
||
|
||
/* Callback service function for generic_load (bfd_map_over_sections). */
|
||
|
||
static void
|
||
load_section_callback (bfd *abfd, asection *asec, void *data)
|
||
{
|
||
struct memory_write_request *new_request;
|
||
struct load_section_data *args = data;
|
||
struct load_progress_section_data *section_data;
|
||
bfd_size_type size = bfd_get_section_size (asec);
|
||
gdb_byte *buffer;
|
||
const char *sect_name = bfd_get_section_name (abfd, asec);
|
||
|
||
if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
|
||
return;
|
||
|
||
if (size == 0)
|
||
return;
|
||
|
||
new_request = VEC_safe_push (memory_write_request_s,
|
||
args->requests, NULL);
|
||
memset (new_request, 0, sizeof (struct memory_write_request));
|
||
section_data = xcalloc (1, sizeof (struct load_progress_section_data));
|
||
new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
|
||
new_request->end = new_request->begin + size; /* FIXME Should size be in instead? */
|
||
new_request->data = xmalloc (size);
|
||
new_request->baton = section_data;
|
||
|
||
buffer = new_request->data;
|
||
|
||
section_data->cumulative = args->progress_data;
|
||
section_data->section_name = sect_name;
|
||
section_data->section_size = size;
|
||
section_data->lma = new_request->begin;
|
||
section_data->buffer = buffer;
|
||
|
||
bfd_get_section_contents (abfd, asec, buffer, 0, size);
|
||
}
|
||
|
||
/* Clean up an entire memory request vector, including load
|
||
data and progress records. */
|
||
|
||
static void
|
||
clear_memory_write_data (void *arg)
|
||
{
|
||
VEC(memory_write_request_s) **vec_p = arg;
|
||
VEC(memory_write_request_s) *vec = *vec_p;
|
||
int i;
|
||
struct memory_write_request *mr;
|
||
|
||
for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
|
||
{
|
||
xfree (mr->data);
|
||
xfree (mr->baton);
|
||
}
|
||
VEC_free (memory_write_request_s, vec);
|
||
}
|
||
|
||
void
|
||
generic_load (char *args, int from_tty)
|
||
{
|
||
bfd *loadfile_bfd;
|
||
struct timeval start_time, end_time;
|
||
char *filename;
|
||
struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
|
||
struct load_section_data cbdata;
|
||
struct load_progress_data total_progress;
|
||
|
||
CORE_ADDR entry;
|
||
char **argv;
|
||
|
||
memset (&cbdata, 0, sizeof (cbdata));
|
||
memset (&total_progress, 0, sizeof (total_progress));
|
||
cbdata.progress_data = &total_progress;
|
||
|
||
make_cleanup (clear_memory_write_data, &cbdata.requests);
|
||
|
||
if (args == NULL)
|
||
error_no_arg (_("file to load"));
|
||
|
||
argv = gdb_buildargv (args);
|
||
make_cleanup_freeargv (argv);
|
||
|
||
filename = tilde_expand (argv[0]);
|
||
make_cleanup (xfree, filename);
|
||
|
||
if (argv[1] != NULL)
|
||
{
|
||
char *endptr;
|
||
|
||
cbdata.load_offset = strtoul (argv[1], &endptr, 0);
|
||
|
||
/* If the last word was not a valid number then
|
||
treat it as a file name with spaces in. */
|
||
if (argv[1] == endptr)
|
||
error (_("Invalid download offset:%s."), argv[1]);
|
||
|
||
if (argv[2] != NULL)
|
||
error (_("Too many parameters."));
|
||
}
|
||
|
||
/* Open the file for loading. */
|
||
loadfile_bfd = bfd_openr (filename, gnutarget);
|
||
if (loadfile_bfd == NULL)
|
||
{
|
||
perror_with_name (filename);
|
||
return;
|
||
}
|
||
|
||
/* FIXME: should be checking for errors from bfd_close (for one thing,
|
||
on error it does not free all the storage associated with the
|
||
bfd). */
|
||
make_cleanup_bfd_close (loadfile_bfd);
|
||
|
||
if (!bfd_check_format (loadfile_bfd, bfd_object))
|
||
{
|
||
error (_("\"%s\" is not an object file: %s"), filename,
|
||
bfd_errmsg (bfd_get_error ()));
|
||
}
|
||
|
||
bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
|
||
(void *) &total_progress.total_size);
|
||
|
||
bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
|
||
|
||
gettimeofday (&start_time, NULL);
|
||
|
||
if (target_write_memory_blocks (cbdata.requests, flash_discard,
|
||
load_progress) != 0)
|
||
error (_("Load failed"));
|
||
|
||
gettimeofday (&end_time, NULL);
|
||
|
||
entry = bfd_get_start_address (loadfile_bfd);
|
||
ui_out_text (uiout, "Start address ");
|
||
ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
|
||
ui_out_text (uiout, ", load size ");
|
||
ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
|
||
ui_out_text (uiout, "\n");
|
||
/* We were doing this in remote-mips.c, I suspect it is right
|
||
for other targets too. */
|
||
write_pc (entry);
|
||
|
||
/* FIXME: are we supposed to call symbol_file_add or not? According
|
||
to a comment from remote-mips.c (where a call to symbol_file_add
|
||
was commented out), making the call confuses GDB if more than one
|
||
file is loaded in. Some targets do (e.g., remote-vx.c) but
|
||
others don't (or didn't - perhaps they have all been deleted). */
|
||
|
||
print_transfer_performance (gdb_stdout, total_progress.data_count,
|
||
total_progress.write_count,
|
||
&start_time, &end_time);
|
||
|
||
do_cleanups (old_cleanups);
|
||
}
|
||
|
||
/* Report how fast the transfer went. */
|
||
|
||
/* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
|
||
replaced by print_transfer_performance (with a very different
|
||
function signature). */
|
||
|
||
void
|
||
report_transfer_performance (unsigned long data_count, time_t start_time,
|
||
time_t end_time)
|
||
{
|
||
struct timeval start, end;
|
||
|
||
start.tv_sec = start_time;
|
||
start.tv_usec = 0;
|
||
end.tv_sec = end_time;
|
||
end.tv_usec = 0;
|
||
|
||
print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
|
||
}
|
||
|
||
void
|
||
print_transfer_performance (struct ui_file *stream,
|
||
unsigned long data_count,
|
||
unsigned long write_count,
|
||
const struct timeval *start_time,
|
||
const struct timeval *end_time)
|
||
{
|
||
ULONGEST time_count;
|
||
|
||
/* Compute the elapsed time in milliseconds, as a tradeoff between
|
||
accuracy and overflow. */
|
||
time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
|
||
time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
|
||
|
||
ui_out_text (uiout, "Transfer rate: ");
|
||
if (time_count > 0)
|
||
{
|
||
unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
|
||
|
||
if (ui_out_is_mi_like_p (uiout))
|
||
{
|
||
ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
|
||
ui_out_text (uiout, " bits/sec");
|
||
}
|
||
else if (rate < 1024)
|
||
{
|
||
ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
|
||
ui_out_text (uiout, " bytes/sec");
|
||
}
|
||
else
|
||
{
|
||
ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
|
||
ui_out_text (uiout, " KB/sec");
|
||
}
|
||
}
|
||
else
|
||
{
|
||
ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
|
||
ui_out_text (uiout, " bits in <1 sec");
|
||
}
|
||
if (write_count > 0)
|
||
{
|
||
ui_out_text (uiout, ", ");
|
||
ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
|
||
ui_out_text (uiout, " bytes/write");
|
||
}
|
||
ui_out_text (uiout, ".\n");
|
||
}
|
||
|
||
/* This function allows the addition of incrementally linked object files.
|
||
It does not modify any state in the target, only in the debugger. */
|
||
/* Note: ezannoni 2000-04-13 This function/command used to have a
|
||
special case syntax for the rombug target (Rombug is the boot
|
||
monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
|
||
rombug case, the user doesn't need to supply a text address,
|
||
instead a call to target_link() (in target.c) would supply the
|
||
value to use. We are now discontinuing this type of ad hoc syntax. */
|
||
|
||
static void
|
||
add_symbol_file_command (char *args, int from_tty)
|
||
{
|
||
char *filename = NULL;
|
||
int flags = OBJF_USERLOADED;
|
||
char *arg;
|
||
int expecting_option = 0;
|
||
int section_index = 0;
|
||
int argcnt = 0;
|
||
int sec_num = 0;
|
||
int i;
|
||
int expecting_sec_name = 0;
|
||
int expecting_sec_addr = 0;
|
||
char **argv;
|
||
|
||
struct sect_opt
|
||
{
|
||
char *name;
|
||
char *value;
|
||
};
|
||
|
||
struct section_addr_info *section_addrs;
|
||
struct sect_opt *sect_opts = NULL;
|
||
size_t num_sect_opts = 0;
|
||
struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
|
||
|
||
num_sect_opts = 16;
|
||
sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
|
||
* sizeof (struct sect_opt));
|
||
|
||
dont_repeat ();
|
||
|
||
if (args == NULL)
|
||
error (_("add-symbol-file takes a file name and an address"));
|
||
|
||
argv = gdb_buildargv (args);
|
||
make_cleanup_freeargv (argv);
|
||
|
||
for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
|
||
{
|
||
/* Process the argument. */
|
||
if (argcnt == 0)
|
||
{
|
||
/* The first argument is the file name. */
|
||
filename = tilde_expand (arg);
|
||
make_cleanup (xfree, filename);
|
||
}
|
||
else
|
||
if (argcnt == 1)
|
||
{
|
||
/* The second argument is always the text address at which
|
||
to load the program. */
|
||
sect_opts[section_index].name = ".text";
|
||
sect_opts[section_index].value = arg;
|
||
if (++section_index >= num_sect_opts)
|
||
{
|
||
num_sect_opts *= 2;
|
||
sect_opts = ((struct sect_opt *)
|
||
xrealloc (sect_opts,
|
||
num_sect_opts
|
||
* sizeof (struct sect_opt)));
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* It's an option (starting with '-') or it's an argument
|
||
to an option */
|
||
|
||
if (*arg == '-')
|
||
{
|
||
if (strcmp (arg, "-readnow") == 0)
|
||
flags |= OBJF_READNOW;
|
||
else if (strcmp (arg, "-s") == 0)
|
||
{
|
||
expecting_sec_name = 1;
|
||
expecting_sec_addr = 1;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (expecting_sec_name)
|
||
{
|
||
sect_opts[section_index].name = arg;
|
||
expecting_sec_name = 0;
|
||
}
|
||
else
|
||
if (expecting_sec_addr)
|
||
{
|
||
sect_opts[section_index].value = arg;
|
||
expecting_sec_addr = 0;
|
||
if (++section_index >= num_sect_opts)
|
||
{
|
||
num_sect_opts *= 2;
|
||
sect_opts = ((struct sect_opt *)
|
||
xrealloc (sect_opts,
|
||
num_sect_opts
|
||
* sizeof (struct sect_opt)));
|
||
}
|
||
}
|
||
else
|
||
error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
|
||
}
|
||
}
|
||
}
|
||
|
||
/* This command takes at least two arguments. The first one is a
|
||
filename, and the second is the address where this file has been
|
||
loaded. Abort now if this address hasn't been provided by the
|
||
user. */
|
||
if (section_index < 1)
|
||
error (_("The address where %s has been loaded is missing"), filename);
|
||
|
||
/* Print the prompt for the query below. And save the arguments into
|
||
a sect_addr_info structure to be passed around to other
|
||
functions. We have to split this up into separate print
|
||
statements because hex_string returns a local static
|
||
string. */
|
||
|
||
printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
|
||
section_addrs = alloc_section_addr_info (section_index);
|
||
make_cleanup (xfree, section_addrs);
|
||
for (i = 0; i < section_index; i++)
|
||
{
|
||
CORE_ADDR addr;
|
||
char *val = sect_opts[i].value;
|
||
char *sec = sect_opts[i].name;
|
||
|
||
addr = parse_and_eval_address (val);
|
||
|
||
/* Here we store the section offsets in the order they were
|
||
entered on the command line. */
|
||
section_addrs->other[sec_num].name = sec;
|
||
section_addrs->other[sec_num].addr = addr;
|
||
printf_unfiltered ("\t%s_addr = %s\n", sec, paddress (addr));
|
||
sec_num++;
|
||
|
||
/* The object's sections are initialized when a
|
||
call is made to build_objfile_section_table (objfile).
