mirror of
https://github.com/darlinghq/darling-gdb.git
synced 2024-12-02 17:16:42 +00:00
f70be3e45a
* coffread.c (record_minimal_symbol): Pass the minsym type to it. Callers changed. (coff_end_symtab): Sort blocks if needed. Complain if misordered. (read_coff_symtab): Move patch_opaque_types call from coff_symfile_read. Restrict it to symtabs from this objfile. (process_coff_symbol: C_TPDEF): Don't put ordinary foward references on opaque type chain; just let coff_lookup_type handle 'em. (decode_type): Complain about tagndx values on non-struct/union/enum types, which the EPI compiler tends to produce. * symtab.c (list_symbols): Make minimal symbol variable-finding work. * tm-68k.h (FIX_CALL_DUMMY): Avoid alignment and byte order dependency. * elfread.c (elf_symfile_read): Update bfd_elf_find_section usage to match new prototype. Include libbfd.h to get prototype.
526 lines
20 KiB
C
526 lines
20 KiB
C
/* Parameters for execution on a 68000 series machine.
|
||
Copyright 1986, 1987, 1989, 1990, 1992 Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
|
||
|
||
/* Generic 68000 stuff, to be included by other tm-*.h files.
|
||
Define HAVE_68881 if that is the case. */
|
||
|
||
#if defined (HAVE_68881)
|
||
#define IEEE_FLOAT 1
|
||
#endif
|
||
|
||
/* Define the bit, byte, and word ordering of the machine. */
|
||
#define TARGET_BYTE_ORDER BIG_ENDIAN
|
||
|
||
/* Offset from address of function to start of its code.
|
||
Zero on most machines. */
|
||
|
||
#define FUNCTION_START_OFFSET 0
|
||
|
||
/* Advance PC across any function entry prologue instructions
|
||
to reach some "real" code. */
|
||
|
||
#if !defined(SKIP_PROLOGUE)
|
||
#define SKIP_PROLOGUE(ip) {(ip) = m68k_skip_prologue(ip);}
|
||
extern CORE_ADDR m68k_skip_prologue PARAMS ((CORE_ADDR ip));
|
||
#endif
|
||
|
||
/* Immediately after a function call, return the saved pc.
|
||
Can't always go through the frames for this because on some machines
|
||
the new frame is not set up until the new function executes
|
||
some instructions. */
|
||
|
||
#define SAVED_PC_AFTER_CALL(frame) \
|
||
read_memory_integer (read_register (SP_REGNUM), 4)
|
||
|
||
/* Stack grows downward. */
|
||
|
||
#define INNER_THAN <
|
||
|
||
/* Sequence of bytes for breakpoint instruction.
|
||
This is a TRAP instruction. The last 4 bits (0xf below) is the
|
||
vector. Systems which don't use 0xf should define BPT_VECTOR
|
||
themselves before including this file. */
|
||
|
||
#if !defined (BPT_VECTOR)
|
||
#define BPT_VECTOR 0xf
|
||
#endif
|
||
|
||
#if !defined (BREAKPOINT)
|
||
#define BREAKPOINT {0x4e, (0x40 | BPT_VECTOR)}
|
||
#endif
|
||
|
||
/* If your kernel resets the pc after the trap happens you may need to
|
||
define this before including this file. */
|
||
|
||
#if !defined (DECR_PC_AFTER_BREAK)
|
||
#define DECR_PC_AFTER_BREAK 2
|
||
#endif
|
||
|
||
/* Nonzero if instruction at PC is a return instruction. */
|
