mirror of
https://github.com/darlinghq/darling-gdb.git
synced 2025-01-10 14:11:29 +00:00
3002 lines
96 KiB
C
3002 lines
96 KiB
C
/* BFD back-end for HP PA-RISC ELF files.
|
|
Copyright (C) 1990, 91, 92, 93, 94 Free Software Foundation, Inc.
|
|
|
|
Written by
|
|
|
|
Center for Software Science
|
|
Department of Computer Science
|
|
University of Utah
|
|
|
|
This file is part of BFD, the Binary File Descriptor library.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
|
|
|
|
#include "bfd.h"
|
|
#include "sysdep.h"
|
|
#include "bfdlink.h"
|
|
#include "libbfd.h"
|
|
#include "obstack.h"
|
|
#include "libelf.h"
|
|
|
|
/* The internal type of a symbol table extension entry. */
|
|
typedef unsigned long symext_entryS;
|
|
|
|
/* The external type of a symbol table extension entry. */
|
|
#define ELF32_PARISC_SX_SIZE (4)
|
|
#define ELF32_PARISC_SX_GET(bfd, addr) bfd_h_get_32 ((bfd), (addr))
|
|
#define ELF32_PARISC_SX_PUT(bfd, val, addr) \
|
|
bfd_h_put_32 ((bfd), (val), (addr))
|
|
|
|
/* HPPA symbol table extension entry types */
|
|
enum elf32_hppa_symextn_types
|
|
{
|
|
PARISC_SXT_NULL,
|
|
PARISC_SXT_SYMNDX,
|
|
PARISC_SXT_ARG_RELOC,
|
|
};
|
|
|
|
/* These macros compose and decompose the value of a symextn entry:
|
|
|
|
entry_type = ELF32_PARISC_SX_TYPE(word);
|
|
entry_value = ELF32_PARISC_SX_VAL(word);
|
|
word = ELF32_PARISC_SX_WORD(type,val); */
|
|
|
|
#define ELF32_PARISC_SX_TYPE(p) ((p) >> 24)
|
|
#define ELF32_PARISC_SX_VAL(p) ((p) & 0xFFFFFF)
|
|
#define ELF32_PARISC_SX_WORD(type,val) (((type) << 24) + (val & 0xFFFFFF))
|
|
|
|
/* The following was added facilitate implementation of the .hppa_symextn
|
|
section. This section is built after the symbol table is built in the
|
|
elf_write_object_contents routine (called from bfd_close). It is built
|
|
so late because it requires information that is not known until
|
|
the symbol and string table sections have been allocated, and
|
|
the symbol table has been built. */
|
|
|
|
#define SYMEXTN_SECTION_NAME ".PARISC.symext"
|
|
|
|
struct symext_chain
|
|
{
|
|
symext_entryS entry;
|
|
struct symext_chain *next;
|
|
};
|
|
|
|
typedef struct symext_chain symext_chainS;
|
|
|
|
/* We use three different hash tables to hold information for
|
|
linking PA ELF objects.
|
|
|
|
The first is the elf32_hppa_link_hash_table which is derived
|
|
from the standard ELF linker hash table. We use this as a place to
|
|
attach other hash tables and static information.
|
|
|
|
The second is the stub hash table which is derived from the
|
|
base BFD hash table. The stub hash table holds the information
|
|
necessary to build the linker stubs during a link.
|
|
|
|
The last hash table keeps track of argument location information needed
|
|
to build hash tables. Each function with nonzero argument location
|
|
bits will have an entry in this table. */
|
|
|
|
/* Hash table for linker stubs. */
|
|
|
|
struct elf32_hppa_stub_hash_entry
|
|
{
|
|
/* Base hash table entry structure, we can get the name of the stub
|
|
(and thus know exactly what actions it performs) from the base
|
|
hash table entry. */
|
|
struct bfd_hash_entry root;
|
|
|
|
/* Offset of the beginning of this stub. */
|
|
bfd_vma offset;
|
|
|
|
/* Given the symbol's value and its section we can determine its final
|
|
value when building the stubs (so the stub knows where to jump. */
|
|
symvalue target_value;
|
|
asection *target_section;
|
|
};
|
|
|
|
struct elf32_hppa_stub_hash_table
|
|
{
|
|
/* The hash table itself. */
|
|
struct bfd_hash_table root;
|
|
|
|
/* The stub BFD. */
|
|
bfd *stub_bfd;
|
|
|
|
/* Where to place the next stub. */
|
|
bfd_byte *location;
|
|
|
|
/* Current offset in the stub section. */
|
|
unsigned int offset;
|
|
|
|
};
|
|
|
|
/* Hash table for argument location information. */
|
|
|
|
struct elf32_hppa_args_hash_entry
|
|
{
|
|
/* Base hash table entry structure. */
|
|
struct bfd_hash_entry root;
|
|
|
|
/* The argument location bits for this entry. */
|
|
int arg_bits;
|
|
};
|
|
|
|
struct elf32_hppa_args_hash_table
|
|
{
|
|
/* The hash table itself. */
|
|
struct bfd_hash_table root;
|
|
};
|
|
|
|
struct elf32_hppa_link_hash_entry
|
|
{
|
|
struct elf_link_hash_entry root;
|
|
};
|
|
|
|
struct elf32_hppa_link_hash_table
|
|
{
|
|
/* The main hash table. */
|
|
struct elf_link_hash_table root;
|
|
|
|
/* The stub hash table. */
|
|
struct elf32_hppa_stub_hash_table *stub_hash_table;
|
|
|
|
/* The argument relocation bits hash table. */
|
|
struct elf32_hppa_args_hash_table *args_hash_table;
|
|
|
|
/* A count of the number of output symbols. */
|
|
unsigned int output_symbol_count;
|
|
|
|
/* Stuff so we can handle DP relative relocations. */
|
|
long global_value;
|
|
int global_sym_defined;
|
|
};
|
|
|
|
/* FIXME. */
|
|
#define ARGUMENTS 0
|
|
#define RETURN_VALUE 1
|
|
|
|
/* The various argument relocations that may be performed. */
|
|
typedef enum
|
|
{
|
|
/* No relocation. */
|
|
NO,
|
|
/* Relocate 32 bits from GR to FP register. */
|
|
GF,
|
|
/* Relocate 64 bits from a GR pair to FP pair. */
|
|
GD,
|
|
/* Relocate 32 bits from FP to GR. */
|
|
FG,
|
|
/* Relocate 64 bits from FP pair to GR pair. */
|
|
DG,
|
|
} arg_reloc_type;
|
|
|
|
/* What is being relocated (eg which argument or the return value). */
|
|
typedef enum
|
|
{
|
|
ARG0, ARG1, ARG2, ARG3, RET,
|
|
} arg_reloc_location;
|
|
|
|
|
|
/* ELF32/HPPA relocation support
|
|
|
|
This file contains ELF32/HPPA relocation support as specified
|
|
in the Stratus FTX/Golf Object File Format (SED-1762) dated
|
|
February 1994. */
|
|
|
|
#include "elf32-hppa.h"
|
|
#include "hppa_stubs.h"
|
|
|
|
static bfd_reloc_status_type hppa_elf_reloc
|
|
PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
|
|
|
|
static unsigned long hppa_elf_relocate_insn
|
|
PARAMS ((bfd *, asection *, unsigned long, unsigned long, long,
|
|
long, unsigned long, unsigned long, unsigned long));
|
|
|
|
static bfd_reloc_status_type hppa_elf_reloc
|
|
PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd*, char **));
|
|
|
|
static CONST reloc_howto_type * elf_hppa_reloc_type_lookup
|
|
PARAMS ((bfd *, bfd_reloc_code_real_type));
|
|
|
|
static boolean elf32_hppa_set_section_contents
|
|
PARAMS ((bfd *, sec_ptr, PTR, file_ptr, bfd_size_type));
|
|
|
|
static void elf_info_to_howto
|
|
PARAMS ((bfd *, arelent *, Elf32_Internal_Rela *));
|
|
|
|
static boolean elf32_hppa_backend_symbol_table_processing
|
|
PARAMS ((bfd *, elf_symbol_type *, int));
|
|
|
|
static void elf32_hppa_backend_begin_write_processing
|
|
PARAMS ((bfd *, struct bfd_link_info *));
|
|
|
|
static void elf32_hppa_backend_final_write_processing
|
|
PARAMS ((bfd *, boolean));
|
|
|
|
static void add_entry_to_symext_chain
|
|
PARAMS ((bfd *, unsigned int, unsigned int, symext_chainS **,
|
|
symext_chainS **));
|
|
|
|
static void
|
|
elf_hppa_tc_make_sections PARAMS ((bfd *, symext_chainS *));
|
|
|
|
static boolean hppa_elf_is_local_label PARAMS ((bfd *, asymbol *));
|
|
|
|
static boolean elf32_hppa_add_symbol_hook
|
|
PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Sym *,
|
|
const char **, flagword *, asection **, bfd_vma *));
|
|
|
|
static bfd_reloc_status_type elf32_hppa_bfd_final_link_relocate
|
|
PARAMS ((const reloc_howto_type *, bfd *, bfd *, asection *,
|
|
bfd_byte *, bfd_vma, bfd_vma, bfd_vma, struct bfd_link_info *,
|
|
asection *, const char *, int));
|
|
|
|
static struct bfd_link_hash_table *elf32_hppa_link_hash_table_create
|
|
PARAMS ((bfd *));
|
|
|
|
static struct bfd_hash_entry *
|
|
elf32_hppa_stub_hash_newfunc
|
|
PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
|
|
|
|
static struct bfd_hash_entry *
|
|
elf32_hppa_args_hash_newfunc
|
|
PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
|
|
|
|
static boolean
|
|
elf32_hppa_relocate_section
|
|
PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *,
|
|
bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
|
|
|
|
static boolean
|
|
elf32_hppa_stub_hash_table_init
|
|
PARAMS ((struct elf32_hppa_stub_hash_table *, bfd *,
|
|
struct bfd_hash_entry *(*) PARAMS ((struct bfd_hash_entry *,
|
|
struct bfd_hash_table *,
|
|
const char *))));
|
|
|
|
static boolean
|
|
elf32_hppa_build_one_stub PARAMS ((struct bfd_hash_entry *, PTR));
|
|
|
|
static boolean
|
|
elf32_hppa_read_symext_info
|
|
PARAMS ((bfd *, Elf_Internal_Shdr *, struct elf32_hppa_args_hash_table *,
|
|
Elf_Internal_Sym *));
|
|
|
|
static unsigned int elf32_hppa_size_of_stub
|
|
PARAMS ((unsigned int, unsigned int, bfd_vma, bfd_vma, const char *));
|
|
|
|
static boolean elf32_hppa_arg_reloc_needed
|
|
PARAMS ((unsigned int, unsigned int, arg_reloc_type []));
|
|
|
|
static void elf32_hppa_name_of_stub
|
|
PARAMS ((unsigned int, unsigned int, bfd_vma, bfd_vma, char *));
|
|
|
|
static boolean elf32_hppa_size_symext PARAMS ((struct bfd_hash_entry *, PTR));
|
|
|
|
static boolean elf32_hppa_link_output_symbol_hook
|
|
PARAMS ((bfd *, struct bfd_link_info *, const char *,
|
|
Elf_Internal_Sym *, asection *));
|
|
|
|
/* ELF/PA relocation howto entries. */
|
|
|
|
static reloc_howto_type elf_hppa_howto_table[ELF_HOWTO_TABLE_SIZE] =
|
|
{
|
|
{R_PARISC_NONE, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_NONE"},
|
|
{R_PARISC_DIR32, 0, 0, 32, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_DIR32"},
|
|
{R_PARISC_DIR21L, 0, 0, 21, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_DIR21L"},
|
|
{R_PARISC_DIR17R, 0, 0, 17, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_DIR17R"},
|
|
{R_PARISC_DIR17F, 0, 0, 17, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_DIR17F"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_DIR14R, 0, 0, 14, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_DIR14R"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_PCREL21L, 0, 0, 21, true, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_PCREL21L"},
|
|
{R_PARISC_PCREL17R, 0, 0, 17, true, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_PCREL17R"},
|
|
{R_PARISC_PCREL17F, 0, 0, 17, true, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_PCREL17F"},
|
|
{R_PARISC_PCREL17C, 0, 0, 17, true, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_PCREL17C"},
|
|
{R_PARISC_PCREL14R, 0, 0, 14, true, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_PCREL14R"},
|
|
{R_PARISC_PCREL14F, 0, 0, 14, true, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_PCREL14F"},
|
|
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_DPREL21L, 0, 0, 21, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_DPREL21L"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_DPREL14R, 0, 0, 14, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_DPREL14R"},
|
|
{R_PARISC_DPREL14F, 0, 0, 14, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_DPREL14F"},
|
|
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_DLTREL21L, 0, 0, 21, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_DLTREL21L"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_DLTREL14R, 0, 0, 14, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_DLTREL14R"},
|
|
{R_PARISC_DLTREL14F, 0, 0, 14, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_DLTREL14F"},
|
|
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_DLTIND21L, 0, 0, 21, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_DLTIND21L"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_DLTIND14R, 0, 0, 14, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_DLTIND14R"},
|
|
{R_PARISC_DLTIND14F, 0, 0, 14, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_DLTIND14F"},
|
|
|
|
{R_PARISC_SETBASE, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_SETBASE"},
|
|
{R_PARISC_BASEREL32, 0, 0, 32, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_BASEREL32"},
|
|
{R_PARISC_BASEREL21L, 0, 0, 21, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_BASEREL21L"},
|
|
{R_PARISC_BASEREL17R, 0, 0, 17, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_BASEREL17R"},
|
|
{R_PARISC_BASEREL17F, 0, 0, 17, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_BASEREL17F"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_BASEREL14R, 0, 0, 14, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_BASEREL14R"},
|
|
{R_PARISC_BASEREL14F, 0, 0, 14, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_BASEREL14F"},
|
|
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_TEXTREL32, 0, 0, 32, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_TEXTREL32"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_DATAREL32, 0, 0, 32, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
|
|
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_PLABEL32, 0, 0, 32, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_PLABEL32"},
|
|
{R_PARISC_PLABEL21L, 0, 0, 21, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_PLABEL21L"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_PLABEL14R, 0, 0, 14, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_PLABEL14R"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
|
|
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_PLTIND21L, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_PLTIND21L"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