|
||
This happens in reread_symbols.
|
||
At this point, we don't know what file type this is,
|
||
so we can't determine what section names are valid. */
|
||
}
|
||
|
||
if (from_tty && (!query ("%s", "")))
|
||
error (_("Not confirmed."));
|
||
|
||
symbol_file_add (filename, from_tty, section_addrs, 0, flags);
|
||
|
||
/* Getting new symbols may change our opinion about what is
|
||
frameless. */
|
||
reinit_frame_cache ();
|
||
do_cleanups (my_cleanups);
|
||
}
|
||
|
||
static void
|
||
add_shared_symbol_files_command (char *args, int from_tty)
|
||
{
|
||
#ifdef ADD_SHARED_SYMBOL_FILES
|
||
ADD_SHARED_SYMBOL_FILES (args, from_tty);
|
||
#else
|
||
error (_("This command is not available in this configuration of GDB."));
|
||
#endif
|
||
}
|
||
|
||
/* Re-read symbols if a symbol-file has changed. */
|
||
void
|
||
reread_symbols (void)
|
||
{
|
||
struct objfile *objfile;
|
||
long new_modtime;
|
||
int reread_one = 0;
|
||
struct stat new_statbuf;
|
||
int res;
|
||
|
||
/* With the addition of shared libraries, this should be modified,
|
||
the load time should be saved in the partial symbol tables, since
|
||
different tables may come from different source files. FIXME.
|
||
This routine should then walk down each partial symbol table
|
||
and see if the symbol table that it originates from has been changed */
|
||
|
||
for (objfile = object_files; objfile; objfile = objfile->next)
|
||
{
|
||
if (objfile->obfd)
|
||
{
|
||
#ifdef DEPRECATED_IBM6000_TARGET
|
||
/* If this object is from a shared library, then you should
|
||
stat on the library name, not member name. */
|
||
|
||
if (objfile->obfd->my_archive)
|
||
res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
|
||
else
|
||
#endif
|
||
res = stat (objfile->name, &new_statbuf);
|
||
if (res != 0)
|
||
{
|
||
/* FIXME, should use print_sys_errmsg but it's not filtered. */
|
||
printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
|
||
objfile->name);
|
||
continue;
|
||
}
|
||
new_modtime = new_statbuf.st_mtime;
|
||
if (new_modtime != objfile->mtime)
|
||
{
|
||
struct cleanup *old_cleanups;
|
||
struct section_offsets *offsets;
|
||
int num_offsets;
|
||
char *obfd_filename;
|
||
|
||
printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
|
||
objfile->name);
|
||
|
||
/* There are various functions like symbol_file_add,
|
||
symfile_bfd_open, syms_from_objfile, etc., which might
|
||
appear to do what we want. But they have various other
|
||
effects which we *don't* want. So we just do stuff
|
||
ourselves. We don't worry about mapped files (for one thing,
|
||
any mapped file will be out of date). */
|
||
|
||
/* If we get an error, blow away this objfile (not sure if
|
||
that is the correct response for things like shared
|
||
libraries). */
|
||
old_cleanups = make_cleanup_free_objfile (objfile);
|
||
/* We need to do this whenever any symbols go away. */
|
||
make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
|
||
|
||
if (exec_bfd != NULL && strcmp (bfd_get_filename (objfile->obfd),
|
||
bfd_get_filename (exec_bfd)) == 0)
|
||
{
|
||
/* Reload EXEC_BFD without asking anything. */
|
||
|
||
exec_file_attach (bfd_get_filename (objfile->obfd), 0);
|
||
}
|
||
|
||
/* Clean up any state BFD has sitting around. We don't need
|
||
to close the descriptor but BFD lacks a way of closing the
|
||
BFD without closing the descriptor. */
|
||
obfd_filename = bfd_get_filename (objfile->obfd);
|
||
if (!bfd_close (objfile->obfd))
|
||
error (_("Can't close BFD for %s: %s"), objfile->name,
|
||
bfd_errmsg (bfd_get_error ()));
|
||
if (remote_filename_p (obfd_filename))
|
||
objfile->obfd = remote_bfd_open (obfd_filename, gnutarget);
|
||
else
|
||
objfile->obfd = bfd_openr (obfd_filename, gnutarget);
|
||
if (objfile->obfd == NULL)
|
||
error (_("Can't open %s to read symbols."), objfile->name);
|
||
/* bfd_openr sets cacheable to true, which is what we want. */
|
||
if (!bfd_check_format (objfile->obfd, bfd_object))
|
||
error (_("Can't read symbols from %s: %s."), objfile->name,
|
||
bfd_errmsg (bfd_get_error ()));
|
||
|
||
/* Save the offsets, we will nuke them with the rest of the
|
||
objfile_obstack. */
|
||
num_offsets = objfile->num_sections;
|
||
offsets = ((struct section_offsets *)
|
||
alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
|
||
memcpy (offsets, objfile->section_offsets,
|
||
SIZEOF_N_SECTION_OFFSETS (num_offsets));
|
||
|
||
/* Remove any references to this objfile in the global
|
||
value lists. */
|
||
preserve_values (objfile);
|
||
|
||
/* Nuke all the state that we will re-read. Much of the following
|
||
code which sets things to NULL really is necessary to tell
|
||
other parts of GDB that there is nothing currently there. */
|
||
|
||
/* FIXME: Do we have to free a whole linked list, or is this
|
||
enough? */
|
||
if (objfile->global_psymbols.list)
|
||
xfree (objfile->global_psymbols.list);
|
||
memset (&objfile->global_psymbols, 0,
|
||
sizeof (objfile->global_psymbols));
|
||
if (objfile->static_psymbols.list)
|
||
xfree (objfile->static_psymbols.list);
|
||
memset (&objfile->static_psymbols, 0,
|
||
sizeof (objfile->static_psymbols));
|
||
|
||
/* Free the obstacks for non-reusable objfiles */
|
||
bcache_xfree (objfile->psymbol_cache);
|
||
objfile->psymbol_cache = bcache_xmalloc ();
|
||
bcache_xfree (objfile->macro_cache);
|
||
objfile->macro_cache = bcache_xmalloc ();
|
||
if (objfile->demangled_names_hash != NULL)
|
||
{
|
||
htab_delete (objfile->demangled_names_hash);
|
||
objfile->demangled_names_hash = NULL;
|
||
}
|
||
obstack_free (&objfile->objfile_obstack, 0);
|
||
objfile->sections = NULL;
|
||
objfile->symtabs = NULL;
|
||
objfile->psymtabs = NULL;
|
||
objfile->free_psymtabs = NULL;
|
||
objfile->cp_namespace_symtab = NULL;
|
||
objfile->msymbols = NULL;
|
||
objfile->deprecated_sym_private = NULL;
|
||
objfile->minimal_symbol_count = 0;
|
||
memset (&objfile->msymbol_hash, 0,
|
||
sizeof (objfile->msymbol_hash));
|
||
memset (&objfile->msymbol_demangled_hash, 0,
|
||
sizeof (objfile->msymbol_demangled_hash));
|
||
clear_objfile_data (objfile);
|
||
if (objfile->sf != NULL)
|
||
{
|
||
(*objfile->sf->sym_finish) (objfile);
|
||
}
|
||
|
||
objfile->psymbol_cache = bcache_xmalloc ();
|
||
objfile->macro_cache = bcache_xmalloc ();
|
||
/* obstack_init also initializes the obstack so it is
|
||
empty. We could use obstack_specify_allocation but
|
||
gdb_obstack.h specifies the alloc/dealloc
|
||
functions. */
|
||
obstack_init (&objfile->objfile_obstack);
|
||
if (build_objfile_section_table (objfile))
|
||
{
|
||
error (_("Can't find the file sections in `%s': %s"),
|
||
objfile->name, bfd_errmsg (bfd_get_error ()));
|
||
}
|
||
terminate_minimal_symbol_table (objfile);
|
||
|
||
/* We use the same section offsets as from last time. I'm not
|
||
sure whether that is always correct for shared libraries. */
|
||
objfile->section_offsets = (struct section_offsets *)
|
||
obstack_alloc (&objfile->objfile_obstack,
|
||
SIZEOF_N_SECTION_OFFSETS (num_offsets));
|
||
memcpy (objfile->section_offsets, offsets,
|
||
SIZEOF_N_SECTION_OFFSETS (num_offsets));
|
||
objfile->num_sections = num_offsets;
|
||
|
||
/* What the hell is sym_new_init for, anyway? The concept of
|
||
distinguishing between the main file and additional files
|
||
in this way seems rather dubious. */
|
||
if (objfile == symfile_objfile)
|
||
{
|
||
(*objfile->sf->sym_new_init) (objfile);
|
||
}
|
||
|
||
(*objfile->sf->sym_init) (objfile);
|
||
clear_complaints (&symfile_complaints, 1, 1);
|
||
/* The "mainline" parameter is a hideous hack; I think leaving it
|
||
zero is OK since dbxread.c also does what it needs to do if
|
||
objfile->global_psymbols.size is 0. */
|
||
(*objfile->sf->sym_read) (objfile, 0);
|
||
if (!have_partial_symbols () && !have_full_symbols ())
|
||
{
|
||
wrap_here ("");
|
||
printf_unfiltered (_("(no debugging symbols found)\n"));
|
||
wrap_here ("");
|
||
}
|
||
|
||
/* We're done reading the symbol file; finish off complaints. */
|
||
clear_complaints (&symfile_complaints, 0, 1);
|
||
|
||
/* Getting new symbols may change our opinion about what is
|
||
frameless. */
|
||
|
||
reinit_frame_cache ();
|
||
|
||
/* Discard cleanups as symbol reading was successful. */
|
||
discard_cleanups (old_cleanups);
|
||
|
||
/* If the mtime has changed between the time we set new_modtime
|
||
and now, we *want* this to be out of date, so don't call stat
|
||
again now. */
|
||
objfile->mtime = new_modtime;
|
||
reread_one = 1;
|
||
reread_separate_symbols (objfile);
|
||
init_entry_point_info (objfile);
|
||
}
|
||
}
|
||
}
|
||
|
||
if (reread_one)
|
||
{
|
||
clear_symtab_users ();
|
||
/* At least one objfile has changed, so we can consider that
|
||
the executable we're debugging has changed too. */
|
||
observer_notify_executable_changed ();
|
||
}
|
||
|
||
}
|
||
|
||
|
||
/* Handle separate debug info for OBJFILE, which has just been
|
||
re-read:
|
||
- If we had separate debug info before, but now we don't, get rid
|
||
of the separated objfile.