||
/* Allow any of the return instructions, including a trapv and a return
|
||
from interupt. */
|
||
|
||
#define ABOUT_TO_RETURN(pc) ((read_memory_integer (pc, 2) & ~0x3) == 0x4e74)
|
||
|
||
/* Return 1 if P points to an invalid floating point value. */
|
||
|
||
#define INVALID_FLOAT(p, len) 0 /* Just a first guess; not checked */
|
||
|
||
/* Say how long registers are. */
|
||
|
||
#define REGISTER_TYPE long
|
||
|
||
#if defined (HAVE_68881)
|
||
# if defined (GDB_TARGET_IS_SUN3)
|
||
/* Sun3 status includes fpflags, which shows whether the FPU has been used
|
||
by the process, and whether the FPU was done with an instruction or
|
||
was interrupted in the middle of a long instruction. See
|
||
<machine/reg.h>. */
|
||
/* a&d, pc,sr, fp, fpstat, fpflags */
|
||
# define NUM_REGS 31
|
||
# define REGISTER_BYTES (16*4 + 8 + 8*12 + 3*4 + 4)
|
||
# else /* Not sun3. */
|
||
# define NUM_REGS 29
|
||
# define REGISTER_BYTES (16*4 + 8 + 8*12 + 3*4)
|
||
# endif /* Not sun3. */
|
||
#else /* No 68881. */
|
||
# define NUM_REGS 18
|
||
# define REGISTER_BYTES (16*4 + 8)
|
||
#endif /* No 68881. */
|
||
|
||
/* Index within `registers' of the first byte of the space for
|
||
register N. */
|
||
|
||
#if defined (HAVE_68881)
|
||
#define REGISTER_BYTE(N) \
|
||
((N) >= FPC_REGNUM ? (((N) - FPC_REGNUM) * 4) + 168 \
|
||
: (N) >= FP0_REGNUM ? (((N) - FP0_REGNUM) * 12) + 72 \
|
||
: (N) * 4)
|
||
|
||
/* Number of bytes of storage in the actual machine representation
|
||
for register N. On the 68000, all regs are 4 bytes
|
||
except the floating point regs which are 12 bytes. */
|
||
/* Note that the unsigned cast here forces the result of the
|
||
subtraction to very high positive values if N < FP0_REGNUM */
|
||
|
||
#define REGISTER_RAW_SIZE(N) (((unsigned)(N) - FP0_REGNUM) < 8 ? 12 : 4)
|
||
|
||
/* Number of bytes of storage in the program's representation
|
||
for register N. On the 68000, all regs are 4 bytes
|
||
except the floating point regs which are 8-byte doubles. */
|
||
|
||
#define REGISTER_VIRTUAL_SIZE(N) (((unsigned)(N) - FP0_REGNUM) < 8 ? 8 : 4)
|
||
|
||
/* Largest value REGISTER_RAW_SIZE can have. */
|
||
|
||
#define MAX_REGISTER_RAW_SIZE 12
|
||
|
||
/* Largest value REGISTER_VIRTUAL_SIZE can have. */
|
||
|
||
#define MAX_REGISTER_VIRTUAL_SIZE 8
|
||
|
||
/* Nonzero if register N requires conversion
|
||
from raw format to virtual format. */
|
||
|
||
#define REGISTER_CONVERTIBLE(N) (((unsigned)(N) - FP0_REGNUM) < 8)
|
||
|
||
/* Put the declaration out here because if it's in the macros, PCC
|
||
will complain. */
|
||
extern const struct ext_format ext_format_68881;
|
||
|
||
/* Convert data from raw format for register REGNUM
|
||
to virtual format for register REGNUM. */
|
||
|
||
#define REGISTER_CONVERT_TO_VIRTUAL(REGNUM,FROM,TO) \
|
||
{ \
|
||
if ((REGNUM) >= FP0_REGNUM && (REGNUM) < FPC_REGNUM) \
|
||