|
|
{R_PARISC_PLTIND14R, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_PLTIND14R"},
|
|
{R_PARISC_PLTIND14F, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_PLTIND14F"},
|
|
|
|
|
|
{R_PARISC_COPY, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_COPY"},
|
|
{R_PARISC_GLOB_DAT, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_GLOB_DAT"},
|
|
{R_PARISC_JMP_SLOT, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_JMP_SLOT"},
|
|
{R_PARISC_RELATIVE, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_RELATIVE"},
|
|
|
|
{R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_dont, NULL, "R_PARISC_UNIMPLEMENTED"},
|
|
};
|
|
|
|
/* Where (what register type) is an argument comming from? */
|
|
typedef enum
|
|
{
|
|
AR_NO,
|
|
AR_GR,
|
|
AR_FR,
|
|
AR_FU,
|
|
AR_FPDBL1,
|
|
AR_FPDBL2,
|
|
} arg_location;
|
|
|
|
/* Horizontal represents the callee's argument location information,
|
|
vertical represents caller's argument location information. Value at a
|
|
particular X,Y location represents what (if any) argument relocation
|
|
needs to be performed to make caller and callee agree. */
|
|
|
|
static CONST arg_reloc_type arg_mismatches[6][6] =
|
|
{
|
|
{NO, NO, NO, NO, NO, NO},
|
|
{NO, NO, GF, NO, GD, NO},
|
|
{NO, FG, NO, NO, NO, NO},
|
|
{NO, NO, NO, NO, NO, NO},
|
|
{NO, DG, NO, NO, NO, NO},
|
|
{NO, DG, NO, NO, NO, NO},
|
|
};
|
|
|
|
/* Likewise, but reversed for the return value. */
|
|
static CONST arg_reloc_type ret_mismatches[6][6] =
|
|
{
|
|
{NO, NO, NO, NO, NO, NO},
|
|
{NO, NO, FG, NO, DG, NO},
|
|
{NO, GF, NO, NO, NO, NO},
|
|
{NO, NO, NO, NO, NO, NO},
|
|
{NO, GD, NO, NO, NO, NO},
|
|
{NO, GD, NO, NO, NO, NO},
|
|
};
|
|
|
|
/* Misc static crud for symbol extension records. */
|
|
static symext_chainS *symext_rootP;
|
|
static symext_chainS *symext_lastP;
|
|
static bfd_size_type symext_chain_size;
|
|
|
|
/* FIXME: We should be able to try this static variable! */
|
|
static bfd_byte *symextn_contents;
|
|
|
|
|
|
/* For linker stub hash tables. */
|
|
#define elf32_hppa_stub_hash_lookup(table, string, create, copy) \
|
|
((struct elf32_hppa_stub_hash_entry *) \
|
|
bfd_hash_lookup (&(table)->root, (string), (create), (copy)))
|
|
|
|
#define elf32_hppa_stub_hash_traverse(table, func, info) \
|
|
(bfd_hash_traverse \
|
|
(&(table)->root, \
|
|
(boolean (*) PARAMS ((struct bfd_hash_entry *, PTR))) (func), \
|
|
(info)))
|
|
|
|
/* For linker args hash tables. */
|
|
#define elf32_hppa_args_hash_lookup(table, string, create, copy) \
|
|
((struct elf32_hppa_args_hash_entry *) \
|
|
bfd_hash_lookup (&(table)->root, (string), (create), (copy)))
|
|
|
|
#define elf32_hppa_args_hash_traverse(table, func, info) \
|
|
(bfd_hash_traverse \
|
|
(&(table)->root, \
|
|
(boolean (*) PARAMS ((struct bfd_hash_entry *, PTR))) (func), \
|
|
(info)))
|
|
|
|
#define elf32_hppa_args_hash_table_init(table, newfunc) \
|
|
(bfd_hash_table_init \
|
|
(&(table)->root, \
|
|
(struct bfd_hash_entry *(*) PARAMS ((struct bfd_hash_entry *, \
|
|
struct bfd_hash_table *, \
|
|
const char *))) (newfunc)))
|
|
|
|
/* For HPPA linker hash table. */
|
|
|
|
#define elf32_hppa_link_hash_lookup(table, string, create, copy, follow)\
|
|
((struct elf32_hppa_link_hash_entry *) \
|
|
elf_link_hash_lookup (&(table)->root, (string), (create), \
|
|
(copy), (follow)))
|
|
|
|
#define elf32_hppa_link_hash_traverse(table, func, info) \
|
|
(elf_link_hash_traverse \
|
|
(&(table)->root, \
|
|
(boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
|
|
(info)))
|
|
|
|
/* Get the PA ELF linker hash table from a link_info structure. */
|
|
|
|
#define elf32_hppa_hash_table(p) \
|
|
((struct elf32_hppa_link_hash_table *) ((p)->hash))
|
|
|
|
|
|
/* Extract specific argument location bits for WHICH from
|
|
the full argument location in AR. */
|
|
#define EXTRACT_ARBITS(ar, which) ((ar) >> (8 - ((which) * 2))) & 3
|
|
|
|
/* Assorted hash table functions. */
|
|
|
|
/* Initialize an entry in the stub hash table. */
|
|
|
|
static struct bfd_hash_entry *
|
|
elf32_hppa_stub_hash_newfunc (entry, table, string)
|
|
struct bfd_hash_entry *entry;
|
|
struct bfd_hash_table *table;
|
|
const char *string;
|
|
{
|
|
struct elf32_hppa_stub_hash_entry *ret;
|
|
|
|
ret = (struct elf32_hppa_stub_hash_entry *) entry;
|
|
|
|
/* Allocate the structure if it has not already been allocated by a
|
|
subclass. */
|
|
if (ret == NULL)
|
|
ret = ((struct elf32_hppa_stub_hash_entry *)
|
|
bfd_hash_allocate (table,
|
|
sizeof (struct elf32_hppa_stub_hash_entry)));
|
|
if (ret == NULL)
|
|
{
|
|
bfd_set_error (bfd_error_no_memory);
|
|
return NULL;
|
|
}
|
|
|
|
/* Call the allocation method of the superclass. */
|
|
ret = ((struct elf32_hppa_stub_hash_entry *)
|
|
bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
|
|
|
|
if (ret)
|
|
{
|
|
/* Initialize the local fields. */
|
|
ret->offset = 0;
|
|
ret->target_value = 0;
|
|
ret->target_section = NULL;
|
|
}
|
|
|
|
return (struct bfd_hash_entry *) ret;
|
|
}
|
|
|
|
/* Initialize a stub hash table. */
|
|
|
|
static boolean
|
|
elf32_hppa_stub_hash_table_init (table, stub_bfd, newfunc)
|
|
struct elf32_hppa_stub_hash_table *table;
|
|
bfd *stub_bfd;
|
|
struct bfd_hash_entry *(*newfunc) PARAMS ((struct bfd_hash_entry *,
|
|
struct bfd_hash_table *,
|
|
const char *));
|
|
{
|
|
table->offset = 0;
|
|
table->location = 0;
|
|
table->stub_bfd = stub_bfd;
|
|
return (bfd_hash_table_init (&table->root, newfunc));
|
|
}
|
|
|
|
/* Initialize an entry in the argument location hash table. */
|
|
|
|
static struct bfd_hash_entry *
|
|
elf32_hppa_args_hash_newfunc (entry, table, string)
|
|
struct bfd_hash_entry *entry;
|
|
struct bfd_hash_table *table;
|
|
const char *string;
|
|
{
|
|
struct elf32_hppa_args_hash_entry *ret;
|
|
|
|
ret = (struct elf32_hppa_args_hash_entry *) entry;
|
|
|
|
/* Allocate the structure if it has not already been allocated by a
|
|
subclass. */
|
|
if (ret == NULL)
|
|
ret = ((struct elf32_hppa_args_hash_entry *)
|
|
bfd_hash_allocate (table,
|
|
sizeof (struct elf32_hppa_args_hash_entry)));
|
|
if (ret == NULL)
|
|
{
|
|
bfd_set_error (bfd_error_no_memory);
|
|
return NULL;
|
|
}
|
|
|
|
/* Call the allocation method of the superclass. */
|
|
ret = ((struct elf32_hppa_args_hash_entry *)
|
|
bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
|
|
|
|
/* Initialize the local fields. */
|
|
if (ret)
|
|
ret->arg_bits = 0;
|
|
|
|
return (struct bfd_hash_entry *) ret;
|
|
}
|
|
|
|
/* Create the derived linker hash table. The PA ELF port uses the derived
|
|
hash table to keep information specific to the PA ELF linker (without
|
|
using static variables). */
|
|
|
|
static struct bfd_link_hash_table *
|
|
elf32_hppa_link_hash_table_create (abfd)
|
|
bfd *abfd;
|
|
{
|
|
struct elf32_hppa_link_hash_table *ret;
|
|
|
|
ret = ((struct elf32_hppa_link_hash_table *)
|
|
bfd_alloc (abfd, sizeof (struct elf32_hppa_link_hash_table)));
|
|
if (ret == NULL)
|
|
{
|
|
bfd_set_error (bfd_error_no_memory);
|
|
return NULL;
|
|
}
|
|
if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
|
|
_bfd_elf_link_hash_newfunc))
|
|
{
|
|
bfd_release (abfd, ret);
|
|
return NULL;
|
|
}
|
|
ret->stub_hash_table = NULL;
|
|
ret->args_hash_table = NULL;
|
|
ret->output_symbol_count = 0;
|
|
ret->global_value = 0;
|
|
ret->global_sym_defined = 0;
|
|
|
|
return &ret->root.root;
|
|
}
|
|
|
|
/* Relocate the given INSN given the various input parameters.
|
|
|
|
FIXME: endianness and sizeof (long) issues abound here. */
|
|
|
|
static unsigned long
|
|
hppa_elf_relocate_insn (abfd, input_sect, insn, address, sym_value,
|
|
r_addend, r_format, r_field, pcrel)
|
|
bfd *abfd;
|
|
asection *input_sect;
|
|
unsigned long insn;
|
|
unsigned long address;
|
|
long sym_value;
|
|
long r_addend;
|
|
unsigned long r_format;
|
|
unsigned long r_field;
|
|
unsigned long pcrel;
|
|
{
|
|
unsigned char opcode = get_opcode (insn);
|
|
long constant_value;
|
|
|
|
switch (opcode)
|
|
{
|
|
case LDO:
|
|
case LDB:
|
|
case LDH:
|
|
case LDW:
|
|
case LDWM:
|
|
case STB:
|
|
case STH:
|
|
case STW:
|
|
case STWM:
|
|
case COMICLR:
|
|
case SUBI:
|
|
case ADDIT:
|
|
case ADDI:
|
|
case LDIL:
|
|
case ADDIL:
|
|
constant_value = HPPA_R_CONSTANT (r_addend);
|
|
|
|
if (pcrel)
|
|
sym_value -= address;
|
|
|
|
sym_value = hppa_field_adjust (sym_value, constant_value, r_field);
|
|
return hppa_rebuild_insn (abfd, insn, sym_value, r_format);
|
|
|
|
case BL:
|
|
case BE:
|
|
case BLE:
|
|
/* XXX computing constant_value is not needed??? */
|
|
constant_value = assemble_17 ((insn & 0x001f0000) >> 16,
|
|
(insn & 0x00001ffc) >> 2,
|
|
insn & 1);
|
|
|
|
constant_value = (constant_value << 15) >> 15;
|
|
if (pcrel)
|
|
{
|
|
sym_value -=
|
|
address + input_sect->output_offset
|
|
+ input_sect->output_section->vma;
|
|
sym_value = hppa_field_adjust (sym_value, -8, r_field);
|
|
}
|
|
else
|
|
sym_value = hppa_field_adjust (sym_value, constant_value, r_field);
|
|
|
|
return hppa_rebuild_insn (abfd, insn, sym_value >> 2, r_format);
|
|
|
|
default:
|
|
if (opcode == 0)
|
|
{
|
|
constant_value = HPPA_R_CONSTANT (r_addend);
|
|
|
|
if (pcrel)
|
|
sym_value -= address;
|
|
|
|
return hppa_field_adjust (sym_value, constant_value, r_field);
|
|
}
|
|
else
|
|
abort ();
|
|
}
|
|
}
|
|
|
|
/* Relocate an HPPA ELF section. */
|
|
|
|
static boolean
|
|
elf32_hppa_relocate_section (output_bfd, info, input_bfd, input_section,
|
|
contents, relocs, local_syms, local_sections)
|
|
bfd *output_bfd;
|
|
struct bfd_link_info *info;
|
|
bfd *input_bfd;
|
|
asection *input_section;
|
|
bfd_byte *contents;
|
|
Elf_Internal_Rela *relocs;
|
|
Elf_Internal_Sym *local_syms;
|
|
asection **local_sections;
|
|
{
|
|
Elf_Internal_Shdr *symtab_hdr;
|
|
Elf_Internal_Rela *rel;
|
|
Elf_Internal_Rela *relend;
|
|
|
|
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
|
|
|
|
rel = relocs;
|
|
relend = relocs + input_section->reloc_count;
|
|
for (; rel < relend; rel++)
|
|
{
|
|
int r_type;
|
|
const reloc_howto_type *howto;
|
|
long r_symndx;
|
|
struct elf_link_hash_entry *h;
|
|
Elf_Internal_Sym *sym;
|
|
asection *sym_sec;
|
|
bfd_vma relocation;
|
|
bfd_reloc_status_type r;
|
|
const char *sym_name;
|
|
|
|
r_type = ELF32_R_TYPE (rel->r_info);
|
|
if (r_type < 0 || r_type >= (int) R_PARISC_UNIMPLEMENTED)
|
|
{
|
|
bfd_set_error (bfd_error_bad_value);
|
|
return false;
|
|
}
|
|
howto = elf_hppa_howto_table + r_type;
|
|
|
|
r_symndx = ELF32_R_SYM (rel->r_info);
|
|
|
|
if (info->relocateable)
|
|
{
|
|
/* This is a relocateable link. We don't have to change
|
|
anything, unless the reloc is against a section symbol,
|
|
in which case we have to adjust according to where the
|
|
section symbol winds up in the output section. */
|
|
if (r_symndx < symtab_hdr->sh_info)
|
|
{
|
|
sym = local_syms + r_symndx;
|
|
if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
|
|
{
|
|
sym_sec = local_sections[r_symndx];
|
|
rel->r_addend += sym_sec->output_offset;
|
|
}
|
|
}
|
|
|
|
continue;
|
|
}
|
|
|
|
/* This is a final link. */
|
|
h = NULL;
|
|
sym = NULL;
|
|
sym_sec = NULL;
|
|
if (r_symndx < symtab_hdr->sh_info)
|
|
{
|
|
sym = local_syms + r_symndx;
|
|
sym_sec = local_sections[r_symndx];
|
|
relocation = ((ELF_ST_TYPE (sym->st_info) == STT_SECTION
|
|
? 0 : sym->st_value)
|
|
+ sym_sec->output_offset
|
|
+ sym_sec->output_section->vma);
|
|
}
|
|
else
|
|
{
|
|
long indx;
|
|
|
|
indx = r_symndx - symtab_hdr->sh_info;
|
|
h = elf_sym_hashes (input_bfd)[indx];
|
|
if (h->root.type == bfd_link_hash_defined)
|
|
{
|
|
sym_sec = h->root.u.def.section;
|
|
relocation = (h->root.u.def.value
|
|
+ sym_sec->output_offset
|
|
+ sym_sec->output_section->vma);
|
|
}
|
|
else if (h->root.type == bfd_link_hash_weak)
|
|
relocation = 0;
|
|
else
|
|
{
|
|
if (!((*info->callbacks->undefined_symbol)
|
|
(info, h->root.root.string, input_bfd,
|
|
input_section, rel->r_offset)))
|
|
return false;
|
|
relocation = 0;
|
|
}
|
|
}
|
|
|
|
if (h != NULL)
|
|
sym_name = h->root.root.string;
|
|
else
|
|
{
|
|
sym_name = elf_string_from_elf_section (input_bfd,
|
|
symtab_hdr->sh_link,
|
|
sym->st_name);
|
|
if (sym_name == NULL)
|
|
return false;
|
|
if (*sym_name == '\0')
|
|
sym_name = bfd_section_name (input_bfd, sym_sec);
|
|
}
|
|
|
|
/* If args_hash_table is NULL, then we have encountered some
|
|
kind of link error (ex. undefined symbols). Do not try to
|
|
apply any relocations, continue the loop so we can notify
|
|
the user of several errors in a single attempted link. */
|
|
if (elf32_hppa_hash_table (info)->args_hash_table == NULL)
|
|
continue;
|
|
|
|
r = elf32_hppa_bfd_final_link_relocate (howto, input_bfd, output_bfd,
|
|
input_section, contents,
|
|
rel->r_offset, relocation,
|
|
rel->r_addend, info, sym_sec,
|
|
sym_name, h == NULL);
|
|
|
|
if (r != bfd_reloc_ok)
|
|
{
|
|
switch (r)
|
|
{
|
|
case bfd_reloc_dangerous:
|
|
{
|
|
/* We use this return value to indicate that we performed
|
|
a "dangerous" relocation. This doesn't mean we did
|
|
the wrong thing, it just means there may be some cleanup
|
|
that needs to be done here.