|
||
- If we didn't have separated debug info before, but now we do,
|
||
read in the new separated debug info file.
|
||
- If the debug link points to a different file, toss the old one
|
||
and read the new one.
|
||
This function does *not* handle the case where objfile is still
|
||
using the same separate debug info file, but that file's timestamp
|
||
has changed. That case should be handled by the loop in
|
||
reread_symbols already. */
|
||
static void
|
||
reread_separate_symbols (struct objfile *objfile)
|
||
{
|
||
char *debug_file;
|
||
unsigned long crc32;
|
||
|
||
/* Does the updated objfile's debug info live in a
|
||
separate file? */
|
||
debug_file = find_separate_debug_file (objfile);
|
||
|
||
if (objfile->separate_debug_objfile)
|
||
{
|
||
/* There are two cases where we need to get rid of
|
||
the old separated debug info objfile:
|
||
- if the new primary objfile doesn't have
|
||
separated debug info, or
|
||
- if the new primary objfile has separate debug
|
||
info, but it's under a different filename.
|
||
|
||
If the old and new objfiles both have separate
|
||
debug info, under the same filename, then we're
|
||
okay --- if the separated file's contents have
|
||
changed, we will have caught that when we
|
||
visited it in this function's outermost
|
||
loop. */
|
||
if (! debug_file
|
||
|| strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
|
||
free_objfile (objfile->separate_debug_objfile);
|
||
}
|
||
|
||
/* If the new objfile has separate debug info, and we
|
||
haven't loaded it already, do so now. */
|
||
if (debug_file
|
||
&& ! objfile->separate_debug_objfile)
|
||
{
|
||
/* Use the same section offset table as objfile itself.
|
||
Preserve the flags from objfile that make sense. */
|
||
objfile->separate_debug_objfile
|
||
= (symbol_file_add_with_addrs_or_offsets
|
||
(symfile_bfd_open (debug_file),
|
||
info_verbose, /* from_tty: Don't override the default. */
|
||
0, /* No addr table. */
|
||
objfile->section_offsets, objfile->num_sections,
|
||
0, /* Not mainline. See comments about this above. */
|
||
objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
|
||
| OBJF_USERLOADED)));
|
||
objfile->separate_debug_objfile->separate_debug_objfile_backlink
|
||
= objfile;
|
||
}
|
||
if (debug_file)
|
||
xfree (debug_file);
|
||
}
|
||
|
||
|
||
|
||
|
||
|
||
typedef struct
|
||
{
|
||
char *ext;
|
||
enum language lang;
|
||
}
|
||
filename_language;
|
||
|
||
static filename_language *filename_language_table;
|
||
static int fl_table_size, fl_table_next;
|
||
|
||
static void
|
||
add_filename_language (char *ext, enum language lang)
|
||
{
|
||
if (fl_table_next >= fl_table_size)
|
||
{
|
||
fl_table_size += 10;
|
||
filename_language_table =
|
||
xrealloc (filename_language_table,
|
||
fl_table_size * sizeof (*filename_language_table));
|
||
}
|
||
|
||
filename_language_table[fl_table_next].ext = xstrdup (ext);
|
||
filename_language_table[fl_table_next].lang = lang;
|
||
fl_table_next++;
|
||
}
|
||
|
||
static char *ext_args;
|
||
static void
|
||
show_ext_args (struct ui_file *file, int from_tty,
|
||
struct cmd_list_element *c, const char *value)
|
||
{
|
||
fprintf_filtered (file, _("\
|
||
Mapping between filename extension and source language is \"%s\".\n"),
|
||
value);
|
||
}
|
||
|
||
static void
|
||
set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
|
||
{
|
||
int i;
|
||
char *cp = ext_args;
|
||
enum language lang;
|
||
|
||
/* First arg is filename extension, starting with '.' */
|
||
if (*cp != '.')
|
||
error (_("'%s': Filename extension must begin with '.'"), ext_args);
|
||
|
||
/* Find end of first arg. */
|
||
while (*cp && !isspace (*cp))
|
||
cp++;
|
||
|
||
if (*cp == '\0')
|
||
error (_("'%s': two arguments required -- filename extension and language"),
|
||
ext_args);
|
||
|
||
/* Null-terminate first arg */
|
||
*cp++ = '\0';
|
||
|
||
/* Find beginning of second arg, which should be a source language. */
|
||
while (*cp && isspace (*cp))
|
||
cp++;
|
||
|
||
if (*cp == '\0')
|
||
error (_("'%s': two arguments required -- filename extension and language"),
|
||
ext_args);
|
||
|
||
/* Lookup the language from among those we know. */
|
||
lang = language_enum (cp);
|
||
|
||
/* Now lookup the filename extension: do we already know it? */
|
||
for (i = 0; i < fl_table_next; i++)
|
||
if (0 == strcmp (ext_args, filename_language_table[i].ext))
|
||
break;
|
||
|
||
if (i >= fl_table_next)
|
||
{
|
||
/* new file extension */
|
||
add_filename_language (ext_args, lang);
|
||
}
|
||
else
|
||
{
|
||
/* redefining a previously known filename extension */
|
||
|
||
/* if (from_tty) */
|
||
/* query ("Really make files of type %s '%s'?", */
|
||
/* ext_args, language_str (lang)); */
|
||
|
||
xfree (filename_language_table[i].ext);
|
||
filename_language_table[i].ext = xstrdup (ext_args);
|
||
filename_language_table[i].lang = lang;
|
||
}
|
||
}
|
||
|
||
static void
|
||
info_ext_lang_command (char *args, int from_tty)
|
||
{
|
||
int i;
|
||
|
||
printf_filtered (_("Filename extensions and the languages they represent:"));
|
||
printf_filtered ("\n\n");
|
||
for (i = 0; i < fl_table_next; i++)
|
||
printf_filtered ("\t%s\t- %s\n",
|
||
filename_language_table[i].ext,
|
||
language_str (filename_language_table[i].lang));
|
||
}
|
||
|
||
static void
|
||
init_filename_language_table (void)
|
||
{
|
||
if (fl_table_size == 0) /* protect against repetition */
|
||
{
|
||
fl_table_size = 20;
|
||
fl_table_next = 0;
|
||
filename_language_table =
|
||
xmalloc (fl_table_size * sizeof (*filename_language_table));
|
||
add_filename_language (".c", language_c);
|
||
add_filename_language (".C", language_cplus);
|
||
add_filename_language (".cc", language_cplus);
|
||
add_filename_language (".cp", language_cplus);
|
||
add_filename_language (".cpp", language_cplus);
|
||
add_filename_language (".cxx", language_cplus);
|
||
add_filename_language (".c++", language_cplus);
|
||
add_filename_language (".java", language_java);
|
||
add_filename_language (".class", language_java);
|
||
add_filename_language (".m", language_objc);
|
||
add_filename_language (".f", language_fortran);
|
||
add_filename_language (".F", language_fortran);
|
||
add_filename_language (".s", language_asm);
|
||
add_filename_language (".sx", language_asm);
|
||
add_filename_language (".S", language_asm);
|
||
add_filename_language (".pas", language_pascal);
|
||
add_filename_language (".p", language_pascal);
|
||
add_filename_language (".pp", language_pascal);
|
||
add_filename_language (".adb", language_ada);
|
||
add_filename_language (".ads", language_ada);
|
||
add_filename_language (".a", language_ada);
|
||
add_filename_language (".ada", language_ada);
|
||
}
|
||
}
|
||
|
||
enum language
|
||
deduce_language_from_filename (char *filename)
|
||
{
|
||
int i;
|
||
char *cp;
|
||
|
||
if (filename != NULL)
|
||
if ((cp = strrchr (filename, '.')) != NULL)
|
||
for (i = 0; i < fl_table_next; i++)
|
||
if (strcmp (cp, filename_language_table[i].ext) == 0)
|
||
return filename_language_table[i].lang;
|
||
|
||
return language_unknown;
|
||
}
|
||
|
||
/* allocate_symtab:
|
||
|
||
Allocate and partly initialize a new symbol table. Return a pointer
|
||
to it. error() if no space.
|
||
|
||
Caller must set these fields:
|
||
LINETABLE(symtab)
|
||
symtab->blockvector
|
||
symtab->dirname
|
||
symtab->free_code
|
||
symtab->free_ptr
|
||
possibly free_named_symtabs (symtab->filename);
|
||
*/
|
||
|
||
struct symtab *
|
||
allocate_symtab (char *filename, struct objfile *objfile)
|
||
{
|
||
struct symtab *symtab;
|
||
|
||
symtab = (struct symtab *)
|
||
obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
|
||
memset (symtab, 0, sizeof (*symtab));
|
||
symtab->filename = obsavestring (filename, strlen (filename),
|
||
&objfile->objfile_obstack);
|
||
symtab->fullname = NULL;
|
||
symtab->language = deduce_language_from_filename (filename);
|
||
symtab->debugformat = obsavestring ("unknown", 7,
|
||
&objfile->objfile_obstack);
|
||
|
||
/* Hook it to the objfile it comes from */
|
||
|
||
symtab->objfile = objfile;
|
||
symtab->next = objfile->symtabs;
|
||
objfile->symtabs = symtab;
|
||
|
||
return (symtab);
|
||
}
|
||
|
||
struct partial_symtab *
|
||
allocate_psymtab (char *filename, struct objfile *objfile)
|
||
{
|
||
struct partial_symtab *psymtab;
|
||
|
||
if (objfile->free_psymtabs)
|
||
{
|
||
psymtab = objfile->free_psymtabs;
|
||
objfile->free_psymtabs = psymtab->next;
|
||
}
|
||
else
|
||
psymtab = (struct partial_symtab *)
|
||
obstack_alloc (&objfile->objfile_obstack,
|
||
sizeof (struct partial_symtab));
|
||
|
||
memset (psymtab, 0, sizeof (struct partial_symtab));
|
||
psymtab->filename = obsavestring (filename, strlen (filename),
|
||
&objfile->objfile_obstack);
|
||
psymtab->symtab = NULL;
|
||
|
||
/* Prepend it to the psymtab list for the objfile it belongs to.