ieee_extended_to_double (&ext_format_68881, (FROM), (double *)(TO)); \
|
||
else \
|
||
memcpy ((TO), (FROM), 4); \
|
||
}
|
||
|
||
/* Convert data from virtual format for register REGNUM
|
||
to raw format for register REGNUM. */
|
||
|
||
#define REGISTER_CONVERT_TO_RAW(REGNUM,FROM,TO) \
|
||
{ \
|
||
if ((REGNUM) >= FP0_REGNUM && (REGNUM) < FPC_REGNUM) \
|
||
double_to_ieee_extended (&ext_format_68881, (double *)(FROM), (TO)); \
|
||
else \
|
||
memcpy ((TO), (FROM), 4); \
|
||
}
|
||
|
||
/* Return the GDB type object for the "standard" data type
|
||
of data in register N. */
|
||
/* Note, for registers which contain addresses return
|
||
pointer to void, not pointer to char, because we don't
|
||
want to attempt to print the string after printing the address. */
|
||
#define REGISTER_VIRTUAL_TYPE(N) \
|
||
(((unsigned)(N) - FP0_REGNUM) < 8 ? builtin_type_double : \
|
||
(N) == PC_REGNUM || (N) == FP_REGNUM || (N) == SP_REGNUM ? \
|
||
lookup_pointer_type (builtin_type_void) : builtin_type_int)
|
||
|
||
#else /* no 68881. */
|
||
/* Index within `registers' of the first byte of the space for
|
||
register N. */
|
||
|
||
#define REGISTER_BYTE(N) ((N) * 4)
|
||
|
||
/* Number of bytes of storage in the actual machine representation
|
||
for register N. On the 68000, all regs are 4 bytes. */
|
||
|
||
#define REGISTER_RAW_SIZE(N) 4
|
||
|
||
/* Number of bytes of storage in the program's representation
|
||
for register N. On the 68000, all regs are 4 bytes. */
|
||
|
||
#define REGISTER_VIRTUAL_SIZE(N) 4
|
||
|
||
/* Largest value REGISTER_RAW_SIZE can have. */
|
||
|
||
#define MAX_REGISTER_RAW_SIZE 4
|
||
|
||
/* Largest value REGISTER_VIRTUAL_SIZE can have. */
|
||
|
||
#define MAX_REGISTER_VIRTUAL_SIZE 4
|
||
|
||
/* Nonzero if register N requires conversion
|
||
from raw format to virtual format. */
|
||
|
||
#define REGISTER_CONVERTIBLE(N) 0
|
||
|
||
/* Convert data from raw format for register REGNUM
|
||
to virtual format for register REGNUM. */
|
||
|
||
#define REGISTER_CONVERT_TO_VIRTUAL(REGNUM,FROM,TO) memcpy ((TO), (FROM), 4);
|
||
|
||
/* Convert data from virtual format for register REGNUM
|
||
to raw format for register REGNUM. */
|
||
|
||
#define REGISTER_CONVERT_TO_RAW(REGNUM,FROM,TO) memcpy ((TO), (FROM), 4);
|
||
|
||
/* Return the GDB type object for the "standard" data type
|
||
of data in register N. */
|
||
|
||
#define REGISTER_VIRTUAL_TYPE(N) builtin_type_int
|
||
|
||
#endif /* No 68881. */
|
||
|
||
/* Initializer for an array of names of registers.
|
||
Entries beyond the first NUM_REGS are ignored. */
|
||
|
||
#define REGISTER_NAMES \
|
||
{"d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7", \
|
||
"a0", "a1", "a2", "a3", "a4", "a5", "fp", "sp", \
|
||
"ps", "pc", \
|
||
"fp0", "fp1", "fp2", "fp3", "fp4", "fp5", "fp6", "fp7", \
|
||
"fpcontrol", "fpstatus", "fpiaddr", "fpcode", "fpflags" }
|
||
|
||
/* Register numbers of various important registers.