|
|
|
|
In particular we had to swap the last call insn and its
|
|
delay slot. If the delay slot insn needed a relocation,
|
|
then we'll need to adjust the next relocation entry's
|
|
offset to account for the fact that the insn moved.
|
|
|
|
This hair wouldn't be necessary if we inserted stubs
|
|
between procedures and used a "bl" to get to the stub. */
|
|
if (rel != relend)
|
|
{
|
|
Elf_Internal_Rela *next_rel = rel + 1;
|
|
|
|
if (rel->r_offset + 4 == next_rel->r_offset)
|
|
next_rel->r_offset -= 4;
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
case bfd_reloc_outofrange:
|
|
case bfd_reloc_overflow:
|
|
{
|
|
if (!((*info->callbacks->reloc_overflow)
|
|
(info, sym_name, howto->name, (bfd_vma) 0,
|
|
input_bfd, input_section, rel->r_offset)))
|
|
return false;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Return one (or more) BFD relocations which implement the base
|
|
relocation with modifications based on format and field. */
|
|
|
|
elf32_hppa_reloc_type **
|
|
hppa_elf_gen_reloc_type (abfd, base_type, format, field)
|
|
bfd *abfd;
|
|
elf32_hppa_reloc_type base_type;
|
|
int format;
|
|
int field;
|
|
{
|
|
elf32_hppa_reloc_type *finaltype;
|
|
elf32_hppa_reloc_type **final_types;
|
|
|
|
/* Allocate slots for the BFD relocation. */
|
|
final_types = (elf32_hppa_reloc_type **)
|
|
bfd_alloc_by_size_t (abfd, sizeof (elf32_hppa_reloc_type *) * 2);
|
|
if (final_types == NULL)
|
|
return NULL;
|
|
|
|
/* Allocate space for the relocation itself. */
|
|
finaltype = (elf32_hppa_reloc_type *)
|
|
bfd_alloc_by_size_t (abfd, sizeof (elf32_hppa_reloc_type));
|
|
if (finaltype == NULL)
|
|
return NULL;
|
|
|
|
/* Some reasonable defaults. */
|
|
final_types[0] = finaltype;
|
|
final_types[1] = NULL;
|
|
|
|
#define final_type finaltype[0]
|
|
|
|
final_type = base_type;
|
|
|
|
/* Just a tangle of nested switch statements to deal with the braindamage
|
|
that a different field selector means a completely different relocation
|
|
for PA ELF. */
|
|
switch (base_type)
|
|
{
|
|
case R_HPPA:
|
|
case R_HPPA_ABS_CALL:
|
|
switch (format)
|
|
{
|
|
case 14:
|
|
switch (field)
|
|
{
|
|
case e_rsel:
|
|
case e_rrsel:
|
|
final_type = R_PARISC_DIR14R;
|
|
break;
|
|
case e_rtsel:
|
|
final_type = R_PARISC_DLTREL14R;
|
|
break;
|
|
case e_tsel:
|
|
final_type = R_PARISC_DLTREL14F;
|
|
break;
|
|
case e_rpsel:
|
|
final_type = R_PARISC_PLABEL14R;
|
|
break;
|
|
default:
|
|
return NULL;
|
|
}
|
|
break;
|
|
|
|
case 17:
|
|
switch (field)
|
|
{
|
|
case e_fsel:
|
|
final_type = R_PARISC_DIR17F;
|
|
break;
|
|
case e_rsel:
|
|
case e_rrsel:
|
|
final_type = R_PARISC_DIR17R;
|
|
break;
|
|
default:
|
|
return NULL;
|
|
}
|
|
break;
|
|
|
|
case 21:
|
|
switch (field)
|
|
{
|
|
case e_lsel:
|
|
case e_lrsel:
|
|
final_type = R_PARISC_DIR21L;
|
|
break;
|
|
case e_ltsel:
|
|
final_type = R_PARISC_DLTREL21L;
|
|
break;
|
|
case e_lpsel:
|
|
final_type = R_PARISC_PLABEL21L;
|
|
break;
|
|
default:
|
|
return NULL;
|
|
}
|
|
break;
|
|
|
|
case 32:
|
|
switch (field)
|
|
{
|
|
case e_fsel:
|
|
final_type = R_PARISC_DIR32;
|
|
break;
|
|
case e_psel:
|
|
final_type = R_PARISC_PLABEL32;
|
|
break;
|
|
default:
|
|
return NULL;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
return NULL;
|
|
}
|
|
break;
|
|
|
|
|
|
case R_HPPA_GOTOFF:
|
|
switch (format)
|
|
{
|
|
case 14:
|
|
switch (field)
|
|
{
|
|
case e_rsel:
|
|
case e_rrsel:
|
|
final_type = R_PARISC_DPREL14R;
|
|
break;
|
|
case e_fsel:
|
|
final_type = R_PARISC_DPREL14F;
|
|
break;
|
|
default:
|
|
return NULL;
|
|
}
|
|
break;
|
|
|
|
case 21:
|
|
switch (field)
|
|
{
|
|
case e_lrsel:
|
|
case e_lsel:
|
|
final_type = R_PARISC_DPREL21L;
|
|
break;
|
|
default:
|
|
return NULL;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
return NULL;
|
|
}
|
|
break;
|
|
|
|
|
|
case R_HPPA_PCREL_CALL:
|
|
switch (format)
|
|
{
|
|
case 14:
|
|
switch (field)
|
|
{
|
|
case e_rsel:
|
|
case e_rrsel:
|
|
final_type = R_PARISC_PCREL14R;
|
|
break;
|
|
case e_fsel:
|
|
final_type = R_PARISC_PCREL14F;
|
|
break;
|
|
default:
|
|
return NULL;
|
|
}
|
|
break;
|
|
|
|
case 17:
|
|
switch (field)
|
|
{
|
|
case e_rsel:
|
|
case e_rrsel:
|
|
final_type = R_PARISC_PCREL17R;
|
|
break;
|
|
case e_fsel:
|
|
final_type = R_PARISC_PCREL17F;
|
|
break;
|
|
default:
|
|
return NULL;
|
|
}
|
|
break;
|
|
|
|
case 21:
|
|
switch (field)
|
|
{
|
|
case e_lsel:
|
|
case e_lrsel:
|
|
final_type = R_PARISC_PCREL21L;
|
|
break;
|
|
default:
|
|
return NULL;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
return NULL;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
return NULL;
|
|
}
|
|
|
|
return final_types;
|
|
}
|
|
|
|
#undef final_type
|
|
|
|
/* Set the contents of a particular section at a particular location. */
|
|
|
|
static boolean
|
|
elf32_hppa_set_section_contents (abfd, section, location, offset, count)
|
|
bfd *abfd;
|
|
sec_ptr section;
|
|
PTR location;
|
|
file_ptr offset;
|
|
bfd_size_type count;
|
|
{
|
|
/* Ignore write requests for the symbol extension section until we've
|
|
had the chance to rebuild it ourselves. */
|
|
if (!strcmp (section->name, ".PARISC.symextn") && !symext_chain_size)
|
|
return true;
|
|
else
|
|
return bfd_elf32_set_section_contents (abfd, section, location,
|
|
offset, count);
|
|
}
|
|
|
|
/* Translate from an elf into field into a howto relocation pointer. */
|
|
|
|
static void
|
|
elf_info_to_howto (abfd, cache_ptr, dst)
|
|
bfd *abfd;
|
|
arelent *cache_ptr;
|
|
Elf32_Internal_Rela *dst;
|
|
{
|
|
BFD_ASSERT (ELF32_R_TYPE(dst->r_info) < (unsigned int) R_PARISC_UNIMPLEMENTED);
|
|
cache_ptr->howto = &elf_hppa_howto_table[ELF32_R_TYPE (dst->r_info)];
|
|
}
|
|
|
|
|
|
/* Actually perform a relocation. NOTE this is (mostly) superceeded
|
|
by elf32_hppa_bfd_final_link_relocate which is called by the new
|
|
fast linker. */
|
|
|
|
static bfd_reloc_status_type
|
|
hppa_elf_reloc (abfd, reloc_entry, symbol_in, data, input_section, output_bfd,
|
|
error_message)
|
|
bfd *abfd;
|
|
arelent *reloc_entry;
|
|
asymbol *symbol_in;
|
|
PTR data;
|
|
asection *input_section;
|
|
bfd *output_bfd;
|
|
char **error_message;
|
|
{
|
|
/* It is no longer valid to call hppa_elf_reloc when creating
|
|
a final executable. */
|
|
if (output_bfd)
|
|
{
|
|
reloc_entry->address += input_section->output_offset;
|
|
|
|
/* Work around lossage in generic elf code to write relocations.