|
||
Psymtabs are searched in most recent inserted -> least recent
|
||
inserted order. */
|
||
|
||
psymtab->objfile = objfile;
|
||
psymtab->next = objfile->psymtabs;
|
||
objfile->psymtabs = psymtab;
|
||
#if 0
|
||
{
|
||
struct partial_symtab **prev_pst;
|
||
psymtab->objfile = objfile;
|
||
psymtab->next = NULL;
|
||
prev_pst = &(objfile->psymtabs);
|
||
while ((*prev_pst) != NULL)
|
||
prev_pst = &((*prev_pst)->next);
|
||
(*prev_pst) = psymtab;
|
||
}
|
||
#endif
|
||
|
||
return (psymtab);
|
||
}
|
||
|
||
void
|
||
discard_psymtab (struct partial_symtab *pst)
|
||
{
|
||
struct partial_symtab **prev_pst;
|
||
|
||
/* From dbxread.c:
|
||
Empty psymtabs happen as a result of header files which don't
|
||
have any symbols in them. There can be a lot of them. But this
|
||
check is wrong, in that a psymtab with N_SLINE entries but
|
||
nothing else is not empty, but we don't realize that. Fixing
|
||
that without slowing things down might be tricky. */
|
||
|
||
/* First, snip it out of the psymtab chain */
|
||
|
||
prev_pst = &(pst->objfile->psymtabs);
|
||
while ((*prev_pst) != pst)
|
||
prev_pst = &((*prev_pst)->next);
|
||
(*prev_pst) = pst->next;
|
||
|
||
/* Next, put it on a free list for recycling */
|
||
|
||
pst->next = pst->objfile->free_psymtabs;
|
||
pst->objfile->free_psymtabs = pst;
|
||
}
|
||
|
||
|
||
/* Reset all data structures in gdb which may contain references to symbol
|
||
table data. */
|
||
|
||
void
|
||
clear_symtab_users (void)
|
||
{
|
||
/* Someday, we should do better than this, by only blowing away
|
||
the things that really need to be blown. */
|
||
|
||
/* Clear the "current" symtab first, because it is no longer valid.
|
||
breakpoint_re_set may try to access the current symtab. */
|
||
clear_current_source_symtab_and_line ();
|
||
|
||
clear_displays ();
|
||
breakpoint_re_set ();
|
||
set_default_breakpoint (0, 0, 0, 0);
|
||
clear_pc_function_cache ();
|
||
observer_notify_new_objfile (NULL);
|
||
|
||
/* Clear globals which might have pointed into a removed objfile.
|
||
FIXME: It's not clear which of these are supposed to persist
|
||
between expressions and which ought to be reset each time. */
|
||
expression_context_block = NULL;
|
||
innermost_block = NULL;
|
||
|
||
/* Varobj may refer to old symbols, perform a cleanup. */
|
||
varobj_invalidate ();
|
||
|
||
}
|
||
|
||
static void
|
||
clear_symtab_users_cleanup (void *ignore)
|
||
{
|
||
clear_symtab_users ();
|
||
}
|
||
|
||
/* clear_symtab_users_once:
|
||
|
||
This function is run after symbol reading, or from a cleanup.
|
||
If an old symbol table was obsoleted, the old symbol table
|
||
has been blown away, but the other GDB data structures that may
|
||
reference it have not yet been cleared or re-directed. (The old
|
||
symtab was zapped, and the cleanup queued, in free_named_symtab()
|
||
below.)
|
||
|
||
This function can be queued N times as a cleanup, or called
|
||
directly; it will do all the work the first time, and then will be a
|
||
no-op until the next time it is queued. This works by bumping a
|
||
counter at queueing time. Much later when the cleanup is run, or at
|
||
the end of symbol processing (in case the cleanup is discarded), if
|
||
the queued count is greater than the "done-count", we do the work
|
||
and set the done-count to the queued count. If the queued count is
|
||
less than or equal to the done-count, we just ignore the call. This
|
||
is needed because reading a single .o file will often replace many
|
||
symtabs (one per .h file, for example), and we don't want to reset
|
||
the breakpoints N times in the user's face.
|
||
|
||
The reason we both queue a cleanup, and call it directly after symbol
|
||
reading, is because the cleanup protects us in case of errors, but is
|
||
discarded if symbol reading is successful. */
|
||
|
||
#if 0
|
||
/* FIXME: As free_named_symtabs is currently a big noop this function
|
||
is no longer needed. */
|
||
static void clear_symtab_users_once (void);
|
||
|
||
static int clear_symtab_users_queued;
|
||
static int clear_symtab_users_done;
|
||
|
||
static void
|
||
clear_symtab_users_once (void)
|
||
{
|
||
/* Enforce once-per-`do_cleanups'-semantics */
|
||
if (clear_symtab_users_queued <= clear_symtab_users_done)
|
||
return;
|
||
clear_symtab_users_done = clear_symtab_users_queued;
|
||
|
||
clear_symtab_users ();
|
||
}
|
||
#endif
|
||
|
||
/* Delete the specified psymtab, and any others that reference it. */
|
||
|
||
static void
|
||
cashier_psymtab (struct partial_symtab *pst)
|
||
{
|
||
struct partial_symtab *ps, *pprev = NULL;
|
||
int i;
|
||
|
||
/* Find its previous psymtab in the chain */
|
||
for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
|
||
{
|
||
if (ps == pst)
|
||
break;
|
||
pprev = ps;
|
||
}
|
||
|
||
if (ps)
|
||
{
|
||
/* Unhook it from the chain. */
|
||
if (ps == pst->objfile->psymtabs)
|
||
pst->objfile->psymtabs = ps->next;
|
||
else
|
||
pprev->next = ps->next;
|
||
|
||
/* FIXME, we can't conveniently deallocate the entries in the
|
||
partial_symbol lists (global_psymbols/static_psymbols) that
|
||
this psymtab points to. These just take up space until all
|
||
the psymtabs are reclaimed. Ditto the dependencies list and
|
||
filename, which are all in the objfile_obstack. */
|
||
|
||
/* We need to cashier any psymtab that has this one as a dependency... */
|
||
again:
|
||
for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
|
||
{
|
||
for (i = 0; i < ps->number_of_dependencies; i++)
|
||
{
|
||
if (ps->dependencies[i] == pst)
|
||
{
|
||
cashier_psymtab (ps);
|
||
goto again; /* Must restart, chain has been munged. */
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* If a symtab or psymtab for filename NAME is found, free it along
|
||
with any dependent breakpoints, displays, etc.
|
||
Used when loading new versions of object modules with the "add-file"
|
||
command. This is only called on the top-level symtab or psymtab's name;
|
||
it is not called for subsidiary files such as .h files.
|
||
|
||
Return value is 1 if we blew away the environment, 0 if not.
|
||
FIXME. The return value appears to never be used.
|
||
|
||
FIXME. I think this is not the best way to do this. We should
|
||
work on being gentler to the environment while still cleaning up
|
||
all stray pointers into the freed symtab. */
|
||
|
||
int
|
||
free_named_symtabs (char *name)
|
||
{
|
||
#if 0
|
||
/* FIXME: With the new method of each objfile having it's own
|
||
psymtab list, this function needs serious rethinking. In particular,
|
||
why was it ever necessary to toss psymtabs with specific compilation
|
||
unit filenames, as opposed to all psymtabs from a particular symbol
|
||
file? -- fnf
|
||
Well, the answer is that some systems permit reloading of particular
|
||
compilation units. We want to blow away any old info about these
|
||
compilation units, regardless of which objfiles they arrived in. --gnu. */
|
||
|
||
struct symtab *s;
|
||
struct symtab *prev;
|
||
struct partial_symtab *ps;
|
||
struct blockvector *bv;
|
||
int blewit = 0;
|
||
|
||
/* We only wack things if the symbol-reload switch is set. */
|
||
if (!symbol_reloading)
|
||
return 0;
|
||
|
||
/* Some symbol formats have trouble providing file names... */
|
||
if (name == 0 || *name == '\0')
|
||
return 0;
|
||
|
||
/* Look for a psymtab with the specified name. */
|
||
|
||
again2:
|
||
for (ps = partial_symtab_list; ps; ps = ps->next)
|
||
{
|
||
if (strcmp (name, ps->filename) == 0)
|
||
{
|
||
cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
|
||
goto again2; /* Must restart, chain has been munged */
|
||
}
|
||
}
|
||
|
||
/* Look for a symtab with the specified name. */
|
||
|
||
for (s = symtab_list; s; s = s->next)
|
||
{
|
||
if (strcmp (name, s->filename) == 0)
|
||
break;
|
||
prev = s;
|
||
}
|
||
|
||
if (s)
|
||
{
|
||
if (s == symtab_list)
|
||
symtab_list = s->next;
|
||
else
|
||
prev->next = s->next;
|
||
|
||
/* For now, queue a delete for all breakpoints, displays, etc., whether
|
||
or not they depend on the symtab being freed. This should be
|
||
changed so that only those data structures affected are deleted. */
|
||
|
||
/* But don't delete anything if the symtab is empty.
|
||
This test is necessary due to a bug in "dbxread.c" that
|
||
causes empty symtabs to be created for N_SO symbols that
|
||
contain the pathname of the object file. (This problem
|
||
has been fixed in GDB 3.9x). */
|
||
|
||
bv = BLOCKVECTOR (s);
|
||
if (BLOCKVECTOR_NBLOCKS (bv) > 2
|
||
|| BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
|
||
|| BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
|
||
{
|
||
complaint (&symfile_complaints, _("Replacing old symbols for `%s'"),
|
||
name);
|
||
clear_symtab_users_queued++;
|
||
make_cleanup (clear_symtab_users_once, 0);
|
||
blewit = 1;
|
||
}
|
||
else
|
||
complaint (&symfile_complaints, _("Empty symbol table found for `%s'"),
|
||
name);
|
||
|
||
free_symtab (s);
|
||
}
|
||
else
|
||
{
|
||
/* It is still possible that some breakpoints will be affected
|
||
even though no symtab was found, since the file might have
|
||
been compiled without debugging, and hence not be associated
|
||
with a symtab. In order to handle this correctly, we would need
|
||
to keep a list of text address ranges for undebuggable files.