|
||
Note that some of these values are "real" register numbers,
|
||
and correspond to the general registers of the machine,
|
||
and some are "phony" register numbers which are too large
|
||
to be actual register numbers as far as the user is concerned
|
||
but do serve to get the desired values when passed to read_register. */
|
||
|
||
#define A1_REGNUM 9
|
||
#define FP_REGNUM 14 /* Contains address of executing stack frame */
|
||
#define SP_REGNUM 15 /* Contains address of top of stack */
|
||
#define PS_REGNUM 16 /* Contains processor status */
|
||
#define PC_REGNUM 17 /* Contains program counter */
|
||
#if defined (HAVE_68881)
|
||
#define FP0_REGNUM 18 /* Floating point register 0 */
|
||
#define FPC_REGNUM 26 /* 68881 control register */
|
||
#define FPS_REGNUM 27 /* 68881 status register */
|
||
#define FPI_REGNUM 28 /* 68881 iaddr register */
|
||
#endif /* 68881. */
|
||
|
||
/* Store the address of the place in which to copy the structure the
|
||
subroutine will return. This is called from call_function. */
|
||
|
||
#define STORE_STRUCT_RETURN(ADDR, SP) \
|
||
{ write_register (A1_REGNUM, (ADDR)); }
|
||
|
||
/* Extract from an array REGBUF containing the (raw) register state
|
||
a function return value of type TYPE, and copy that, in virtual format,
|
||
into VALBUF. This is assuming that floating point values are returned
|
||
as doubles in d0/d1. */
|
||
|
||
#if !defined (EXTRACT_RETURN_VALUE)
|
||
#define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
|
||
memcpy ((VALBUF), \
|
||
(char *)(REGBUF) + \
|
||
(TYPE_LENGTH(TYPE) >= 4 ? 0 : 4 - TYPE_LENGTH(TYPE)), \
|
||
TYPE_LENGTH(TYPE))
|
||
#endif
|
||
|
||
/* Write into appropriate registers a function return value
|
||
of type TYPE, given in virtual format. Assumes floats are passed
|
||
in d0/d1. */
|
||
|
||
#if !defined (STORE_RETURN_VALUE)
|
||
#define STORE_RETURN_VALUE(TYPE,VALBUF) \
|
||
write_register_bytes (0, VALBUF, TYPE_LENGTH (TYPE))
|
||
#endif
|
||
|
||
/* Extract from an array REGBUF containing the (raw) register state
|
||
the address in which a function should return its structure value,
|
||
as a CORE_ADDR (or an expression that can be used as one). */
|
||
|
||
#define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) (*(CORE_ADDR *)(REGBUF))
|
||
|
||
/* Describe the pointer in each stack frame to the previous stack frame
|
||
(its caller). */
|
||
|
||
/* FRAME_CHAIN takes a frame's nominal address and produces the frame's
|
||
chain-pointer.
|
||
In the case of the 68000, the frame's nominal address
|
||
is the address of a 4-byte word containing the calling frame's address. */
|
||
|
||
#define FRAME_CHAIN(thisframe) \
|
||
(!inside_entry_file ((thisframe)->pc) ? \
|
||
read_memory_integer ((thisframe)->frame, 4) :\
|
||
0)
|
||
|
||
/* Define other aspects of the stack frame. */
|
||
|
||
/* A macro that tells us whether the function invocation represented
|
||
by FI does not have a frame on the stack associated with it. If it
|
||
does not, FRAMELESS is set to 1, else 0. */
|
||
#define FRAMELESS_FUNCTION_INVOCATION(FI, FRAMELESS) \
|
||
(FRAMELESS) = frameless_look_for_prologue(FI)
|
||
|
||
#define FRAME_SAVED_PC(FRAME) (read_memory_integer ((FRAME)->frame + 4, 4))
|
||
|
||
#define FRAME_ARGS_ADDRESS(fi) ((fi)->frame)
|
||
|
||
#define FRAME_LOCALS_ADDRESS(fi) ((fi)->frame)
|
||
|
||
/* Set VAL to the number of args passed to frame described by FI.
|
||
Can set VAL to -1, meaning no way to tell. */
|
||
|
||
/* We can't tell how many args there are
|
||
now that the C compiler delays popping them. */
|
||
#if !defined (FRAME_NUM_ARGS)
|
||
#define FRAME_NUM_ARGS(val,fi) (val = -1)
|
||
#endif
|
||
|
||
/* Return number of bytes at start of arglist that are not really args. */
|
||
|
||
#define FRAME_ARGS_SKIP 8
|
||
|
||
/* Put here the code to store, into a struct frame_saved_regs,
|
||
the addresses of the saved registers of frame described by FRAME_INFO.