|
|
(maps different section symbols into the same symbol index). */
|
|
if ((symbol_in->flags & BSF_SECTION_SYM)
|
|
&& symbol_in->section)
|
|
reloc_entry->addend += symbol_in->section->output_offset;
|
|
return bfd_reloc_ok;
|
|
}
|
|
else
|
|
{
|
|
*error_message = (char *) "Unsupported call to hppa_elf_reloc";
|
|
return bfd_reloc_notsupported;
|
|
}
|
|
}
|
|
|
|
/* Actually perform a relocation as part of a final link. This can get
|
|
rather hairy when linker stubs are needed. */
|
|
|
|
static bfd_reloc_status_type
|
|
elf32_hppa_bfd_final_link_relocate (howto, input_bfd, output_bfd,
|
|
input_section, contents, offset, value,
|
|
addend, info, sym_sec, sym_name, is_local)
|
|
const reloc_howto_type *howto;
|
|
bfd *input_bfd;
|
|
bfd *output_bfd;
|
|
asection *input_section;
|
|
bfd_byte *contents;
|
|
bfd_vma offset;
|
|
bfd_vma value;
|
|
bfd_vma addend;
|
|
struct bfd_link_info *info;
|
|
asection *sym_sec;
|
|
const char *sym_name;
|
|
int is_local;
|
|
{
|
|
unsigned long insn;
|
|
unsigned long r_type = howto->type;
|
|
unsigned long r_format = howto->bitsize;
|
|
unsigned long r_field = e_fsel;
|
|
bfd_byte *hit_data = contents + offset;
|
|
boolean r_pcrel = howto->pc_relative;
|
|
|
|
insn = bfd_get_32 (input_bfd, hit_data);
|
|
|
|
/* Make sure we have a value for $global$. FIXME isn't this effectively
|
|
just like the gp pointer on MIPS? Can we use those routines for this
|
|
purpose? */
|
|
if (!elf32_hppa_hash_table (info)->global_sym_defined)
|
|
{
|
|
struct elf_link_hash_entry *h;
|
|
asection *sec;
|
|
|
|
h = elf_link_hash_lookup (elf_hash_table (info), "$global$", false,
|
|
false, false);
|
|
|
|
/* If there isn't a $global$, then we're in deep trouble. */
|
|
if (h == NULL)
|
|
return bfd_reloc_notsupported;
|
|
|
|
sec = h->root.u.def.section;
|
|
elf32_hppa_hash_table (info)->global_value = (h->root.u.def.value
|
|
+ sec->output_section->vma
|
|
+ sec->output_offset);
|
|
elf32_hppa_hash_table (info)->global_sym_defined = 1;
|
|
}
|
|
|
|
switch (r_type)
|
|
{
|
|
case R_PARISC_NONE:
|
|
break;
|
|
|
|
case R_PARISC_DIR32:
|
|
case R_PARISC_DIR17F:
|
|
case R_PARISC_PCREL17C:
|
|
r_field = e_fsel;
|
|
goto do_basic_type_1;
|
|
case R_PARISC_DIR21L:
|
|
case R_PARISC_PCREL21L:
|
|
r_field = e_lrsel;
|
|
goto do_basic_type_1;
|
|
case R_PARISC_DIR17R:
|
|
case R_PARISC_PCREL17R:
|
|
case R_PARISC_DIR14R:
|
|
case R_PARISC_PCREL14R:
|
|
r_field = e_rrsel;
|
|
goto do_basic_type_1;
|
|
|
|
/* For all the DP relative relocations, we need to examine the symbol's
|
|
section. If it's a code section, then "data pointer relative" makes
|
|
no sense. In that case we don't adjust the "value", and for 21 bit
|
|
addil instructions, we change the source addend register from %dp to
|
|
%r0. */
|
|
case R_PARISC_DPREL21L:
|
|
r_field = e_lrsel;
|
|
if (sym_sec->flags & SEC_CODE)
|
|
insn &= ~0x03e00000;
|
|
else
|
|
value -= elf32_hppa_hash_table (info)->global_value;
|
|
goto do_basic_type_1;
|
|
case R_PARISC_DPREL14R:
|
|
r_field = e_rrsel;
|
|
if ((sym_sec->flags & SEC_CODE) == 0)
|
|
value -= elf32_hppa_hash_table (info)->global_value;
|
|
goto do_basic_type_1;
|
|
case R_PARISC_DPREL14F:
|
|
r_field = e_fsel;
|
|
if ((sym_sec->flags & SEC_CODE) == 0)
|
|
value -= elf32_hppa_hash_table (info)->global_value;
|
|
goto do_basic_type_1;
|
|
|
|
/* These cases are separate as they may involve a lot more work
|
|
to deal with linker stubs. */
|
|
case R_PARISC_PLABEL32:
|
|
case R_PARISC_PLABEL21L:
|
|
case R_PARISC_PLABEL14R:
|
|
case R_PARISC_PCREL17F:
|
|
{
|
|
bfd_vma location;
|
|
unsigned int len, caller_args, callee_args;
|
|
arg_reloc_type arg_reloc_types[5];
|
|
struct elf32_hppa_args_hash_table *args_hash_table;
|
|
struct elf32_hppa_args_hash_entry *args_hash;
|
|
char *new_name, *stub_name;
|
|
|
|
/* Get the field selector right. We'll need it in a minute. */
|
|
if (r_type == R_PARISC_PCREL17F
|
|
|| r_type == R_PARISC_PLABEL32)
|
|
r_field = e_fsel;
|
|
else if (r_type == R_PARISC_PLABEL21L)
|
|
r_field = e_lrsel;
|
|
else if (r_type == R_PARISC_PLABEL14R)
|
|
r_field = e_rrsel;
|
|
|
|
/* Find out where we are and where we're going. */
|
|
location = (offset +
|
|
input_section->output_offset +
|
|
input_section->output_section->vma);
|
|
|
|
/* Now look for the argument relocation bits associated with the
|
|
target. */
|
|
len = strlen (sym_name) + 1;
|
|
if (is_local)
|
|
len += 9;
|
|
new_name = malloc (len);
|
|
if (!new_name)
|
|
{
|
|
bfd_set_error (bfd_error_no_memory);
|
|
return bfd_reloc_notsupported;
|
|
}
|
|
strcpy (new_name, sym_name);
|
|
|
|
/* Local symbols have unique IDs. */
|
|
if (is_local)
|
|
sprintf (new_name + len - 10, "_%08x", (int)sym_sec);
|
|
|
|
args_hash_table = elf32_hppa_hash_table (info)->args_hash_table;
|
|
|
|
args_hash = elf32_hppa_args_hash_lookup (args_hash_table,
|
|
new_name, false, false);
|
|
if (args_hash == NULL)
|
|
callee_args = 0;
|
|
else
|
|
callee_args = args_hash->arg_bits;
|
|
|
|
/* If this is a CALL relocation, then get the caller's bits
|
|
from the addend. Else use the magic 0x155 value for PLABELS.
|
|
|
|
Also we don't care about the destination (value) for PLABELS. */
|
|
if (r_type == R_PARISC_PCREL17F)
|
|
caller_args = HPPA_R_ARG_RELOC (addend);
|
|
else
|
|
{
|
|
caller_args = 0x155;
|
|
location = value;
|
|
}
|
|
|
|
/* Any kind of linker stub needed? */
|
|
if (((int)(value - location) > 0x3ffff)
|
|
|| ((int)(value - location) < (int)0xfffc0000)
|
|
|| elf32_hppa_arg_reloc_needed (caller_args, callee_args,
|
|
arg_reloc_types))
|
|
{
|
|
struct elf32_hppa_stub_hash_table *stub_hash_table;
|
|
struct elf32_hppa_stub_hash_entry *stub_hash;
|
|
asection *stub_section;
|
|
|
|
/* Build a name for the stub. */
|
|
|
|
len = strlen (new_name);
|
|
len += 23;
|
|
stub_name = malloc (len);
|
|
if (!stub_name)
|
|
{
|
|
bfd_set_error (bfd_error_no_memory);
|
|
return bfd_reloc_notsupported;
|
|
}
|
|
elf32_hppa_name_of_stub (caller_args, callee_args,
|
|
location, value, stub_name);
|
|
strcat (stub_name, new_name);
|
|
free (new_name);
|
|
|
|
stub_hash_table = elf32_hppa_hash_table (info)->stub_hash_table;
|
|
|
|
stub_hash
|
|
= elf32_hppa_stub_hash_lookup (stub_hash_table, stub_name,
|
|
false, false);
|
|
|
|
/* We're done with that name. */
|
|
free (stub_name);
|
|
|
|
/* The stub BFD only has one section. */
|
|
stub_section = stub_hash_table->stub_bfd->sections;
|
|
|
|
if (stub_hash != NULL)
|
|
{
|
|
|
|
if (r_type == R_PARISC_PCREL17F)
|
|
{
|
|
unsigned long delay_insn;
|
|
unsigned int opcode, rtn_reg, ldo_target_reg, ldo_src_reg;
|
|
|
|
/* We'll need to peek at the next insn. */
|
|
delay_insn = bfd_get_32 (input_bfd, hit_data + 4);
|
|
opcode = get_opcode (delay_insn);
|
|
|
|
/* We also need to know the return register for this
|
|
call. */
|
|
rtn_reg = (insn & 0x03e00000) >> 21;
|
|
|
|
ldo_src_reg = (delay_insn & 0x03e00000) >> 21;
|
|
ldo_target_reg = (delay_insn & 0x001f0000) >> 16;
|
|
|
|
/* Munge up the value and other parameters for
|
|
hppa_elf_relocate_insn. */
|
|
|
|
value = (stub_hash->offset
|
|
+ stub_section->output_offset
|
|
+ stub_section->output_section->vma);
|
|
|
|
r_format = 17;
|
|
r_field = e_fsel;
|
|
r_pcrel = 0;
|
|
addend = 0;
|
|
|
|
/* We need to peek at the delay insn and determine if
|
|
we'll need to swap the branch and its delay insn. */
|
|
if ((insn & 2)
|
|
|| (opcode == LDO
|
|
&& ldo_target_reg == rtn_reg)
|
|
|| (delay_insn == 0x08000240))
|
|
{
|
|
/* No need to swap the branch and its delay slot, but
|
|
we do need to make sure to jump past the return
|
|
pointer update in the stub. */
|
|
value += 4;
|
|
|
|
/* If the delay insn does a return pointer adjustment,
|
|
then we have to make sure it stays valid. */
|
|
if (opcode == LDO
|
|
&& ldo_target_reg == rtn_reg)
|
|
{
|
|
delay_insn &= 0xfc00ffff;
|
|
delay_insn |= ((31 << 21) | (31 << 16));
|
|
bfd_put_32 (input_bfd, delay_insn, hit_data + 4);
|
|
}
|
|
/* Use a BLE to reach the stub. */
|
|
insn = BLE_SR4_R0;
|
|
}
|
|
else
|
|
{
|
|
/* Wonderful, we have to swap the call insn and its
|
|
delay slot. */
|
|
bfd_put_32 (input_bfd, delay_insn, hit_data);
|
|
/* Use a BLE,n to reach the stub. */
|
|
insn = (BLE_SR4_R0 | 0x2);
|
|
bfd_put_32 (input_bfd, insn, hit_data + 4);
|
|
insn = hppa_elf_relocate_insn (input_bfd,
|
|
input_section,
|
|
insn, offset + 4,
|
|
value, addend,
|
|
r_format, r_field,
|
|
r_pcrel);
|
|
/* Update the instruction word. */
|
|
bfd_put_32 (input_bfd, insn, hit_data + 4);
|
|
return bfd_reloc_dangerous;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* PLABEL stuff is easy. */
|
|
|
|
value = (stub_hash->offset
|
|
+ stub_section->output_offset
|
|
+ stub_section->output_section->vma);
|
|
/* We don't need the RP adjustment for PLABELs. */
|
|
value += 4;
|
|
if (r_type == R_PARISC_PLABEL32)
|
|
r_format = 32;
|
|
else if (r_type == R_PARISC_PLABEL21L)
|
|
r_format = 21;
|
|
else if (r_type == R_PARISC_PLABEL14R)
|
|
r_format = 14;
|
|
|
|
r_pcrel = 0;
|
|
addend = 0;
|
|
}
|
|
}
|
|
else
|
|
return bfd_reloc_notsupported;
|
|
}
|
|
goto do_basic_type_1;
|
|
}
|
|
|
|
do_basic_type_1:
|
|
insn = hppa_elf_relocate_insn (input_bfd, input_section, insn,
|
|
offset, value, addend, r_format,
|
|
r_field, r_pcrel);
|
|
break;
|
|
|
|
/* Something we don't know how to handle. */
|
|
default:
|
|
return bfd_reloc_notsupported;
|
|
}
|
|
|
|
/* Update the instruction word. */
|
|
bfd_put_32 (input_bfd, insn, hit_data);
|
|
return (bfd_reloc_ok);
|
|
}
|
|
|
|
/* Return the address of the howto table entry to perform the CODE
|
|
relocation for an ARCH machine. */
|
|
|
|
static CONST reloc_howto_type *
|
|
elf_hppa_reloc_type_lookup (abfd, code)
|
|
bfd *abfd;
|
|
bfd_reloc_code_real_type code;
|
|
{
|
|
if ((int) code < (int) R_PARISC_UNIMPLEMENTED)
|
|
{
|
|
BFD_ASSERT ((int) elf_hppa_howto_table[(int) code].type == (int) code);
|
|
return &elf_hppa_howto_table[(int) code];
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/* Return true if SYM represents a local label symbol. */
|
|
|
|
static boolean
|
|
hppa_elf_is_local_label (abfd, sym)
|
|
bfd *abfd;
|
|
asymbol *sym;
|
|
{
|
|
return (sym->name[0] == 'L' && sym->name[1] == '$');
|
|
}
|
|
|
|
/* Do any backend specific processing when beginning to write an object
|
|
file. For PA ELF we need to determine the size of the symbol extension
|
|
section *before* any other output processing happens. */
|
|
|
|
static void
|
|
elf32_hppa_backend_begin_write_processing (abfd, info)
|
|
bfd *abfd;
|
|
struct bfd_link_info *info;
|
|
{
|
|
unsigned int i;
|
|
asection *symextn_sec;
|
|
|
|
/* Size up the symbol extension section. */
|
|
if ((abfd->outsymbols == NULL
|
|
&& info == NULL)
|
|
|| symext_chain_size != 0)
|
|
return;
|
|
|
|
if (info == NULL)
|
|
{
|
|
/* We were not called from the BFD ELF linker code, so we need
|
|
to examine the output BFD's outsymbols.
|
|
|
|
Note we can not build the symbol extensions now as the symbol
|
|
map hasn't been set up. */
|
|
for (i = 0; i < abfd->symcount; i++)
|
|
{
|
|
elf_symbol_type *symbol = (elf_symbol_type *)abfd->outsymbols[i];
|
|
|
|
/* Only functions ever need an entry in the symbol extension
|
|
section. */
|
|
if (!(symbol->symbol.flags & BSF_FUNCTION))
|
|
continue;
|
|
|
|
/* And only if they specify the locations of their arguments. */
|
|
if (symbol->tc_data.hppa_arg_reloc == 0)
|
|
continue;
|
|
|
|
/* Yup. This function symbol needs an entry. */
|
|
symext_chain_size += 2 * ELF32_PARISC_SX_SIZE;
|
|
}
|
|
}
|
|
else if (info->relocateable == true)
|
|
{
|
|
struct elf32_hppa_args_hash_table *table;
|
|
table = elf32_hppa_hash_table (info)->args_hash_table;
|
|
|
|
/* Determine the size of the symbol extension section. */
|
|
elf32_hppa_args_hash_traverse (table,
|
|
elf32_hppa_size_symext,
|
|
&symext_chain_size);
|
|
}
|
|
|
|
/* Now create the section and set its size. We'll fill in the
|
|
contents later. */
|
|
symextn_sec = bfd_get_section_by_name (abfd, SYMEXTN_SECTION_NAME);
|
|
if (symextn_sec == NULL)
|
|
symextn_sec = bfd_make_section (abfd, SYMEXTN_SECTION_NAME);
|
|
|
|
bfd_set_section_flags (abfd, symextn_sec,
|
|
SEC_LOAD | SEC_HAS_CONTENTS | SEC_DATA);
|
|
symextn_sec->output_section = symextn_sec;
|
|
symextn_sec->output_offset = 0;
|
|
bfd_set_section_alignment (abfd, symextn_sec, 2);
|
|
bfd_set_section_size (abfd, symextn_sec, symext_chain_size);
|
|
}
|
|
|
|
/* Called for each entry in the args location hash table. For each
|
|
entry we bump the size pointer by 2 records (16 bytes). */
|
|
|
|
static boolean
|
|
elf32_hppa_size_symext (gen_entry, in_args)
|
|
struct bfd_hash_entry *gen_entry;
|
|
PTR in_args;
|
|
{
|
|
bfd_size_type *sizep = (bfd_size_type *)in_args;
|
|
|
|
*sizep += 2 * ELF32_PARISC_SX_SIZE;
|
|
return true;
|
|
}
|
|
|
|
/* Backend routine called by the linker for each output symbol.