|
||
For now, we do nothing, since this is a fairly obscure case. */
|
||
;
|
||
}
|
||
|
||
/* FIXME, what about the minimal symbol table? */
|
||
return blewit;
|
||
#else
|
||
return (0);
|
||
#endif
|
||
}
|
||
|
||
/* Allocate and partially fill a partial symtab. It will be
|
||
completely filled at the end of the symbol list.
|
||
|
||
FILENAME is the name of the symbol-file we are reading from. */
|
||
|
||
struct partial_symtab *
|
||
start_psymtab_common (struct objfile *objfile,
|
||
struct section_offsets *section_offsets, char *filename,
|
||
CORE_ADDR textlow, struct partial_symbol **global_syms,
|
||
struct partial_symbol **static_syms)
|
||
{
|
||
struct partial_symtab *psymtab;
|
||
|
||
psymtab = allocate_psymtab (filename, objfile);
|
||
psymtab->section_offsets = section_offsets;
|
||
psymtab->textlow = textlow;
|
||
psymtab->texthigh = psymtab->textlow; /* default */
|
||
psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
|
||
psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
|
||
return (psymtab);
|
||
}
|
||
|
||
/* Helper function, initialises partial symbol structure and stashes
|
||
it into objfile's bcache. Note that our caching mechanism will
|
||
use all fields of struct partial_symbol to determine hash value of the
|
||
structure. In other words, having two symbols with the same name but
|
||
different domain (or address) is possible and correct. */
|
||
|
||
static const struct partial_symbol *
|
||
add_psymbol_to_bcache (char *name, int namelength, domain_enum domain,
|
||
enum address_class class,
|
||
long val, /* Value as a long */
|
||
CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
|
||
enum language language, struct objfile *objfile,
|
||
int *added)
|
||
{
|
||
char *buf = name;
|
||
/* psymbol is static so that there will be no uninitialized gaps in the
|
||
structure which might contain random data, causing cache misses in
|
||
bcache. */
|
||
static struct partial_symbol psymbol;
|
||
|
||
if (name[namelength] != '\0')
|
||
{
|
||
buf = alloca (namelength + 1);
|
||
/* Create local copy of the partial symbol */
|
||
memcpy (buf, name, namelength);
|
||
buf[namelength] = '\0';
|
||
}
|
||
/* val and coreaddr are mutually exclusive, one of them *will* be zero */
|
||
if (val != 0)
|
||
{
|
||
SYMBOL_VALUE (&psymbol) = val;
|
||
}
|
||
else
|
||
{
|
||
SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
|
||
}
|
||
SYMBOL_SECTION (&psymbol) = 0;
|
||
SYMBOL_LANGUAGE (&psymbol) = language;
|
||
PSYMBOL_DOMAIN (&psymbol) = domain;
|
||
PSYMBOL_CLASS (&psymbol) = class;
|
||
|
||
SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
|
||
|
||
/* Stash the partial symbol away in the cache */
|
||
return bcache_full (&psymbol, sizeof (struct partial_symbol),
|
||
objfile->psymbol_cache, added);
|
||
}
|
||
|
||
/* Helper function, adds partial symbol to the given partial symbol
|
||
list. */
|
||
|
||
static void
|
||
append_psymbol_to_list (struct psymbol_allocation_list *list,
|
||
const struct partial_symbol *psym,
|
||
struct objfile *objfile)
|
||
{
|
||
if (list->next >= list->list + list->size)
|
||
extend_psymbol_list (list, objfile);
|
||
*list->next++ = (struct partial_symbol *) psym;
|
||
OBJSTAT (objfile, n_psyms++);
|
||
}
|
||
|
||
/* Add a symbol with a long value to a psymtab.
|
||
Since one arg is a struct, we pass in a ptr and deref it (sigh).
|
||
Return the partial symbol that has been added. */
|
||
|
||
/* NOTE: carlton/2003-09-11: The reason why we return the partial
|
||
symbol is so that callers can get access to the symbol's demangled
|
||
name, which they don't have any cheap way to determine otherwise.
|
||
(Currenly, dwarf2read.c is the only file who uses that information,
|
||
though it's possible that other readers might in the future.)
|
||
Elena wasn't thrilled about that, and I don't blame her, but we
|
||
couldn't come up with a better way to get that information. If
|
||
it's needed in other situations, we could consider breaking up
|
||
SYMBOL_SET_NAMES to provide access to the demangled name lookup
|
||
cache. */
|
||
|
||
const struct partial_symbol *
|
||
add_psymbol_to_list (char *name, int namelength, domain_enum domain,
|
||
enum address_class class,
|
||
struct psymbol_allocation_list *list,
|
||
long val, /* Value as a long */
|
||
CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
|
||
enum language language, struct objfile *objfile)
|
||
{
|
||
const struct partial_symbol *psym;
|
||
|
||
int added;
|
||
|
||
/* Stash the partial symbol away in the cache */
|
||
psym = add_psymbol_to_bcache (name, namelength, domain, class,
|
||
val, coreaddr, language, objfile, &added);
|
||
|
||
/* Do not duplicate global partial symbols. */
|
||
if (list == &objfile->global_psymbols
|
||
&& !added)
|
||
return psym;
|
||
|
||
/* Save pointer to partial symbol in psymtab, growing symtab if needed. */
|
||
append_psymbol_to_list (list, psym, objfile);
|
||
return psym;
|
||
}
|
||
|
||
/* Initialize storage for partial symbols. */
|
||
|
||
void
|
||
init_psymbol_list (struct objfile *objfile, int total_symbols)
|
||
{
|
||
/* Free any previously allocated psymbol lists. */
|
||
|
||
if (objfile->global_psymbols.list)
|
||
{
|
||
xfree (objfile->global_psymbols.list);
|
||
}
|
||
if (objfile->static_psymbols.list)
|
||
{
|
||
xfree (objfile->static_psymbols.list);
|
||
}
|
||
|
||
/* Current best guess is that approximately a twentieth
|
||
of the total symbols (in a debugging file) are global or static
|
||
oriented symbols */
|
||
|
||
objfile->global_psymbols.size = total_symbols / 10;
|
||
objfile->static_psymbols.size = total_symbols / 10;
|
||
|
||
if (objfile->global_psymbols.size > 0)
|
||
{
|
||
objfile->global_psymbols.next =
|
||
objfile->global_psymbols.list = (struct partial_symbol **)
|
||
xmalloc ((objfile->global_psymbols.size
|
||
* sizeof (struct partial_symbol *)));
|
||
}
|
||
if (objfile->static_psymbols.size > 0)
|
||
{
|
||
objfile->static_psymbols.next =
|
||
objfile->static_psymbols.list = (struct partial_symbol **)
|
||
xmalloc ((objfile->static_psymbols.size
|
||
* sizeof (struct partial_symbol *)));
|
||
}
|
||
}
|
||
|
||
/* OVERLAYS:
|
||
The following code implements an abstraction for debugging overlay sections.
|
||
|
||
The target model is as follows:
|
||
1) The gnu linker will permit multiple sections to be mapped into the
|
||
same VMA, each with its own unique LMA (or load address).
|
||
2) It is assumed that some runtime mechanism exists for mapping the
|
||
sections, one by one, from the load address into the VMA address.
|
||
3) This code provides a mechanism for gdb to keep track of which
|
||
sections should be considered to be mapped from the VMA to the LMA.
|
||
This information is used for symbol lookup, and memory read/write.
|
||
For instance, if a section has been mapped then its contents
|
||
should be read from the VMA, otherwise from the LMA.
|
||
|
||
Two levels of debugger support for overlays are available. One is
|
||
"manual", in which the debugger relies on the user to tell it which
|
||
overlays are currently mapped. This level of support is
|
||
implemented entirely in the core debugger, and the information about
|
||
whether a section is mapped is kept in the objfile->obj_section table.
|
||
|
||
The second level of support is "automatic", and is only available if
|
||
the target-specific code provides functionality to read the target's
|
||
overlay mapping table, and translate its contents for the debugger
|
||
(by updating the mapped state information in the obj_section tables).
|
||
|
||
The interface is as follows:
|
||
User commands:
|
||
overlay map <name> -- tell gdb to consider this section mapped
|
||
overlay unmap <name> -- tell gdb to consider this section unmapped
|
||
overlay list -- list the sections that GDB thinks are mapped
|
||
overlay read-target -- get the target's state of what's mapped
|
||
overlay off/manual/auto -- set overlay debugging state
|
||
Functional interface:
|
||
find_pc_mapped_section(pc): if the pc is in the range of a mapped
|
||
section, return that section.
|
||
find_pc_overlay(pc): find any overlay section that contains
|
||
the pc, either in its VMA or its LMA
|
||
section_is_mapped(sect): true if overlay is marked as mapped
|
||
section_is_overlay(sect): true if section's VMA != LMA
|
||
pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
|
||
pc_in_unmapped_range(...): true if pc belongs to section's LMA
|
||
sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
|
||
overlay_mapped_address(...): map an address from section's LMA to VMA
|
||
overlay_unmapped_address(...): map an address from section's VMA to LMA
|
||
symbol_overlayed_address(...): Return a "current" address for symbol:
|
||
either in VMA or LMA depending on whether
|
||
the symbol's section is currently mapped
|
||
*/
|
||
|
||
/* Overlay debugging state: */
|
||
|
||
enum overlay_debugging_state overlay_debugging = ovly_off;
|
||
int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
|
||
|
||
/* Function: section_is_overlay (SECTION)
|
||
Returns true if SECTION has VMA not equal to LMA, ie.
|
||
SECTION is loaded at an address different from where it will "run". */
|
||
|
||
int
|
||
section_is_overlay (struct obj_section *section)
|
||
{
|
||
if (overlay_debugging && section)
|
||
{
|
||
bfd *abfd = section->objfile->obfd;
|
||
asection *bfd_section = section->the_bfd_section;
|
||
|
||
if (bfd_section_lma (abfd, bfd_section) != 0
|
||
&& bfd_section_lma (abfd, bfd_section)
|
||
!= bfd_section_vma (abfd, bfd_section))
|
||
return 1;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Function: overlay_invalidate_all (void)
|
||
Invalidate the mapped state of all overlay sections (mark it as stale). */
|
||
|
||
static void
|
||
overlay_invalidate_all (void)
|
||
{
|
||
struct objfile *objfile;
|
||
struct obj_section *sect;
|
||
|
||
ALL_OBJSECTIONS (objfile, sect)
|
||
if (section_is_overlay (sect))
|
||
sect->ovly_mapped = -1;
|
||
}
|
||
|
||
/* Function: section_is_mapped (SECTION)
|
||
Returns true if section is an overlay, and is currently mapped.