|
||
This includes special registers such as pc and fp saved in special
|
||
ways in the stack frame. sp is even more special:
|
||
the address we return for it IS the sp for the next frame. */
|
||
|
||
#if !defined (FRAME_FIND_SAVED_REGS)
|
||
#if defined (HAVE_68881)
|
||
#define FRAME_FIND_SAVED_REGS(frame_info, frame_saved_regs) \
|
||
{ register int regnum; \
|
||
register int regmask; \
|
||
register CORE_ADDR next_addr; \
|
||
register CORE_ADDR pc; \
|
||
int nextinsn; \
|
||
bzero (&frame_saved_regs, sizeof frame_saved_regs); \
|
||
if ((frame_info)->pc >= (frame_info)->frame - CALL_DUMMY_LENGTH - FP_REGNUM*4 - 8*12 - 4 \
|
||
&& (frame_info)->pc <= (frame_info)->frame) \
|
||
{ next_addr = (frame_info)->frame; \
|
||
pc = (frame_info)->frame - CALL_DUMMY_LENGTH - FP_REGNUM * 4 - 8*12 - 4; }\
|
||
else \
|
||
{ pc = get_pc_function_start ((frame_info)->pc); \
|
||
/* Verify we have a link a6 instruction next; \
|
||
if not we lose. If we win, find the address above the saved \
|
||
regs using the amount of storage from the link instruction. */\
|
||
if (044016 == read_memory_integer (pc, 2)) \
|
||
next_addr = (frame_info)->frame + read_memory_integer (pc += 2, 4), pc+=4; \
|
||
else if (047126 == read_memory_integer (pc, 2)) \
|
||
next_addr = (frame_info)->frame + read_memory_integer (pc += 2, 2), pc+=2; \
|
||
else goto lose; \
|
||
/* If have an addal #-n, sp next, adjust next_addr. */ \
|
||
if ((0177777 & read_memory_integer (pc, 2)) == 0157774) \
|
||
next_addr += read_memory_integer (pc += 2, 4), pc += 4; \
|
||
} \
|
||
/* next should be a moveml to (sp) or -(sp) or a movl r,-(sp) */ \
|
||
regmask = read_memory_integer (pc + 2, 2); \
|
||
/* But before that can come an fmovem. Check for it. */ \
|
||
nextinsn = 0xffff & read_memory_integer (pc, 2); \
|
||
if (0xf227 == nextinsn \
|
||
&& (regmask & 0xff00) == 0xe000) \
|
||
{ pc += 4; /* Regmask's low bit is for register fp7, the first pushed */ \
|
||
for (regnum = FP0_REGNUM + 7; regnum >= FP0_REGNUM; regnum--, regmask >>= 1) \
|
||
if (regmask & 1) \
|
||
(frame_saved_regs).regs[regnum] = (next_addr -= 12); \
|
||
regmask = read_memory_integer (pc + 2, 2); } \
|
||
if (0044327 == read_memory_integer (pc, 2)) \
|
||
{ pc += 4; /* Regmask's low bit is for register 0, the first written */ \
|
||
for (regnum = 0; regnum < 16; regnum++, regmask >>= 1) \
|
||
if (regmask & 1) \
|
||
(frame_saved_regs).regs[regnum] = (next_addr += 4) - 4; } \
|
||
else if (0044347 == read_memory_integer (pc, 2)) \
|
||
{ pc += 4; /* Regmask's low bit is for register 15, the first pushed */ \
|
||
for (regnum = 15; regnum >= 0; regnum--, regmask >>= 1) \
|
||
if (regmask & 1) \
|
||
(frame_saved_regs).regs[regnum] = (next_addr -= 4); } \
|
||
else if (0x2f00 == (0xfff0 & read_memory_integer (pc, 2))) \
|
||
{ regnum = 0xf & read_memory_integer (pc, 2); pc += 2; \
|
||
(frame_saved_regs).regs[regnum] = (next_addr -= 4); } \
|
||
/* fmovemx to index of sp may follow. */ \
|
||
regmask = read_memory_integer (pc + 2, 2); \
|
||
nextinsn = 0xffff & read_memory_integer (pc, 2); \
|
||
if (0xf236 == nextinsn \
|
||
&& (regmask & 0xff00) == 0xf000) \
|
||
{ pc += 10; /* Regmask's low bit is for register fp0, the first written */ \