|
|
|
|
For PA ELF we use this opportunity to add an appropriate entry
|
|
to the symbol extension chain for function symbols. */
|
|
|
|
static boolean
|
|
elf32_hppa_link_output_symbol_hook (abfd, info, name, sym, section)
|
|
bfd *abfd;
|
|
struct bfd_link_info *info;
|
|
const char *name;
|
|
Elf_Internal_Sym *sym;
|
|
asection *section;
|
|
{
|
|
char *new_name;
|
|
unsigned int len, index;
|
|
struct elf32_hppa_args_hash_table *args_hash_table;
|
|
struct elf32_hppa_args_hash_entry *args_hash;
|
|
|
|
/* If the args hash table is NULL, then we've encountered an error
|
|
of some sorts (for example, an undefined symbol). In that case
|
|
we've got nothing else to do.
|
|
|
|
NOTE: elf_link_output_symbol will abort if we return false here! */
|
|
if (elf32_hppa_hash_table (info)->args_hash_table == NULL)
|
|
return true;
|
|
|
|
index = elf32_hppa_hash_table (info)->output_symbol_count++;
|
|
|
|
/* We need to look up this symbol in the args hash table to see if
|
|
it has argument relocation bits. */
|
|
if (ELF_ST_TYPE (sym->st_info) != STT_FUNC)
|
|
return true;
|
|
|
|
/* We know it's a function symbol of some kind. */
|
|
len = strlen (name) + 1;
|
|
if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
|
|
len += 9;
|
|
|
|
new_name = malloc (len);
|
|
if (new_name == NULL)
|
|
{
|
|
bfd_set_error (bfd_error_no_memory);
|
|
return false;
|
|
}
|
|
|
|
strcpy (new_name, name);
|
|
if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
|
|
sprintf (new_name + len - 10, "_%08x", (int)section);
|
|
|
|
/* Now that we have the unique name, we can look it up in the
|
|
args hash table. */
|
|
args_hash_table = elf32_hppa_hash_table (info)->args_hash_table;
|
|
args_hash = elf32_hppa_args_hash_lookup (args_hash_table, new_name,
|
|
false, false);
|
|
free (new_name);
|
|
if (args_hash == NULL)
|
|
return true;
|
|
|
|
/* We know this symbol has arg reloc bits. */
|
|
add_entry_to_symext_chain (abfd, args_hash->arg_bits,
|
|
index, &symext_rootP, &symext_lastP);
|
|
return true;
|
|
}
|
|
|
|
/* Perform any processing needed late in the object file writing process.
|
|
For PA ELF we build and set the contents of the symbol extension
|
|
section. */
|
|
|
|
static void
|
|
elf32_hppa_backend_final_write_processing (abfd, linker)
|
|
bfd *abfd;
|
|
boolean linker;
|
|
{
|
|
asection *symextn_sec;
|
|
unsigned int i;
|
|
|
|
/* Now build the symbol extension section. */
|
|
if (symext_chain_size == 0)
|
|
return;
|
|
|
|
if (! linker)
|
|
{
|
|
/* We were not called from the backend linker, so we still need
|
|
to build the symbol extension chain.
|
|
|
|
Look at each symbol, adding the appropriate information to the
|
|
symbol extension section list as necessary. */
|
|
for (i = 0; i < abfd->symcount; i++)
|
|
{
|
|
elf_symbol_type *symbol = (elf_symbol_type *) abfd->outsymbols[i];
|
|
|
|
/* Only functions ever need an entry in the symbol extension
|
|
section. */
|
|
if (!(symbol->symbol.flags & BSF_FUNCTION))
|
|
continue;
|
|
|
|
/* And only if they specify the locations of their arguments. */
|
|
if (symbol->tc_data.hppa_arg_reloc == 0)
|
|
continue;
|
|
|
|
/* Add this symbol's information to the chain. */
|
|
add_entry_to_symext_chain (abfd, symbol->tc_data.hppa_arg_reloc,
|
|
symbol->symbol.udata.i, &symext_rootP,
|
|
&symext_lastP);
|
|
}
|
|
}
|
|
|
|
/* Now fill in the contents of the symbol extension section. */
|
|
elf_hppa_tc_make_sections (abfd, symext_rootP);
|
|
|
|
/* And attach that as the section's contents. */
|
|
symextn_sec = bfd_get_section_by_name (abfd, SYMEXTN_SECTION_NAME);
|
|
if (symextn_sec == (asection *) 0)
|
|
abort();
|
|
|
|
symextn_sec->contents = (void *)symextn_contents;
|
|
|
|
bfd_set_section_contents (abfd, symextn_sec, symextn_sec->contents,
|
|
symextn_sec->output_offset, symextn_sec->_raw_size);
|
|
}
|
|
|
|
/* Update the symbol extention chain to include the symbol pointed to
|
|
by SYMBOLP if SYMBOLP is a function symbol. Used internally and by GAS. */
|
|
|
|
static void
|
|
add_entry_to_symext_chain (abfd, arg_reloc, sym_idx, symext_root, symext_last)
|
|
bfd *abfd;
|
|
unsigned int arg_reloc;
|
|
unsigned int sym_idx;
|
|
symext_chainS **symext_root;
|
|
symext_chainS **symext_last;
|
|
{
|
|
symext_chainS *symextP;
|
|
|
|
/* Allocate memory and initialize this entry. */
|
|
symextP = (symext_chainS *) bfd_alloc (abfd, sizeof (symext_chainS) * 2);
|
|
if (!symextP)
|
|
{
|
|
bfd_set_error (bfd_error_no_memory);
|
|
abort(); /* FIXME */
|
|
}
|
|
|
|
symextP[0].entry = ELF32_PARISC_SX_WORD (PARISC_SXT_SYMNDX, sym_idx);
|
|
symextP[0].next = &symextP[1];
|
|
|
|
symextP[1].entry = ELF32_PARISC_SX_WORD (PARISC_SXT_ARG_RELOC, arg_reloc);
|
|
symextP[1].next = NULL;
|
|
|
|
/* Now update the chain itself so it can be walked later to build
|
|
the symbol extension section. */
|
|
if (*symext_root == NULL)
|
|
{
|
|
*symext_root = &symextP[0];
|
|
*symext_last = &symextP[1];
|
|
}
|
|
else
|
|
{
|
|
(*symext_last)->next = &symextP[0];
|
|
*symext_last = &symextP[1];
|
|
}
|
|
}
|
|
|
|
/* Build the symbol extension section. */
|
|
|
|
static void
|
|
elf_hppa_tc_make_sections (abfd, symext_root)
|
|
bfd *abfd;
|
|
symext_chainS *symext_root;
|
|
{
|
|
symext_chainS *symextP;
|
|
unsigned int i;
|
|
asection *symextn_sec;
|
|
|
|
symextn_sec = bfd_get_section_by_name (abfd, SYMEXTN_SECTION_NAME);
|
|
|
|
/* Grab some memory for the contents of the symbol extension section
|
|
itself. */
|
|
symextn_contents = (bfd_byte *) bfd_zalloc (abfd,
|
|
symextn_sec->_raw_size);
|
|
if (!symextn_contents)
|
|
{
|
|
bfd_set_error (bfd_error_no_memory);
|
|
abort(); /* FIXME */
|
|
}
|
|
|
|
/* Fill in the contents of the symbol extension chain. */
|
|
for (i = 0, symextP = symext_root; symextP; symextP = symextP->next, ++i)
|
|
ELF32_PARISC_SX_PUT (abfd, (bfd_vma) symextP->entry,
|
|
symextn_contents + i * ELF32_PARISC_SX_SIZE);
|
|
|
|
return;
|
|
}
|
|
|
|
/* Do some PA ELF specific work after reading in the symbol table.
|
|
In particular attach the argument relocation from the
|
|
symbol extension section to the appropriate symbols. */
|
|
|
|
static boolean
|
|
elf32_hppa_backend_symbol_table_processing (abfd, esyms,symcnt)
|
|
bfd *abfd;
|
|
elf_symbol_type *esyms;
|
|
int symcnt;
|
|
{
|
|
Elf32_Internal_Shdr *symextn_hdr =
|
|
bfd_elf_find_section (abfd, SYMEXTN_SECTION_NAME);
|
|
unsigned int i, current_sym_idx = 0;
|
|
|
|
/* If no symbol extension existed, then all symbol extension information
|
|
is assumed to be zero. */
|
|
if (symextn_hdr == NULL)
|
|
{
|
|
for (i = 0; i < symcnt; i++)
|
|
esyms[i].tc_data.hppa_arg_reloc = 0;
|
|
return (true);
|
|
}
|
|
|
|
/* FIXME: Why not use bfd_get_section_contents here? Also should give
|
|
memory back when we're done. */
|
|
/* Allocate a buffer of the appropriate size for the symextn section. */
|
|
symextn_hdr->contents = bfd_zalloc(abfd,symextn_hdr->sh_size);
|
|
if (!symextn_hdr->contents)
|
|
{
|
|
bfd_set_error (bfd_error_no_memory);
|
|
return false;
|
|
}
|
|
|
|
/* Read in the symextn section. */
|
|
if (bfd_seek (abfd, symextn_hdr->sh_offset, SEEK_SET) == -1)
|
|
return false;
|
|
if (bfd_read ((PTR) symextn_hdr->contents, 1, symextn_hdr->sh_size, abfd)
|
|
!= symextn_hdr->sh_size)
|
|
return false;
|
|
|
|
/* Parse entries in the symbol extension section, updating the symtab
|
|
entries as we go */
|
|
for (i = 0; i < symextn_hdr->sh_size / ELF32_PARISC_SX_SIZE; i++)
|
|
{
|
|
symext_entryS se =
|
|
ELF32_PARISC_SX_GET (abfd,
|
|
(symextn_hdr->contents
|
|
+ i * ELF32_PARISC_SX_SIZE));
|
|
unsigned int se_value = ELF32_PARISC_SX_VAL (se);
|
|
unsigned int se_type = ELF32_PARISC_SX_TYPE (se);
|
|
|
|
switch (se_type)
|
|
{
|
|
case PARISC_SXT_NULL:
|
|
break;
|
|
|
|
case PARISC_SXT_SYMNDX:
|
|
if (se_value >= symcnt)
|
|
{
|
|
bfd_set_error (bfd_error_bad_value);
|
|
return (false);
|
|
}
|
|
current_sym_idx = se_value - 1;
|
|
break;
|
|
|
|
case PARISC_SXT_ARG_RELOC:
|
|
esyms[current_sym_idx].tc_data.hppa_arg_reloc = se_value;
|
|
break;
|
|
|
|
default:
|
|
bfd_set_error (bfd_error_bad_value);
|
|
return (false);
|
|
}
|
|
}
|
|
return (true);
|
|
}
|
|
|
|
/* Read and attach the symbol extension information for the symbols
|
|
in INPUT_BFD to the argument location hash table. Handle locals
|
|
if DO_LOCALS is true; likewise for globals when DO_GLOBALS is true. */
|
|
|
|
static boolean
|
|
elf32_hppa_read_symext_info (input_bfd, symtab_hdr, args_hash_table, local_syms)
|
|
bfd *input_bfd;
|
|
Elf_Internal_Shdr *symtab_hdr;
|
|
struct elf32_hppa_args_hash_table *args_hash_table;
|
|
Elf_Internal_Sym *local_syms;
|
|
{
|
|
asection *symextn_sec;
|
|
bfd_byte *contents;
|
|
unsigned int i, n_entries, current_index = 0;
|
|
|
|
/* Get the symbol extension section for this BFD. If no section exists
|
|
then there's nothing to do. Likewise if the section exists, but
|
|
has no contents. */
|
|
symextn_sec = bfd_get_section_by_name (input_bfd, SYMEXTN_SECTION_NAME);
|
|
if (symextn_sec == NULL)
|
|
return true;
|
|
|
|
/* Done separately so we can turn off SEC_HAS_CONTENTS (see below). */
|
|
if (symextn_sec->_raw_size == 0)
|
|
{
|
|
symextn_sec->flags &= ~SEC_HAS_CONTENTS;
|
|
return true;
|
|
}
|
|
|
|
contents = (bfd_byte *) malloc (symextn_sec->_raw_size);
|
|
if (contents == NULL)
|
|
{
|
|
bfd_set_error (bfd_error_no_memory);
|
|
return false;
|
|
}
|
|
|
|
/* How gross. We turn off SEC_HAS_CONTENTS for the input symbol extension
|
|
sections to keep the generic ELF/BFD code from trying to do anything
|
|
with them. We have to undo that hack temporarily so that we can read
|
|
in the contents with the generic code. */
|
|
symextn_sec->flags |= SEC_HAS_CONTENTS;
|
|
if (bfd_get_section_contents (input_bfd, symextn_sec, contents,
|
|
0, symextn_sec->_raw_size) == false)
|
|
{
|
|
symextn_sec->flags &= ~SEC_HAS_CONTENTS;
|
|
free (contents);
|
|
return false;
|
|
}
|
|
|
|
/* Gross. Turn off SEC_HAS_CONTENTS for the input symbol extension
|
|
sections (see above). */
|
|
symextn_sec->flags &= ~SEC_HAS_CONTENTS;
|
|
|
|
n_entries = symextn_sec->_raw_size / ELF32_PARISC_SX_SIZE;
|
|
for (i = 0; i < n_entries; i++)
|
|
{
|
|
symext_entryS entry =
|
|
ELF32_PARISC_SX_GET (input_bfd, contents + i * ELF32_PARISC_SX_SIZE);
|
|
unsigned int value = ELF32_PARISC_SX_VAL (entry);
|
|
unsigned int type = ELF32_PARISC_SX_TYPE (entry);
|
|
struct elf32_hppa_args_hash_entry *args_hash;
|
|
|
|
switch (type)
|
|
{
|
|
case PARISC_SXT_NULL:
|
|
break;
|
|
|
|
case PARISC_SXT_SYMNDX:
|
|
if (value >= symtab_hdr->sh_size / sizeof (Elf32_External_Sym))
|
|
{
|
|
bfd_set_error (bfd_error_bad_value);
|
|
free (contents);
|
|
return false;
|
|
}
|
|
current_index = value;
|
|
break;
|
|
|
|
case PARISC_SXT_ARG_RELOC:
|
|
if (current_index < symtab_hdr->sh_info)
|
|
{
|
|
Elf_Internal_Shdr *hdr;
|
|
char *new_name;
|
|
const char *sym_name;
|
|
asection *sym_sec;
|
|
unsigned int len;
|
|
|
|
hdr = elf_elfsections (input_bfd)[local_syms[current_index].st_shndx];
|
|
sym_sec = hdr->bfd_section;
|
|
sym_name = elf_string_from_elf_section (input_bfd,
|
|
symtab_hdr->sh_link,
|
|
local_syms[current_index].st_name);
|
|
len = strlen (sym_name) + 10;
|
|
new_name = malloc (len);
|
|
if (new_name == NULL)
|
|
{
|
|
bfd_set_error (bfd_error_no_memory);
|
|
free (contents);
|
|
return false;
|
|
}
|
|
strcpy (new_name, sym_name);
|
|
sprintf (new_name + len - 10, "_%08x", (int)sym_sec);
|
|
|
|
/* This is a global symbol with argument location info.