|
||
|
||
Access to the ovly_mapped flag is restricted to this function, so
|
||
that we can do automatic update. If the global flag
|
||
OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
|
||
overlay_invalidate_all. If the mapped state of the particular
|
||
section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
|
||
|
||
int
|
||
section_is_mapped (struct obj_section *osect)
|
||
{
|
||
if (osect == 0 || !section_is_overlay (osect))
|
||
return 0;
|
||
|
||
switch (overlay_debugging)
|
||
{
|
||
default:
|
||
case ovly_off:
|
||
return 0; /* overlay debugging off */
|
||
case ovly_auto: /* overlay debugging automatic */
|
||
/* Unles there is a gdbarch_overlay_update function,
|
||
there's really nothing useful to do here (can't really go auto) */
|
||
if (gdbarch_overlay_update_p (current_gdbarch))
|
||
{
|
||
if (overlay_cache_invalid)
|
||
{
|
||
overlay_invalidate_all ();
|
||
overlay_cache_invalid = 0;
|
||
}
|
||
if (osect->ovly_mapped == -1)
|
||
gdbarch_overlay_update (current_gdbarch, osect);
|
||
}
|
||
/* fall thru to manual case */
|
||
case ovly_on: /* overlay debugging manual */
|
||
return osect->ovly_mapped == 1;
|
||
}
|
||
}
|
||
|
||
/* Function: pc_in_unmapped_range
|
||
If PC falls into the lma range of SECTION, return true, else false. */
|
||
|
||
CORE_ADDR
|
||
pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
|
||
{
|
||
if (section_is_overlay (section))
|
||
{
|
||
bfd *abfd = section->objfile->obfd;
|
||
asection *bfd_section = section->the_bfd_section;
|
||
|
||
/* We assume the LMA is relocated by the same offset as the VMA. */
|
||
bfd_vma size = bfd_get_section_size (bfd_section);
|
||
CORE_ADDR offset = obj_section_offset (section);
|
||
|
||
if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
|
||
&& pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
|
||
return 1;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Function: pc_in_mapped_range
|
||
If PC falls into the vma range of SECTION, return true, else false. */
|
||
|
||
CORE_ADDR
|
||
pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
|
||
{
|
||
if (section_is_overlay (section))
|
||
{
|
||
if (obj_section_addr (section) <= pc
|
||
&& pc < obj_section_endaddr (section))
|
||
return 1;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
|
||
/* Return true if the mapped ranges of sections A and B overlap, false
|
||
otherwise. */
|
||
static int
|
||
sections_overlap (struct obj_section *a, struct obj_section *b)
|
||
{
|
||
CORE_ADDR a_start = obj_section_addr (a);
|
||
CORE_ADDR a_end = obj_section_endaddr (a);
|
||
CORE_ADDR b_start = obj_section_addr (b);
|
||
CORE_ADDR b_end = obj_section_endaddr (b);
|
||
|
||
return (a_start < b_end && b_start < a_end);
|
||
}
|
||
|
||
/* Function: overlay_unmapped_address (PC, SECTION)
|
||
Returns the address corresponding to PC in the unmapped (load) range.
|
||
May be the same as PC. */
|
||
|
||
CORE_ADDR
|
||
overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
|
||
{
|
||
if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
|
||
{
|
||
bfd *abfd = section->objfile->obfd;
|
||
asection *bfd_section = section->the_bfd_section;
|
||
|
||
return pc + bfd_section_lma (abfd, bfd_section)
|
||
- bfd_section_vma (abfd, bfd_section);
|
||
}
|
||
|
||
return pc;
|
||
}
|
||
|
||
/* Function: overlay_mapped_address (PC, SECTION)
|
||
Returns the address corresponding to PC in the mapped (runtime) range.
|
||
May be the same as PC. */
|
||
|
||
CORE_ADDR
|
||
overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
|
||
{
|
||
if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
|
||
{
|
||
bfd *abfd = section->objfile->obfd;
|
||
asection *bfd_section = section->the_bfd_section;
|
||
|
||
return pc + bfd_section_vma (abfd, bfd_section)
|
||
- bfd_section_lma (abfd, bfd_section);
|
||
}
|
||
|
||
return pc;
|
||
}
|
||
|
||
|
||
/* Function: symbol_overlayed_address
|
||
Return one of two addresses (relative to the VMA or to the LMA),
|
||
depending on whether the section is mapped or not. */
|
||
|
||
CORE_ADDR
|
||
symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
|
||
{
|
||
if (overlay_debugging)
|
||
{
|
||
/* If the symbol has no section, just return its regular address. */
|
||
if (section == 0)
|
||
return address;
|
||
/* If the symbol's section is not an overlay, just return its address */
|
||
if (!section_is_overlay (section))
|
||
return address;
|
||
/* If the symbol's section is mapped, just return its address */
|
||
if (section_is_mapped (section))
|
||
return address;
|
||
/*
|
||
* HOWEVER: if the symbol is in an overlay section which is NOT mapped,
|
||
* then return its LOADED address rather than its vma address!!
|
||
*/
|
||
return overlay_unmapped_address (address, section);
|
||
}
|
||
return address;
|
||
}
|
||
|
||
/* Function: find_pc_overlay (PC)
|
||
Return the best-match overlay section for PC:
|
||
If PC matches a mapped overlay section's VMA, return that section.
|
||
Else if PC matches an unmapped section's VMA, return that section.
|
||
Else if PC matches an unmapped section's LMA, return that section. */
|
||
|
||
struct obj_section *
|
||
find_pc_overlay (CORE_ADDR pc)
|
||
{
|
||
struct objfile *objfile;
|
||
struct obj_section *osect, *best_match = NULL;
|
||
|
||
if (overlay_debugging)
|
||
ALL_OBJSECTIONS (objfile, osect)
|
||
if (section_is_overlay (osect))
|
||
{
|
||
if (pc_in_mapped_range (pc, osect))
|
||
{
|
||
if (section_is_mapped (osect))
|
||
return osect;
|
||
else
|
||
best_match = osect;
|
||
}
|
||
else if (pc_in_unmapped_range (pc, osect))
|
||
best_match = osect;
|
||
}
|
||
return best_match;
|
||
}
|
||
|
||
/* Function: find_pc_mapped_section (PC)
|
||
If PC falls into the VMA address range of an overlay section that is
|
||
currently marked as MAPPED, return that section. Else return NULL. */
|
||
|
||
struct obj_section *
|
||
find_pc_mapped_section (CORE_ADDR pc)
|
||
{
|
||
struct objfile *objfile;
|
||
struct obj_section *osect;
|
||
|
||
if (overlay_debugging)
|
||
ALL_OBJSECTIONS (objfile, osect)
|
||
if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
|
||
return osect;
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/* Function: list_overlays_command
|
||
Print a list of mapped sections and their PC ranges */
|
||
|
||
void
|
||
list_overlays_command (char *args, int from_tty)
|
||
{
|
||
int nmapped = 0;
|
||
struct objfile *objfile;
|
||
struct obj_section *osect;
|
||
|
||
if (overlay_debugging)
|
||
ALL_OBJSECTIONS (objfile, osect)
|
||
if (section_is_mapped (osect))
|
||
{
|
||
const char *name;
|
||
bfd_vma lma, vma;
|
||
int size;
|
||
|
||
vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
|
||
lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
|
||
size = bfd_get_section_size (osect->the_bfd_section);
|
||
name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
|
||
|
||
printf_filtered ("Section %s, loaded at ", name);
|
||
fputs_filtered (paddress (lma), gdb_stdout);
|
||
puts_filtered (" - ");
|
||
fputs_filtered (paddress (lma + size), gdb_stdout);
|
||
printf_filtered (", mapped at ");
|
||
fputs_filtered (paddress (vma), gdb_stdout);
|
||
puts_filtered (" - ");
|
||
fputs_filtered (paddress (vma + size), gdb_stdout);
|
||
puts_filtered ("\n");
|
||
|
||
nmapped++;
|
||
}
|
||
if (nmapped == 0)
|
||
printf_filtered (_("No sections are mapped.\n"));
|
||
}
|
||
|
||
/* Function: map_overlay_command
|
||
Mark the named section as mapped (ie. residing at its VMA address). */
|
||
|
||
void
|
||
map_overlay_command (char *args, int from_tty)
|
||
{
|
||
struct objfile *objfile, *objfile2;
|
||
struct obj_section *sec, *sec2;
|
||
|
||
if (!overlay_debugging)
|
||
error (_("\
|
||
Overlay debugging not enabled. Use either the 'overlay auto' or\n\
|
||
the 'overlay manual' command."));
|
||
|
||
if (args == 0 || *args == 0)
|
||
error (_("Argument required: name of an overlay section"));
|
||
|
||
/* First, find a section matching the user supplied argument */
|
||
ALL_OBJSECTIONS (objfile, sec)
|
||
if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
|
||
{
|
||
/* Now, check to see if the section is an overlay. */
|
||
if (!section_is_overlay (sec))
|
||
continue; /* not an overlay section */
|
||
|
||
/* Mark the overlay as "mapped" */
|
||
sec->ovly_mapped = 1;
|
||
|
||
/* Next, make a pass and unmap any sections that are
|
||
overlapped by this new section: */
|
||
ALL_OBJSECTIONS (objfile2, sec2)
|
||
if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
|
||
{
|
||
if (info_verbose)
|
||
printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
|
||
bfd_section_name (objfile->obfd,
|
||
sec2->the_bfd_section));
|
||
sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
|
||
}
|
||
return;
|
||
}
|
||
error (_("No overlay section called %s"), args);
|
||
}
|
||
|
||
/* Function: unmap_overlay_command
|
||
Mark the overlay section as unmapped
|
||
(ie. resident in its LMA address range, rather than the VMA range). */
|
||
|
||
void
|
||
unmap_overlay_command (char *args, int from_tty)
|
||
{
|
||
struct objfile *objfile;
|
||
struct obj_section *sec;
|
||
|
||
if (!overlay_debugging)
|
||
error (_("\
|
||
Overlay debugging not enabled. Use either the 'overlay auto' or\n\
|
||
the 'overlay manual' command."));
|
||
|
||
if (args == 0 || *args == 0)
|
||
error (_("Argument required: name of an overlay section"));
|
||
|
||
/* First, find a section matching the user supplied argument */
|
||
ALL_OBJSECTIONS (objfile, sec)
|
||
if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
|
||
{
|
||
if (!sec->ovly_mapped)
|
||
error (_("Section %s is not mapped"), args);
|
||
sec->ovly_mapped = 0;
|
||
return;
|
||
}
|
||
error (_("No overlay section called %s"), args);
|
||
}
|
||
|
||
/* Function: overlay_auto_command
|
||
A utility command to turn on overlay debugging.
|
||
Possibly this should be done via a set/show command. */
|
||
|
||
static void
|
||
overlay_auto_command (char *args, int from_tty)
|
||
{
|
||
overlay_debugging = ovly_auto;
|
||
enable_overlay_breakpoints ();
|
||
if (info_verbose)
|
||
printf_unfiltered (_("Automatic overlay debugging enabled."));
|
||
}
|
||
|
||
/* Function: overlay_manual_command
|
||
A utility command to turn on overlay debugging.
|
||
Possibly this should be done via a set/show command. */
|
||
|
||
static void
|
||
overlay_manual_command (char *args, int from_tty)
|
||
{
|
||
overlay_debugging = ovly_on;
|
||
disable_overlay_breakpoints ();
|
||
if (info_verbose)
|
||
printf_unfiltered (_("Overlay debugging enabled."));
|
||
}
|
||
|
||
/* Function: overlay_off_command
|
||
A utility command to turn on overlay debugging.
|
||
Possibly this should be done via a set/show command. */
|
||
|
||
static void
|
||
overlay_off_command (char *args, int from_tty)
|
||
{
|
||
overlay_debugging = ovly_off;
|
||
disable_overlay_breakpoints ();
|
||
if (info_verbose)
|
||
printf_unfiltered (_("Overlay debugging disabled."));
|
||
}
|
||
|
||
static void
|
||
overlay_load_command (char *args, int from_tty)
|
||
{
|
||
if (gdbarch_overlay_update_p (current_gdbarch))
|
||
gdbarch_overlay_update (current_gdbarch, NULL);
|
||
else
|
||
error (_("This target does not know how to read its overlay state."));
|
||
}
|
||
|
||
/* Function: overlay_command
|
||
A place-holder for a mis-typed command */
|
||
|
||
/* Command list chain containing all defined "overlay" subcommands. */
|
||
struct cmd_list_element *overlaylist;
|
||
|
||
static void
|
||
overlay_command (char *args, int from_tty)
|
||
{
|
||
printf_unfiltered
|
||
("\"overlay\" must be followed by the name of an overlay command.\n");
|
||
help_list (overlaylist, "overlay ", -1, gdb_stdout);
|
||
}
|
||
|
||
|
||
/* Target Overlays for the "Simplest" overlay manager:
|
||
|
||
This is GDB's default target overlay layer. It works with the
|
||
minimal overlay manager supplied as an example by Cygnus. The
|
||
entry point is via a function pointer "gdbarch_overlay_update",
|
||
so targets that use a different runtime overlay manager can
|
||
substitute their own overlay_update function and take over the
|
||
function pointer.
|
||
|
||
The overlay_update function pokes around in the target's data structures
|
||
to see what overlays are mapped, and updates GDB's overlay mapping with
|
||
this information.
|
||
|
||
In this simple implementation, the target data structures are as follows:
|
||
unsigned _novlys; /# number of overlay sections #/
|
||
unsigned _ovly_table[_novlys][4] = {
|
||
{VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
|
||
{..., ..., ..., ...},
|
||
}
|
||
unsigned _novly_regions; /# number of overlay regions #/
|
||
unsigned _ovly_region_table[_novly_regions][3] = {
|
||
{VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
|
||
{..., ..., ...},
|
||
}
|
||
These functions will attempt to update GDB's mappedness state in the
|
||
symbol section table, based on the target's mappedness state.
|
||
|
||
To do this, we keep a cached copy of the target's _ovly_table, and
|
||
attempt to detect when the cached copy is invalidated. The main
|
||
entry point is "simple_overlay_update(SECT), which looks up SECT in
|
||
the cached table and re-reads only the entry for that section from
|
||
the target (whenever possible).
|
||
*/
|
||
|
||
/* Cached, dynamically allocated copies of the target data structures: */
|
||
static unsigned (*cache_ovly_table)[4] = 0;
|
||
#if 0
|
||
static unsigned (*cache_ovly_region_table)[3] = 0;
|
||
#endif
|
||
static unsigned cache_novlys = 0;
|
||
#if 0
|
||
static unsigned cache_novly_regions = 0;
|
||
#endif
|
||
static CORE_ADDR cache_ovly_table_base = 0;
|
||
#if 0
|
||
static CORE_ADDR cache_ovly_region_table_base = 0;
|
||
#endif
|
||
enum ovly_index
|
||
{
|
||
VMA, SIZE, LMA, MAPPED
|
||
};
|
||
#define TARGET_LONG_BYTES (gdbarch_long_bit (current_gdbarch) \
|
||
/ TARGET_CHAR_BIT)
|
||
|
||
/* Throw away the cached copy of _ovly_table */
|
||
static void
|
||
simple_free_overlay_table (void)
|
||
{
|
||
if (cache_ovly_table)
|
||
xfree (cache_ovly_table);
|
||
cache_novlys = 0;
|
||
cache_ovly_table = NULL;
|
||
cache_ovly_table_base = 0;
|
||
}
|
||
|
||
#if 0
|
||
/* Throw away the cached copy of _ovly_region_table */
|
||
static void
|
||
simple_free_overlay_region_table (void)
|
||
{
|
||
if (cache_ovly_region_table)
|
||
xfree (cache_ovly_region_table);
|
||
cache_novly_regions = 0;
|
||
cache_ovly_region_table = NULL;
|
||
cache_ovly_region_table_base = 0;
|
||
}
|
||
#endif
|
||
|
||
/* Read an array of ints from the target into a local buffer.
|
||
Convert to host order. int LEN is number of ints */
|
||
static void
|
||
read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
|
||
{
|
||
/* FIXME (alloca): Not safe if array is very large. */
|
||
gdb_byte *buf = alloca (len * TARGET_LONG_BYTES);
|
||
int i;
|
||
|
||
read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
|
||
for (i = 0; i < len; i++)
|
||
myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
|
||
TARGET_LONG_BYTES);
|
||
}
|
||
|
||
/* Find and grab a copy of the target _ovly_table
|
||
(and _novlys, which is needed for the table's size) */
|
||
static int
|
||
simple_read_overlay_table (void)
|
||
{
|
||
struct minimal_symbol *novlys_msym, *ovly_table_msym;
|
||
|
||
simple_free_overlay_table ();
|
||
novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
|
||
if (! novlys_msym)
|
||
{
|
||
error (_("Error reading inferior's overlay table: "
|
||
"couldn't find `_novlys' variable\n"
|
||
"in inferior. Use `overlay manual' mode."));
|
||
return 0;
|
||
}
|
||
|
||
ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
|
||
if (! ovly_table_msym)
|
||
{
|
||
error (_("Error reading inferior's overlay table: couldn't find "
|
||
"`_ovly_table' array\n"
|
||
"in inferior. Use `overlay manual' mode."));
|
||
return 0;
|
||
}
|
||
|
||
cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
|
||
cache_ovly_table
|
||
= (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
|
||
cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
|
||
read_target_long_array (cache_ovly_table_base,
|
||
(unsigned int *) cache_ovly_table,
|
||
cache_novlys * 4);
|
||
|
||
return 1; /* SUCCESS */
|
||
}
|
||
|
||
#if 0
|
||
/* Find and grab a copy of the target _ovly_region_table
|
||
(and _novly_regions, which is needed for the table's size) */
|
||
static int
|
||
simple_read_overlay_region_table (void)
|
||
{
|
||
struct minimal_symbol *msym;
|
||
|
||
simple_free_overlay_region_table ();
|
||
msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
|
||
if (msym != NULL)
|
||
cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
|
||
else
|
||
return 0; /* failure */
|
||
cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
|
||
if (cache_ovly_region_table != NULL)
|
||
{
|
||
msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
|
||
if (msym != NULL)
|
||
{
|
||
cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
|
||
read_target_long_array (cache_ovly_region_table_base,
|
||
(unsigned int *) cache_ovly_region_table,
|
||
cache_novly_regions * 3);
|
||
}
|
||
else
|
||
return 0; /* failure */
|
||
}
|
||
else
|
||
return 0; /* failure */
|
||
return 1; /* SUCCESS */
|
||
}
|
||
#endif
|
||
|
||
/* Function: simple_overlay_update_1
|
||
A helper function for simple_overlay_update. Assuming a cached copy
|
||
of _ovly_table exists, look through it to find an entry whose vma,
|
||
lma and size match those of OSECT. Re-read the entry and make sure
|
||
it still matches OSECT (else the table may no longer be valid).
|
||
Set OSECT's mapped state to match the entry. Return: 1 for
|
||
success, 0 for failure. */
|
||
|
||
static int
|
||
simple_overlay_update_1 (struct obj_section *osect)
|
||
{
|
||
int i, size;
|
||
bfd *obfd = osect->objfile->obfd;
|
||
asection *bsect = osect->the_bfd_section;
|
||
|
||
size = bfd_get_section_size (osect->the_bfd_section);
|
||
for (i = 0; i < cache_novlys; i++)
|
||
if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
|
||
&& cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
|
||
/* && cache_ovly_table[i][SIZE] == size */ )
|
||
{
|
||
read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
|
||
(unsigned int *) cache_ovly_table[i], 4);
|
||
if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
|
||
&& cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
|
||
/* && cache_ovly_table[i][SIZE] == size */ )
|
||
{
|
||
osect->ovly_mapped = cache_ovly_table[i][MAPPED];
|
||
return 1;
|
||
}
|
||
else /* Warning! Warning! Target's ovly table has changed! */
|
||
return 0;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* Function: simple_overlay_update
|
||
If OSECT is NULL, then update all sections' mapped state
|
||
(after re-reading the entire target _ovly_table).
|
||
If OSECT is non-NULL, then try to find a matching entry in the
|
||
cached ovly_table and update only OSECT's mapped state.
|
||
If a cached entry can't be found or the cache isn't valid, then
|
||
re-read the entire cache, and go ahead and update all sections. */
|
||
|
||
void
|
||
simple_overlay_update (struct obj_section *osect)
|
||
{
|
||
struct objfile *objfile;
|
||
|
||
/* Were we given an osect to look up? NULL means do all of them. */
|
||
if (osect)
|
||
/* Have we got a cached copy of the target's overlay table? */
|
||
if (cache_ovly_table != NULL)
|
||
/* Does its cached location match what's currently in the symtab? */
|
||
if (cache_ovly_table_base ==
|
||
SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
|
||
/* Then go ahead and try to look up this single section in the cache */
|
||
if (simple_overlay_update_1 (osect))
|
||
/* Found it! We're done. */
|
||
return;
|
||
|
||
/* Cached table no good: need to read the entire table anew.