|
|
We need to enter it into the hash table. */
|
|
args_hash = elf32_hppa_args_hash_lookup (args_hash_table,
|
|
new_name, true,
|
|
true);
|
|
free (new_name);
|
|
if (args_hash == NULL)
|
|
{
|
|
free (contents);
|
|
return false;
|
|
}
|
|
args_hash->arg_bits = value;
|
|
break;
|
|
}
|
|
else if (current_index >= symtab_hdr->sh_info)
|
|
{
|
|
struct elf_link_hash_entry *h;
|
|
|
|
current_index -= symtab_hdr->sh_info;
|
|
h = elf_sym_hashes(input_bfd)[current_index];
|
|
/* This is a global symbol with argument location
|
|
information. We need to enter it into the hash table. */
|
|
args_hash = elf32_hppa_args_hash_lookup (args_hash_table,
|
|
h->root.root.string,
|
|
true, true);
|
|
if (args_hash == NULL)
|
|
{
|
|
bfd_set_error (bfd_error_bad_value);
|
|
free (contents);
|
|
return false;
|
|
}
|
|
args_hash->arg_bits = value;
|
|
break;
|
|
}
|
|
else
|
|
break;
|
|
|
|
default:
|
|
bfd_set_error (bfd_error_bad_value);
|
|
free (contents);
|
|
return false;
|
|
}
|
|
}
|
|
free (contents);
|
|
return true;
|
|
}
|
|
|
|
/* Undo the generic ELF code's subtraction of section->vma from the
|
|
value of each external symbol. */
|
|
|
|
static boolean
|
|
elf32_hppa_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
|
|
bfd *abfd;
|
|
struct bfd_link_info *info;
|
|
const Elf_Internal_Sym *sym;
|
|
const char **namep;
|
|
flagword *flagsp;
|
|
asection **secp;
|
|
bfd_vma *valp;
|
|
{
|
|
*valp += (*secp)->vma;
|
|
return true;
|
|
}
|
|
|
|
/* Determine the name of the stub needed to perform a call assuming the
|
|
argument relocation bits for caller and callee are in CALLER and CALLEE
|
|
for a call from LOCATION to DESTINATION. Copy the name into STUB_NAME. */
|
|
|
|
static void
|
|
elf32_hppa_name_of_stub (caller, callee, location, destination, stub_name)
|
|
unsigned int caller, callee;
|
|
bfd_vma location, destination;
|
|
char *stub_name;
|
|
{
|
|
arg_reloc_type arg_reloc_types[5];
|
|
|
|
if (elf32_hppa_arg_reloc_needed (caller, callee, arg_reloc_types))
|
|
{
|
|
arg_reloc_location i;
|
|
/* Fill in the basic template. */
|
|
strcpy (stub_name, "__XX_XX_XX_XX_XX_stub_");
|
|
|
|
/* Now fix the specifics. */
|
|
for (i = ARG0; i <= RET; i++)
|
|
switch (arg_reloc_types[i])
|
|
{
|
|
case NO:
|
|
stub_name[3 * i + 2] = 'N';
|
|
stub_name[3 * i + 3] = 'O';
|
|
break;
|
|
case GF:
|
|
stub_name[3 * i + 2] = 'G';
|
|
stub_name[3 * i + 3] = 'F';
|
|
break;
|
|
case FG:
|
|
stub_name[3 * i + 2] = 'F';
|
|
stub_name[3 * i + 3] = 'G';
|
|
break;
|
|
case GD:
|
|
stub_name[3 * i + 2] = 'G';
|
|
stub_name[3 * i + 3] = 'D';
|
|
break;
|
|
case DG:
|
|
stub_name[3 * i + 2] = 'D';
|
|
stub_name[3 * i + 3] = 'G';
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
strcpy (stub_name, "_____long_branch_stub_");
|
|
}
|
|
|
|
/* Determine if an argument relocation stub is needed to perform a
|
|
call assuming the argument relocation bits for caller and callee
|
|
are in CALLER and CALLEE. Place the type of relocations (if any)
|
|
into stub_types_p. */
|
|
|
|
static boolean
|
|
elf32_hppa_arg_reloc_needed (caller, callee, stub_types)
|
|
unsigned int caller, callee;
|
|
arg_reloc_type stub_types[5];
|
|
{
|
|
/* Special case for no relocations. */
|
|
if (caller == 0 || callee == 0)
|
|
return 0;
|
|
else
|
|
{
|
|
arg_location caller_loc[5];
|
|
arg_location callee_loc[5];
|
|
|
|
/* Extract the location information for the argument and return
|
|
value on both the caller and callee sides. */
|
|
caller_loc[ARG0] = EXTRACT_ARBITS (caller, ARG0);
|
|
callee_loc[ARG0] = EXTRACT_ARBITS (callee, ARG0);
|
|
caller_loc[ARG1] = EXTRACT_ARBITS (caller, ARG1);
|
|
callee_loc[ARG1] = EXTRACT_ARBITS (callee, ARG1);
|
|
caller_loc[ARG2] = EXTRACT_ARBITS (caller, ARG2);
|
|
callee_loc[ARG2] = EXTRACT_ARBITS (callee, ARG2);
|
|
caller_loc[ARG3] = EXTRACT_ARBITS (caller, ARG3);
|
|
callee_loc[ARG3] = EXTRACT_ARBITS (callee, ARG3);
|
|
caller_loc[RET] = EXTRACT_ARBITS (caller, RET);
|
|
callee_loc[RET] = EXTRACT_ARBITS (callee, RET);
|
|
|
|
/* Check some special combinations. This is necessary to
|
|
deal with double precision FP arguments. */
|
|
if (caller_loc[ARG0] == AR_FU || caller_loc[ARG1] == AR_FU)
|
|
{
|
|
caller_loc[ARG0] = AR_FPDBL1;
|
|
caller_loc[ARG1] = AR_NO;
|
|
}
|
|
if (caller_loc[ARG2] == AR_FU || caller_loc[ARG3] == AR_FU)
|
|
{
|
|
caller_loc[ARG2] = AR_FPDBL2;
|
|
caller_loc[ARG3] = AR_NO;
|
|
}
|
|
if (callee_loc[ARG0] == AR_FU || callee_loc[ARG1] == AR_FU)
|
|
{
|
|
callee_loc[ARG0] = AR_FPDBL1;
|
|
callee_loc[ARG1] = AR_NO;
|
|
}
|
|
if (callee_loc[ARG2] == AR_FU || callee_loc[ARG3] == AR_FU)
|
|
{
|
|
callee_loc[ARG2] = AR_FPDBL2;
|
|
callee_loc[ARG3] = AR_NO;
|
|
}
|
|
|
|
/* Now look up any relocation needed for each argument and the
|
|
return value. */
|
|
stub_types[ARG0] = arg_mismatches[caller_loc[ARG0]][callee_loc[ARG0]];
|
|
stub_types[ARG1] = arg_mismatches[caller_loc[ARG1]][callee_loc[ARG1]];
|
|
stub_types[ARG2] = arg_mismatches[caller_loc[ARG2]][callee_loc[ARG2]];
|
|
stub_types[ARG3] = arg_mismatches[caller_loc[ARG3]][callee_loc[ARG3]];
|
|
stub_types[RET] = ret_mismatches[caller_loc[RET]][callee_loc[RET]];
|
|
|
|
return (stub_types[ARG0] != NO
|
|
|| stub_types[ARG1] != NO
|
|
|| stub_types[ARG2] != NO
|
|
|| stub_types[ARG3] != NO
|
|
|| stub_types[RET] != NO);
|
|
}
|
|
}
|
|
|
|
/* Compute the size of the stub needed to call from LOCATION to DESTINATION
|
|
(a function named SYM_NAME), with argument relocation bits CALLER and
|
|
CALLEE. Return zero if no stub is needed to perform such a call. */
|
|
|
|
static unsigned int
|
|
elf32_hppa_size_of_stub (callee, caller, location, destination, sym_name)
|
|
unsigned int callee, caller;
|
|
bfd_vma location, destination;
|
|
const char *sym_name;
|
|
{
|
|
arg_reloc_type arg_reloc_types[5];
|
|
|
|
/* Determine if a long branch or argument relocation stub is needed.
|
|
If an argument relocation stub is needed, the relocation will be
|
|
stored into arg_reloc_types. */
|
|
if (!(((int)(location - destination) > 0x3ffff)
|
|
|| ((int)(location - destination) < (int)0xfffc0000)
|
|
|| elf32_hppa_arg_reloc_needed (caller, callee, arg_reloc_types)))
|
|
return 0;
|
|
|
|
/* Some kind of stub is needed. Determine how big it needs to be.
|
|
First check for argument relocation stubs as they also handle
|
|
long calls. Then check for long calls to millicode and finally
|
|
the normal long calls. */
|
|
if (arg_reloc_types[ARG0] != NO
|
|
|| arg_reloc_types[ARG1] != NO
|
|
|| arg_reloc_types[ARG2] != NO
|
|
|| arg_reloc_types[ARG3] != NO
|
|
|| arg_reloc_types[RET] != NO)
|
|
{
|
|
/* Some kind of argument relocation stub is needed. */
|
|
unsigned int len = 16;
|
|
arg_reloc_location i;
|
|
|
|
/* Each GR or FG relocation takes 2 insns, each GD or DG
|
|
relocation takes 3 insns. Plus 4 more insns for the
|
|
RP adjustment, ldil & (be | ble) and copy. */
|
|
for (i = ARG0; i <= RET; i++)
|
|
switch (arg_reloc_types[i])
|
|
{
|
|
case GF:
|
|
case FG:
|
|
len += 8;
|
|
break;
|
|
|
|
case GD:
|
|
case DG:
|
|
len += 12;
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* Extra instructions are needed if we're relocating a return value. */
|
|
if (arg_reloc_types[RET] != NO)
|
|
len += 12;
|
|
|
|
return len;
|
|
}
|
|
else if (!strncmp ("$$", sym_name, 2)
|
|
&& strcmp ("$$dyncall", sym_name))
|
|
return 12;
|
|
else
|
|
return 16;
|
|
}
|
|
|
|
/* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
|
|
IN_ARGS contains the stub BFD and link info pointers. */
|
|
|
|
static boolean
|
|
elf32_hppa_build_one_stub (gen_entry, in_args)
|
|
struct bfd_hash_entry *gen_entry;
|
|
PTR in_args;
|
|
{
|
|
void **args = (void **)in_args;
|
|
bfd *stub_bfd = (bfd *)args[0];
|
|
struct bfd_link_info *info = (struct bfd_link_info *)args[1];
|
|
struct elf32_hppa_stub_hash_entry *entry;
|
|
struct elf32_hppa_stub_hash_table *stub_hash_table;
|
|
bfd_byte *loc;
|
|
symvalue sym_value;
|
|
const char *sym_name;
|
|
|
|
/* Initialize pointers to the stub hash table, the particular entry we
|
|
are building a stub for, and where (in memory) we should place the stub
|
|
instructions. */
|
|
entry = (struct elf32_hppa_stub_hash_entry *)gen_entry;
|
|
stub_hash_table = elf32_hppa_hash_table(info)->stub_hash_table;
|
|
loc = stub_hash_table->location;
|
|
|
|
/* Make a note of the offset within the stubs for this entry. */
|
|
entry->offset = stub_hash_table->offset;
|
|
|
|
/* The symbol's name starts at offset 22. */
|
|
sym_name = entry->root.string + 22;
|
|
|
|
sym_value = (entry->target_value
|
|
+ entry->target_section->output_offset
|
|
+ entry->target_section->output_section->vma);
|
|
|
|
if (strncmp ("_____long_branch_stub_", entry->root.string, 22))
|
|
{
|
|
/* This must be an argument or return value relocation stub. */
|
|
unsigned long insn;
|
|
arg_reloc_location i;
|
|
bfd_byte *begin_loc = loc;
|
|
|
|
/* First the return pointer adjustment. Depending on exact calling
|
|
sequence this instruction may be skipped. */
|
|
bfd_put_32 (stub_bfd, LDO_M4_R31_R31, loc);
|
|
loc += 4;
|
|
|
|
/* If we are relocating a return value, then we're going to have
|
|
to return into the stub. So we have to save off the user's
|
|
return pointer into the stack at RP'. */
|
|
if (strncmp (entry->root.string + 14, "NO", 2))
|
|
{
|
|
bfd_put_32 (stub_bfd, STW_R31_M8R30, loc);
|
|
loc += 4;
|
|
}
|
|
|
|
/* Iterate over the argument relocations, emitting instructions
|
|
to move them around as necessary. */
|
|
for (i = ARG0; i <= ARG3; i++)
|
|
{
|
|