|
||
Or else we want all the sections, in which case it's actually
|
||
more efficient to read the whole table in one block anyway. */
|
||
|
||
if (! simple_read_overlay_table ())
|
||
return;
|
||
|
||
/* Now may as well update all sections, even if only one was requested. */
|
||
ALL_OBJSECTIONS (objfile, osect)
|
||
if (section_is_overlay (osect))
|
||
{
|
||
int i, size;
|
||
bfd *obfd = osect->objfile->obfd;
|
||
asection *bsect = osect->the_bfd_section;
|
||
|
||
size = bfd_get_section_size (bsect);
|
||
for (i = 0; i < cache_novlys; i++)
|
||
if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
|
||
&& cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
|
||
/* && cache_ovly_table[i][SIZE] == size */ )
|
||
{ /* obj_section matches i'th entry in ovly_table */
|
||
osect->ovly_mapped = cache_ovly_table[i][MAPPED];
|
||
break; /* finished with inner for loop: break out */
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Set the output sections and output offsets for section SECTP in
|
||
ABFD. The relocation code in BFD will read these offsets, so we
|
||
need to be sure they're initialized. We map each section to itself,
|
||
with no offset; this means that SECTP->vma will be honored. */
|
||
|
||
static void
|
||
symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
|
||
{
|
||
sectp->output_section = sectp;
|
||
sectp->output_offset = 0;
|
||
}
|
||
|
||
/* Relocate the contents of a debug section SECTP in ABFD. The
|
||
contents are stored in BUF if it is non-NULL, or returned in a
|
||
malloc'd buffer otherwise.
|
||
|
||
For some platforms and debug info formats, shared libraries contain
|
||
relocations against the debug sections (particularly for DWARF-2;
|
||
one affected platform is PowerPC GNU/Linux, although it depends on
|
||
the version of the linker in use). Also, ELF object files naturally
|
||
have unresolved relocations for their debug sections. We need to apply
|
||
the relocations in order to get the locations of symbols correct.
|
||
Another example that may require relocation processing, is the
|
||
DWARF-2 .eh_frame section in .o files, although it isn't strictly a
|
||
debug section. */
|
||
|
||
bfd_byte *
|
||
symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
|
||
{
|
||
/* We're only interested in sections with relocation
|
||
information. */
|
||
if ((sectp->flags & SEC_RELOC) == 0)
|
||
return NULL;
|
||
|
||
/* We will handle section offsets properly elsewhere, so relocate as if
|
||
all sections begin at 0. */
|
||
bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
|
||
|
||
return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
|
||
}
|
||
|
||
struct symfile_segment_data *
|
||
get_symfile_segment_data (bfd *abfd)
|
||
{
|
||
struct sym_fns *sf = find_sym_fns (abfd);
|
||
|
||
if (sf == NULL)
|
||
return NULL;
|
||
|
||
return sf->sym_segments (abfd);
|
||
}
|
||
|
||
void
|
||
free_symfile_segment_data (struct symfile_segment_data *data)
|
||
{
|
||
xfree (data->segment_bases);
|
||
xfree (data->segment_sizes);
|
||
xfree (data->segment_info);
|
||
xfree (data);
|
||
}
|
||
|
||
|
||
/* Given:
|
||
- DATA, containing segment addresses from the object file ABFD, and
|
||
the mapping from ABFD's sections onto the segments that own them,
|
||
and
|
||
- SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
|
||
segment addresses reported by the target,
|
||
store the appropriate offsets for each section in OFFSETS.
|
||
|
||
If there are fewer entries in SEGMENT_BASES than there are segments
|
||
in DATA, then apply SEGMENT_BASES' last entry to all the segments.
|
||
|
||
If there are more entries, then ignore the extra. The target may
|
||
not be able to distinguish between an empty data segment and a
|
||
missing data segment; a missing text segment is less plausible. */
|
||
int
|
||
symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
|
||
struct section_offsets *offsets,
|
||
int num_segment_bases,
|
||
const CORE_ADDR *segment_bases)
|
||
{
|
||
int i;
|
||
asection *sect;
|
||
|
||
/* It doesn't make sense to call this function unless you have some
|
||
segment base addresses. */
|
||
gdb_assert (segment_bases > 0);
|
||
|
||
/* If we do not have segment mappings for the object file, we
|
||
can not relocate it by segments. */
|
||
gdb_assert (data != NULL);
|
||
gdb_assert (data->num_segments > 0);
|
||
|
||
for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
|
||
{
|
||
int which = data->segment_info[i];
|
||
|
||
gdb_assert (0 <= which && which <= data->num_segments);
|
||
|
||
/* Don't bother computing offsets for sections that aren't
|
||
loaded as part of any segment. */
|
||
if (! which)
|
||
continue;
|
||
|
||
/* Use the last SEGMENT_BASES entry as the address of any extra
|
||
segments mentioned in DATA->segment_info. */
|
||
if (which > num_segment_bases)
|
||
which = num_segment_bases;
|
||
|
||
offsets->offsets[i] = (segment_bases[which - 1]
|
||
- data->segment_bases[which - 1]);
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
static void
|
||
symfile_find_segment_sections (struct objfile *objfile)
|
||
{
|
||
bfd *abfd = objfile->obfd;
|
||
int i;
|
||
asection *sect;
|
||
struct symfile_segment_data *data;
|
||
|
||
data = get_symfile_segment_data (objfile->obfd);
|
||
if (data == NULL)
|
||
return;
|
||
|
||
if (data->num_segments != 1 && data->num_segments != 2)
|
||
{
|
||
free_symfile_segment_data (data);
|
||
return;
|
||
}
|
||
|
||
for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
|
||
{
|
||
CORE_ADDR vma;
|
||
int which = data->segment_info[i];
|
||
|
||
if (which == 1)
|
||
{
|
||
if (objfile->sect_index_text == -1)
|
||
objfile->sect_index_text = sect->index;
|
||
|
||
if (objfile->sect_index_rodata == -1)
|
||
objfile->sect_index_rodata = sect->index;
|
||
}
|
||
else if (which == 2)
|
||
{
|
||
if (objfile->sect_index_data == -1)
|
||
objfile->sect_index_data = sect->index;
|
||
|
||
if (objfile->sect_index_bss == -1)
|
||
objfile->sect_index_bss = sect->index;
|
||
}
|
||
}
|
||
|
||
free_symfile_segment_data (data);
|
||
}
|
||
|
||
void
|
||
_initialize_symfile (void)
|
||
{
|
||
struct cmd_list_element *c;
|
||
|
||
c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
|
||
Load symbol table from executable file FILE.\n\
|
||
The `file' command can also load symbol tables, as well as setting the file\n\
|
||
to execute."), &cmdlist);
|
||
set_cmd_completer (c, filename_completer);
|
||
|
||
c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
|
||
Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
|
||
Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
|
||
ADDR is the starting address of the file's text.\n\
|
||
The optional arguments are section-name section-address pairs and\n\
|
||
should be specified if the data and bss segments are not contiguous\n\
|
||
with the text. SECT is a section name to be loaded at SECT_ADDR."),
|
||
&cmdlist);
|
||
set_cmd_completer (c, filename_completer);
|
||
|
||
c = add_cmd ("add-shared-symbol-files", class_files,
|
||
add_shared_symbol_files_command, _("\
|
||
Load the symbols from shared objects in the dynamic linker's link map."),
|
||
&cmdlist);
|
||
c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
|
||
&cmdlist);
|
||
|
||
c = add_cmd ("load", class_files, load_command, _("\
|
||
Dynamically load FILE into the running program, and record its symbols\n\
|
||
for access from GDB.\n\
|
||
A load OFFSET may also be given."), &cmdlist);
|
||
set_cmd_completer (c, filename_completer);
|
||
|
||
add_setshow_boolean_cmd ("symbol-reloading", class_support,
|
||
&symbol_reloading, _("\
|
||
Set dynamic symbol table reloading multiple times in one run."), _("\
|
||
Show dynamic symbol table reloading multiple times in one run."), NULL,
|
||
NULL,
|
||
show_symbol_reloading,
|
||
&setlist, &showlist);
|
||
|
||
add_prefix_cmd ("overlay", class_support, overlay_command,
|
||
_("Commands for debugging overlays."), &overlaylist,
|
||
"overlay ", 0, &cmdlist);
|
||
|
||
add_com_alias ("ovly", "overlay", class_alias, 1);
|
||
add_com_alias ("ov", "overlay", class_alias, 1);
|
||
|
||
add_cmd ("map-overlay", class_support, map_overlay_command,
|
||
_("Assert that an overlay section is mapped."), &overlaylist);
|
||
|
||
add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
|
||
_("Assert that an overlay section is unmapped."), &overlaylist);
|
||
|
||
add_cmd ("list-overlays", class_support, list_overlays_command,
|
||
_("List mappings of overlay sections."), &overlaylist);
|
||
|
||
add_cmd ("manual", class_support, overlay_manual_command,
|
||
_("Enable overlay debugging."), &overlaylist);
|
||
add_cmd ("off", class_support, overlay_off_command,
|
||
_("Disable overlay debugging."), &overlaylist);
|
||
add_cmd ("auto", class_support, overlay_auto_command,
|
||
_("Enable automatic overlay debugging."), &overlaylist);
|
||
add_cmd ("load-target", class_support, overlay_load_command,
|
||
_("Read the overlay mapping state from the target."), &overlaylist);
|
||
|
||
/* Filename extension to source language lookup table: */
|
||
init_filename_language_table ();
|
||
add_setshow_string_noescape_cmd ("extension-language", class_files,
|
||
&ext_args, _("\
|
||
Set mapping between filename extension and source language."), _("\
|
||
Show mapping between filename extension and source language."), _("\
|
||
Usage: set extension-language .foo bar"),
|
||
set_ext_lang_command,
|
||
show_ext_args,
|
||
&setlist, &showlist);
|
||
|
||
add_info ("extensions", info_ext_lang_command,
|
||
_("All filename extensions associated with a source language."));
|
||
|
||
add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
|
||
&debug_file_directory, _("\
|
||
Set the directory where separate debug symbols are searched for."), _("\
|
||
Show the directory where separate debug symbols are searched for."), _("\
|
||
Separate debug symbols are first searched for in the same\n\
|
||
directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
|
||
and lastly at the path of the directory of the binary with\n\
|
||
the global debug-file directory prepended."),
|
||
NULL,
|
||
show_debug_file_directory,
|
||
&setlist, &showlist);
|
||
|
||
add_setshow_boolean_cmd ("symbol-loading", no_class,
|
||
&print_symbol_loading, _("\
|
||
Set printing of symbol loading messages."), _("\
|
||
Show printing of symbol loading messages."), NULL,
|
||
NULL,
|
||
NULL,
|
||
&setprintlist, &showprintlist);
|
||
}
|