if (!strncmp (entry->root.string + 3 * i + 2, "GF", 2))
|
|
{
|
|
bfd_put_32 (stub_bfd, STW_ARG_M16R30 | ((26 - i) << 16), loc);
|
|
bfd_put_32 (stub_bfd, FLDW_M16R30_FARG | (4 + i), loc + 4);
|
|
loc += 8;
|
|
}
|
|
else if (!strncmp (entry->root.string + 3 * i + 2, "FG", 2))
|
|
{
|
|
bfd_put_32 (stub_bfd, FSTW_FARG_M16R30 | (4 + i), loc);
|
|
bfd_put_32 (stub_bfd, LDW_M16R30_ARG | ((26 - i) << 16), loc + 4);
|
|
loc += 8;
|
|
}
|
|
else if (!strncmp (entry->root.string + 3 * i + 2, "GD", 2))
|
|
{
|
|
bfd_put_32 (stub_bfd, STW_ARG_M12R30 | ((26 - i) << 16), loc);
|
|
bfd_put_32 (stub_bfd, STW_ARG_M16R30 | ((25 - i) << 16), loc + 4);
|
|
bfd_put_32 (stub_bfd, FLDD_M16R30_FARG | (5 + i), loc + 8);
|
|
loc += 12;
|
|
}
|
|
else if (!strncmp (entry->root.string + 3 * i + 2, "DG", 2))
|
|
{
|
|
bfd_put_32 (stub_bfd, FSTD_FARG_M16R30 | (5 + i), loc);
|
|
bfd_put_32 (stub_bfd, LDW_M12R30_ARG | ((26 - i) << 16), loc + 4);
|
|
bfd_put_32 (stub_bfd, LDW_M16R30_ARG | ((25 - i) << 16), loc + 8);
|
|
loc += 12;
|
|
}
|
|
}
|
|
|
|
/* Load the high bits of the target address into %r1. */
|
|
insn = hppa_rebuild_insn (stub_bfd, LDIL_R1,
|
|
hppa_field_adjust (sym_value, 0, e_lrsel), 21);
|
|
bfd_put_32 (stub_bfd, insn, loc);
|
|
loc += 4;
|
|
|
|
/* If we are relocating a return value, then we're going to have
|
|
to return into the stub, then perform the return value relocation. */
|
|
if (strncmp (entry->root.string + 14, "NO", 2))
|
|
{
|
|
/* To return to the stub we "ble" to the target and copy the return
|
|
pointer from %r31 into %r2. */
|
|
insn = hppa_rebuild_insn (stub_bfd,
|
|
BLE_SR4_R1,
|
|
hppa_field_adjust (sym_value, 0,
|
|
e_rrsel) >> 2,
|
|
17);
|
|
bfd_put_32 (stub_bfd, insn, loc);
|
|
bfd_put_32 (stub_bfd, COPY_R31_R2, loc + 4);
|
|
|
|
/* Reload the return pointer for our caller from the stack. */
|
|
bfd_put_32 (stub_bfd, LDW_M8R30_R31, loc + 8);
|
|
loc += 12;
|
|
|
|
/* Perform the return value relocation. */
|
|
if (!strncmp (entry->root.string + 14, "GF", 2))
|
|
{
|
|
bfd_put_32 (stub_bfd, STW_ARG_M16R30 | (28 << 16), loc);
|
|
bfd_put_32 (stub_bfd, FLDW_M16R30_FARG | 4, loc + 4);
|
|
loc += 8;
|
|
}
|
|
else if (!strncmp (entry->root.string + 14, "FG", 2))
|
|
{
|
|
bfd_put_32 (stub_bfd, FSTW_FARG_M16R30 | 4, loc);
|
|
bfd_put_32 (stub_bfd, LDW_M16R30_ARG | (28 << 16), loc + 4);
|
|
loc += 8;
|
|
}
|
|
else if (!strncmp (entry->root.string + 2, "GD", 2))
|
|
{
|
|
bfd_put_32 (stub_bfd, STW_ARG_M12R30 | (28 << 16), loc);
|
|
bfd_put_32 (stub_bfd, STW_ARG_M16R30 | (29 << 16), loc + 4);
|
|
bfd_put_32 (stub_bfd, FLDD_M16R30_FARG | 4, loc + 8);
|
|
loc += 12;
|
|
}
|
|
else if (!strncmp (entry->root.string + 2, "DG", 2))
|
|
{
|
|
bfd_put_32 (stub_bfd, FSTD_FARG_M16R30 | 4, loc);
|
|
bfd_put_32 (stub_bfd, LDW_M12R30_ARG | (28 << 16), loc + 4);
|
|
bfd_put_32 (stub_bfd, LDW_M16R30_ARG | (29 << 16), loc + 8);
|
|
loc += 12;
|
|
}
|
|
/* Branch back to the user's code now. */
|
|
bfd_put_32 (stub_bfd, BV_N_0_R31, loc);
|
|
loc += 4;
|
|
}
|
|
else
|
|
{
|
|
/* No return value relocation, so we can simply "be" to the
|
|
target and copy out return pointer into %r2. */
|
|
insn = hppa_rebuild_insn (stub_bfd, BE_SR4_R1,
|
|
hppa_field_adjust (sym_value, 0,
|
|
e_rrsel) >> 2, 17);
|
|
bfd_put_32 (stub_bfd, insn, loc);
|
|
bfd_put_32 (stub_bfd, COPY_R31_R2, loc + 4);
|
|
loc += 8;
|
|
}
|
|
|
|
/* Update the location and offsets. */
|
|
stub_hash_table->location += (loc - begin_loc);
|
|
stub_hash_table->offset += (loc - begin_loc);
|
|
}
|
|
else
|
|
{
|
|
/* Create one of two variant long branch stubs. One for $$dyncall and
|
|
normal calls, the other for calls to millicode. */
|
|
unsigned long insn;
|
|
int millicode_call = 0;
|
|
|
|
if (!strncmp ("$$", sym_name, 2) && strcmp ("$$dyncall", sym_name))
|
|
millicode_call = 1;
|
|
|
|
/* First the return pointer adjustment. Depending on exact calling
|
|
sequence this instruction may be skipped. */
|
|
bfd_put_32 (stub_bfd, LDO_M4_R31_R31, loc);
|
|
|
|
/* The next two instructions are the long branch itself. A long branch
|
|
is formed with "ldil" loading the upper bits of the target address
|
|
into a register, then branching with "be" which adds in the lower bits.
|
|
Long branches to millicode nullify the delay slot of the "be". */
|
|
insn = hppa_rebuild_insn (stub_bfd, LDIL_R1,
|
|
hppa_field_adjust (sym_value, 0, e_lrsel), 21);
|
|
bfd_put_32 (stub_bfd, insn, loc + 4);
|
|
insn = hppa_rebuild_insn (stub_bfd, BE_SR4_R1 | (millicode_call ? 2 : 0),
|
|
hppa_field_adjust (sym_value, 0, e_rrsel) >> 2,
|
|
17);
|
|
bfd_put_32 (stub_bfd, insn, loc + 8);
|
|
|
|
if (!millicode_call)
|
|
{
|
|
/* The sequence to call this stub places the return pointer into %r31,
|
|
the final target expects the return pointer in %r2, so copy the
|
|
return pointer into the proper register. */
|
|
bfd_put_32 (stub_bfd, COPY_R31_R2, loc + 12);
|
|
|
|
/* Update the location and offsets. */
|
|
stub_hash_table->location += 16;
|
|
stub_hash_table->offset += 16;
|
|
}
|
|
else
|
|
{
|
|
/* Update the location and offsets. */
|
|
stub_hash_table->location += 12;
|
|
stub_hash_table->offset += 12;
|
|
}
|
|
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* External entry points for sizing and building linker stubs. */
|
|
|
|
/* Build all the stubs associated with the current output file. The
|
|
stubs are kept in a hash table attached to the main linker hash
|
|
table. This is called via hppaelf_finish in the linker. */
|
|
|
|
boolean
|
|
elf32_hppa_build_stubs (stub_bfd, info)
|
|
bfd *stub_bfd;
|
|
struct bfd_link_info *info;
|
|
{
|
|
/* The stub BFD only has one section. */
|
|
asection *stub_sec = stub_bfd->sections;
|
|
struct elf32_hppa_stub_hash_table *table;
|
|
unsigned int size;
|
|
void *args[2];
|
|
|
|
/* So we can pass both the BFD for the stubs and the link info
|
|
structure to the routine which actually builds stubs. */
|
|
args[0] = stub_bfd;
|
|
args[1] = info;
|
|
|
|
/* Allocate memory to hold the linker stubs. */
|
|
size = bfd_section_size (stub_bfd, stub_sec);
|
|
stub_sec->contents = (unsigned char *) bfd_zalloc (stub_bfd, size);
|
|
if (stub_sec->contents == NULL)
|
|
{
|
|
bfd_set_error (bfd_error_no_memory);
|
|
return false;
|
|
}
|
|
table = elf32_hppa_hash_table(info)->stub_hash_table;
|
|
table->location = stub_sec->contents;
|
|
|
|
/* Build the stubs as directed by the stub hash table. */
|
|
elf32_hppa_stub_hash_traverse (table, elf32_hppa_build_one_stub, args);
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Determine and set the size of the stub section for a final link.
|
|
|
|
The basic idea here is to examine all the relocations looking for
|
|
PC-relative calls to a target that is unreachable with a "bl"
|
|
instruction or calls where the caller and callee disagree on the
|
|
location of their arguments or return value. */
|
|
|
|
boolean
|
|
elf32_hppa_size_stubs (stub_bfd, output_bfd, link_info)
|
|
bfd *stub_bfd;
|
|
bfd *output_bfd;
|
|
struct bfd_link_info *link_info;
|
|
{
|
|
bfd *input_bfd;
|
|
asection *section, *stub_sec;
|
|
Elf_Internal_Shdr *symtab_hdr;
|
|
Elf_Internal_Sym *local_syms, *isym, **all_local_syms;
|
|
Elf32_External_Sym *ext_syms, *esym;
|
|
unsigned int i, index, bfd_count = 0;
|
|
struct elf32_hppa_stub_hash_table *stub_hash_table = 0;
|
|
struct elf32_hppa_args_hash_table *args_hash_table = 0;
|
|
|
|
/* Create and initialize the stub hash table. */
|
|
stub_hash_table = ((struct elf32_hppa_stub_hash_table *)
|
|
malloc (sizeof (struct elf32_hppa_stub_hash_table)));
|
|
if (!stub_hash_table)
|
|
{
|
|
bfd_set_error (bfd_error_no_memory);
|
|
goto error_return;
|
|
}
|
|
|
|
if (!elf32_hppa_stub_hash_table_init (stub_hash_table, stub_bfd,
|
|
elf32_hppa_stub_hash_newfunc))
|
|
goto error_return;
|
|
|
|
/* Likewise for the argument location hash table. */
|
|
args_hash_table = ((struct elf32_hppa_args_hash_table *)
|
|
malloc (sizeof (struct elf32_hppa_args_hash_table)));
|
|
if (!args_hash_table)
|
|
{
|
|
bfd_set_error (bfd_error_no_memory);
|
|
goto error_return;
|
|
}
|
|
|
|
if (!elf32_hppa_args_hash_table_init (args_hash_table,
|
|
elf32_hppa_args_hash_newfunc))
|
|
goto error_return;
|
|
|
|
/* Attach the hash tables to the main hash table. */
|
|
elf32_hppa_hash_table(link_info)->stub_hash_table = stub_hash_table;
|
|
elf32_hppa_hash_table(link_info)->args_hash_table = args_hash_table;
|
|
|
|
/* Count the number of input BFDs. */
|
|
for (input_bfd = link_info->input_bfds;
|
|
input_bfd != NULL;
|
|
input_bfd = input_bfd->link_next)
|
|
bfd_count++;
|
|
|
|
/* We want to read in symbol extension records only once. To do this
|
|
we need to read in the local symbols in parallel and save them for
|
|
later use; so hold pointers to the local symbols in an array. */
|
|
all_local_syms
|
|
= (Elf_Internal_Sym **) malloc (sizeof (Elf_Internal_Sym *) * bfd_count);
|
|
if (all_local_syms == NULL)
|
|
{
|
|
bfd_set_error (bfd_error_no_memory);
|
|
goto error_return;
|
|
}
|
|
memset (all_local_syms, 0, sizeof (Elf_Internal_Sym *) * bfd_count);
|
|
|
|
/* Walk over all the input BFDs adding entries to the args hash table
|
|
for all the external functions. */
|
|
for (input_bfd = link_info->input_bfds, index = 0;
|
|
input_bfd != NULL;
|
|
input_bfd = input_bfd->link_next, index++)
|
|
{
|
|
/* We'll need the symbol table in a second. */
|
|
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
|
|
if (symtab_hdr->sh_info == 0)
|
|
continue;
|
|
|
|
/* We need an array of the local symbols attached to the input bfd.
|
|
Unfortunately, we're going to have to read & swap them in. */
|
|
local_syms
|
|
= (Elf_Internal_Sym *)malloc (symtab_hdr->sh_info
|
|
* sizeof (Elf_Internal_Sym));
|
|
if (local_syms == NULL)
|
|
{
|
|
bfd_set_error (bfd_error_no_memory);
|
|
for (i = 0; i < bfd_count; i++)
|
|
if (all_local_syms[i])
|
|
free (all_local_syms[i]);
|
|
free (all_local_syms);
|
|
goto error_return;
|
|
}
|
|
all_local_syms[index] = local_syms;
|
|
|
|
ext_syms
|
|
= (Elf32_External_Sym *)malloc (symtab_hdr->sh_info
|
|
* sizeof (Elf32_External_Sym));
|
|
if (ext_syms == NULL)
|
|
{
|
|
bfd_set_error (bfd_error_no_memory);
|
|
for (i = 0; i < bfd_count; i++)
|
|
if (all_local_syms[i])
|
|
free (all_local_syms[i]);
|
|
free (all_local_syms);
|
|
goto error_return;
|
|
}
|
|
|
|
if (bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
|
|
|| bfd_read (ext_syms, 1,
|
|
(symtab_hdr->sh_info
|
|
* sizeof (Elf32_External_Sym)), input_bfd)
|
|
!= (symtab_hdr->sh_info * sizeof (Elf32_External_Sym)))
|
|
{
|
|
for (i = 0; i < bfd_count; i++)
|
|
if (all_local_syms[i])
|
|
free (all_local_syms[i]);
|
|
free (all_local_syms);
|
|
free (ext_syms);
|
|
goto error_return;
|
|
}
|
|
|
|
/* Swap the local symbols in. */
|
|
isym = local_syms;
|
|
esym = ext_syms;
|
|
for (i = 0; i < symtab_hdr->sh_info; i++, esym++, isym++)
|
|
bfd_elf32_swap_symbol_in (input_bfd, esym, isym);
|
|
|
|
/* Now we can free the external symbols. */
|
|
free (ext_syms);
|
|
|
|
if (elf32_hppa_read_symext_info (input_bfd, symtab_hdr, args_hash_table,
|
|
local_syms) == false)
|
|
{
|
|
for (i = 0; i < bfd_count; i++)
|
|
if (all_local_syms[i])
|
|
free (all_local_syms[i]);
|
|
free (all_local_syms);
|
|
goto error_return;
|
|
}
|
|
}
|
|
|
|
/* Magic as we know the stub bfd only has one section. */
|
|
stub_sec = stub_bfd->sections;
|
|
|
|
/* If generating a relocateable output file, then we don't
|
|
have to examine the relocs. */
|
|
if (link_info->relocateable)
|
|
{
|
|
for (i = 0; i < bfd_count; i++)
|
|
if (all_local_syms[i])
|
|
free (all_local_syms[i]);
|
|
free (all_local_syms);
|
|
return true;
|
|
}
|
|
|
|
/* Now that we have argument location information for all the global
|
|
functions we can start looking for stubs. */
|
|
for (input_bfd = link_info->input_bfds, index = 0;
|
|
input_bfd != NULL;
|
|
input_bfd = input_bfd->link_next, index++)
|
|
{
|
|
/* We'll need the symbol table in a second. */
|
|
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
|
|
if (symtab_hdr->sh_info == 0)
|
|
continue;
|
|
|
|
local_syms = all_local_syms[index];
|
|
|
|
/* Walk over each section attached to the input bfd. */
|
|
for (section = input_bfd->sections;
|
|
section != NULL;
|
|
section = section->next)
|
|
{
|
|
Elf_Internal_Shdr *input_rel_hdr;
|
|
Elf32_External_Rela *external_relocs, *erelaend, *erela;
|
|
Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
|
|
|
|
/* If there aren't any relocs, then there's nothing to do. */
|
|
if ((section->flags & SEC_RELOC) == 0
|
|
|| section->reloc_count == 0)
|
|
continue;
|
|
|
|
/* Allocate space for the external relocations. */
|
|
external_relocs
|
|
= (Elf32_External_Rela *) malloc (section->reloc_count * sizeof (Elf32_External_Rela));
|
|
if (external_relocs == NULL)
|
|
{
|
|
bfd_set_error (bfd_error_no_memory);
|
|
for (i = 0; i < bfd_count; i++)
|
|
if (all_local_syms[i])
|
|
free (all_local_syms[i]);
|
|
free (all_local_syms);
|
|
goto error_return;
|
|
}
|
|
|
|
/* Likewise for the internal relocations. */
|
|
internal_relocs
|
|
= (Elf_Internal_Rela *) malloc (section->reloc_count * sizeof (Elf_Internal_Rela));
|
|
if (internal_relocs == NULL)
|
|
{
|
|
bfd_set_error (bfd_error_no_memory);
|
|
free (external_relocs);
|
|
for (i = 0; i < bfd_count; i++)
|
|
if (all_local_syms[i])
|
|
free (all_local_syms[i]);
|
|
free (all_local_syms);
|
|
goto error_return;
|
|
}
|
|
|
|
/* Read in the external relocs. */
|
|
input_rel_hdr = &elf_section_data (section)->rel_hdr;
|
|
if (bfd_seek (input_bfd, input_rel_hdr->sh_offset, SEEK_SET) != 0
|
|
|| bfd_read (external_relocs, 1, input_rel_hdr->sh_size,
|
|
input_bfd) != input_rel_hdr->sh_size)
|
|
{
|
|
free (external_relocs);
|
|
free (internal_relocs);
|
|
for (i = 0; i < bfd_count; i++)
|
|
if (all_local_syms[i])
|
|
free (all_local_syms[i]);
|
|
free (all_local_syms);
|
|
goto error_return;
|
|
}
|
|
|
|
/* Swap in the relocs. */
|
|
erela = external_relocs;
|
|
erelaend = erela + section->reloc_count;
|
|
irela = internal_relocs;
|
|
for (; erela < erelaend; erela++, irela++)
|
|
bfd_elf32_swap_reloca_in (input_bfd, erela, irela);
|
|
|
|
/* We're done with the external relocs, free them. */
|
|
free (external_relocs);
|
|
|
|
/* Now examine each relocation. */
|
|
irela = internal_relocs;
|
|
irelaend = irela + section->reloc_count;
|
|
for (; irela < irelaend; irela++)
|
|
{
|
|
long r_type, callee_args, caller_args, r_index, size_of_stub;
|
|
struct elf_link_hash_entry *hash;
|
|
struct elf32_hppa_stub_hash_entry *stub_hash;
|
|
struct elf32_hppa_args_hash_entry *args_hash;
|
|
Elf_Internal_Sym *sym;
|
|
asection *sym_sec;
|
|
const char *sym_name;
|
|
symvalue sym_value;
|
|
bfd_vma location, destination;
|
|
char *new_name = NULL;
|
|
|
|
r_type = ELF32_R_TYPE (irela->r_info);
|
|
r_index = ELF32_R_SYM (irela->r_info);
|
|
|
|
if (r_type < 0 || r_type >= (int) R_PARISC_UNIMPLEMENTED)
|
|
{
|
|
bfd_set_error (bfd_error_bad_value);
|
|
free (internal_relocs);
|
|
for (i = 0; i < bfd_count; i++)
|
|
if (all_local_syms[i])
|
|
free (all_local_syms[i]);
|
|
free (all_local_syms);
|
|
goto error_return;
|
|
}
|
|
|
|
/* Only look for stubs on call instructions or plabel
|
|
references. */
|
|
if (r_type != R_PARISC_PCREL17F
|
|
&& r_type != R_PARISC_PLABEL32
|
|
&& r_type != R_PARISC_PLABEL21L
|
|
&& r_type != R_PARISC_PLABEL14R)
|
|
continue;
|
|
|
|
/* Now determine the call target, its name, value, section
|
|
and argument relocation bits. */
|
|
hash = NULL;
|
|
sym = NULL;
|
|
sym_sec = NULL;
|
|
if (r_index < symtab_hdr->sh_info)
|
|
{
|
|
/* It's a local symbol. */
|
|
Elf_Internal_Shdr *hdr;
|
|
|
|
sym = local_syms + r_index;
|
|
hdr = elf_elfsections (input_bfd)[sym->st_shndx];
|
|
sym_sec = hdr->bfd_section;
|
|
sym_name = elf_string_from_elf_section (input_bfd,
|
|
symtab_hdr->sh_link,
|
|
sym->st_name);
|
|
sym_value = (ELF_ST_TYPE (sym->st_info) == STT_SECTION
|
|
? 0 : sym->st_value);
|
|
destination = (sym_value
|
|
+ sym_sec->output_offset
|
|
+ sym_sec->output_section->vma);
|
|
|
|
/* Tack on an ID so we can uniquely identify this local
|
|
symbol in the stub or arg info hash tables. */
|
|
new_name = malloc (strlen (sym_name) + 10);
|
|
if (new_name == 0)
|
|
{
|
|
bfd_set_error (bfd_error_bad_value);
|
|
free (internal_relocs);
|
|
for (i = 0; i < bfd_count; i++)
|
|
if (all_local_syms[i])
|
|
free (all_local_syms[i]);
|
|
free (all_local_syms);
|
|
goto error_return;
|
|
}
|
|
sprintf (new_name, "%s_%08x", sym_name, (int)sym_sec);
|
|
sym_name = new_name;
|
|
}
|
|
else
|
|
{
|
|
/* It's an external symbol. */
|
|
long index;
|
|
|
|
index = r_index - symtab_hdr->sh_info;
|
|
hash = elf_sym_hashes (input_bfd)[index];
|
|
if (hash->root.type == bfd_link_hash_defined)
|
|
{
|
|
sym_sec = hash->root.u.def.section;
|
|
sym_name = hash->root.root.string;
|
|
sym_value = hash->root.u.def.value;
|
|
destination = (sym_value
|
|
+ sym_sec->output_offset
|
|
+ sym_sec->output_section->vma);
|
|
}
|
|
else
|
|
{
|
|
bfd_set_error (bfd_error_bad_value);
|
|
free (internal_relocs);
|
|
for (i = 0; i < bfd_count; i++)
|
|
if (all_local_syms[i])
|
|
free (all_local_syms[i]);
|
|
free (all_local_syms);
|
|
goto error_return;
|
|
}
|
|
}
|
|
|
|
args_hash = elf32_hppa_args_hash_lookup (args_hash_table,
|
|
sym_name, false, false);
|
|
|
|
/* Get both caller and callee argument information. */
|
|
if (args_hash == NULL)
|
|
callee_args = 0;
|
|
else
|
|
callee_args = args_hash->arg_bits;
|
|
|
|
/* For calls get the caller's bits from the addend of
|
|
the call relocation. For PLABELS the caller's bits
|
|
are assumed to have all args & return values in general
|
|
registers (0x155). */
|
|
if (r_type == R_PARISC_PCREL17F)
|
|
caller_args = HPPA_R_ARG_RELOC (irela->r_addend);
|
|
else
|
|
caller_args = 0x155;
|
|
|
|
/* Now determine where the call point is. */
|
|
location = (section->output_offset
|
|
+ section->output_section->vma
|
|
+ irela->r_offset);
|
|
|
|
/* We only care about the destination for PCREL function
|
|
calls (eg. we don't care for PLABELS). */
|
|
if (r_type != R_PARISC_PCREL17F)
|
|
location = destination;
|
|
|
|
/* Determine what (if any) linker stub is needed and its
|
|
size (in bytes). */
|
|
size_of_stub = elf32_hppa_size_of_stub (callee_args,
|
|
caller_args,
|
|
location,
|
|
destination,
|
|
sym_name);
|
|
if (size_of_stub != 0)
|
|
{
|
|
char *stub_name;
|
|
unsigned int len;
|
|
|
|
/* Get the name of this stub. */
|
|
len = strlen (sym_name);
|
|
len += 23;
|
|
|
|
stub_name = malloc (len);
|
|
if (!stub_name)
|
|
{
|
|
bfd_set_error (bfd_error_no_memory);
|
|
|
|
/* Because sym_name was mallocd above for local
|
|
symbols. */
|
|
if (r_index < symtab_hdr->sh_info)
|
|
free (new_name);
|
|
|
|
free (internal_relocs);
|
|
for (i = 0; i < bfd_count; i++)
|
|
if (all_local_syms[i])
|
|
free (all_local_syms[i]);
|
|
free (all_local_syms);
|
|
goto error_return;
|
|
}
|
|
elf32_hppa_name_of_stub (caller_args, callee_args,
|
|
location, destination, stub_name);
|
|
strcat (stub_name + 22, sym_name);
|
|
|
|
/* Because sym_name was malloced above for local symbols. */
|
|
if (r_index < symtab_hdr->sh_info)
|
|
free (new_name);
|
|
|
|
stub_hash
|
|
= elf32_hppa_stub_hash_lookup (stub_hash_table, stub_name,
|
|
false, false);
|
|
if (stub_hash != NULL)
|
|
{
|
|
/* The proper stub has already been created, nothing
|
|
else to do. */
|
|
free (stub_name);
|
|
}
|
|
else
|
|
{
|
|
bfd_set_section_size (stub_bfd, stub_sec,
|
|
(bfd_section_size (stub_bfd,
|
|
stub_sec)
|
|
+ size_of_stub));
|
|
|
|
/* Enter this entry into the linker stub hash table. */
|
|
stub_hash
|
|
= elf32_hppa_stub_hash_lookup (stub_hash_table,
|
|
stub_name, true, true);
|
|
if (stub_hash == NULL)
|
|
{
|
|
bfd_set_error (bfd_error_no_memory);
|
|
free (stub_name);
|
|
free (internal_relocs);
|
|
for (i = 0; i < bfd_count; i++)
|
|
if (all_local_syms[i])
|
|
free (all_local_syms[i]);
|
|
free (all_local_syms);
|
|
goto error_return;
|
|
}
|
|
|
|
/* We'll need these to determine the address that the
|
|
stub will branch to. */
|
|
stub_hash->target_value = sym_value;
|
|
stub_hash->target_section = sym_sec;
|
|
}
|
|
free (stub_name);
|
|
}
|
|
}
|
|
/* We're done with the internal relocs, free them. */
|
|
free (internal_relocs);
|
|
}
|
|
}
|
|
/* We're done with the local symbols, free them. */
|
|
for (i = 0; i < bfd_count; i++)
|
|
if (all_local_syms[i])
|
|
free (all_local_syms[i]);
|
|
free (all_local_syms);
|
|
return true;
|
|
|
|
error_return:
|
|
/* Return gracefully, avoiding dangling references to the hash tables. */
|
|
if (stub_hash_table)
|
|
{
|
|
elf32_hppa_hash_table(link_info)->stub_hash_table = NULL;
|
|
free (stub_hash_table);
|
|
}
|
|
if (args_hash_table)
|
|
{
|
|
elf32_hppa_hash_table(link_info)->args_hash_table = NULL;
|
|
free (args_hash_table);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* Misc BFD support code. */
|
|
#define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
|
|
#define bfd_elf32_bfd_is_local_label hppa_elf_is_local_label
|
|
|
|
/* Symbol extension stuff. */
|
|
#define bfd_elf32_set_section_contents elf32_hppa_set_section_contents
|
|
#define elf_backend_symbol_table_processing \
|
|
elf32_hppa_backend_symbol_table_processing
|
|
#define elf_backend_begin_write_processing \
|
|
elf32_hppa_backend_begin_write_processing
|
|
#define elf_backend_final_write_processing \
|
|
elf32_hppa_backend_final_write_processing
|
|
|
|
/* Stuff for the BFD linker. */
|
|
#define elf_backend_relocate_section elf32_hppa_relocate_section
|
|
#define elf_backend_add_symbol_hook elf32_hppa_add_symbol_hook
|
|
#define elf_backend_link_output_symbol_hook \
|
|
elf32_hppa_link_output_symbol_hook
|
|
#define bfd_elf32_bfd_link_hash_table_create \
|
|
elf32_hppa_link_hash_table_create
|
|
|
|
#define TARGET_BIG_SYM bfd_elf32_hppa_vec
|
|
#define TARGET_BIG_NAME "elf32-hppa"
|
|
#define ELF_ARCH bfd_arch_hppa
|
|
#define ELF_MACHINE_CODE EM_PARISC
|
|
#define ELF_MAXPAGESIZE 0x1000
|
|
|
|
#include "elf32-target.h"
|