|
||
for (regnum = FP0_REGNUM + 7; regnum >= FP0_REGNUM; regnum--, regmask >>= 1) \
|
||
if (regmask & 1) \
|
||
(frame_saved_regs).regs[regnum] = (next_addr += 12) - 12; \
|
||
regmask = read_memory_integer (pc + 2, 2); } \
|
||
/* clrw -(sp); movw ccr,-(sp) may follow. */ \
|
||
if (0x426742e7 == read_memory_integer (pc, 4)) \
|
||
(frame_saved_regs).regs[PS_REGNUM] = (next_addr -= 4); \
|
||
lose: ; \
|
||
(frame_saved_regs).regs[SP_REGNUM] = (frame_info)->frame + 8; \
|
||
(frame_saved_regs).regs[FP_REGNUM] = (frame_info)->frame; \
|
||
(frame_saved_regs).regs[PC_REGNUM] = (frame_info)->frame + 4; \
|
||
}
|
||
#else /* no 68881. */
|
||
#define FRAME_FIND_SAVED_REGS(frame_info, frame_saved_regs) \
|
||
{ register int regnum; \
|
||
register int regmask; \
|
||
register CORE_ADDR next_addr; \
|
||
register CORE_ADDR pc; \
|
||
bzero (&frame_saved_regs, sizeof frame_saved_regs); \
|
||
if ((frame_info)->pc >= (frame_info)->frame - CALL_DUMMY_LENGTH - FP_REGNUM*4 - 4 \
|
||
&& (frame_info)->pc <= (frame_info)->frame) \
|
||
{ next_addr = (frame_info)->frame; \
|
||
pc = (frame_info)->frame - CALL_DUMMY_LENGTH - FP_REGNUM * 4 - 4; }\
|
||
else \
|
||
{ pc = get_pc_function_start ((frame_info)->pc); \
|
||
/* Verify we have a link a6 instruction next; \
|
||
if not we lose. If we win, find the address above the saved \
|
||
regs using the amount of storage from the link instruction. */\
|
||
if (044016 == read_memory_integer (pc, 2)) \
|
||
next_addr = (frame_info)->frame + read_memory_integer (pc += 2, 4), pc+=4; \
|
||
else if (047126 == read_memory_integer (pc, 2)) \
|
||
next_addr = (frame_info)->frame + read_memory_integer (pc += 2, 2), pc+=2; \
|
||
else goto lose; \
|
||
/* If have an addal #-n, sp next, adjust next_addr. */ \
|
||
if ((0177777 & read_memory_integer (pc, 2)) == 0157774) \
|
||
next_addr += read_memory_integer (pc += 2, 4), pc += 4; \
|
||
} \
|
||
/* next should be a moveml to (sp) or -(sp) or a movl r,-(sp) */ \
|
||
regmask = read_memory_integer (pc + 2, 2); \
|
||
if (0044327 == read_memory_integer (pc, 2)) \
|
||
{ pc += 4; /* Regmask's low bit is for register 0, the first written */ \
|
||
for (regnum = 0; regnum < 16; regnum++, regmask >>= 1) \
|
||
if (regmask & 1) \
|
||
(frame_saved_regs).regs[regnum] = (next_addr += 4) - 4; } \
|
||
else if (0044347 == read_memory_integer (pc, 2)) \
|
||
{ pc += 4; /* Regmask's low bit is for register 15, the first pushed */ \
|
||
for (regnum = 15; regnum >= 0; regnum--, regmask >>= 1) \
|
||
if (regmask & 1) \
|
||
(frame_saved_regs).regs[regnum] = (next_addr -= 4); } \
|
||
else if (0x2f00 == (0xfff0 & read_memory_integer (pc, 2))) \
|
||
{ regnum = 0xf & read_memory_integer (pc, 2); pc += 2; \
|
||
(frame_saved_regs).regs[regnum] = (next_addr -= 4); } \
|
||
/* clrw -(sp); movw ccr,-(sp) may follow. */ \
|
||
if (0x426742e7 == read_memory_integer (pc, 4)) \
|
||
(frame_saved_regs).regs[PS_REGNUM] = (next_addr -= 4); \
|
||
lose: ; \
|
||
(frame_saved_regs).regs[SP_REGNUM] = (frame_info)->frame + 8; \
|
||
(frame_saved_regs).regs[FP_REGNUM] = (frame_info)->frame; \
|
||
(frame_saved_regs).regs[PC_REGNUM] = (frame_info)->frame + 4; \
|
||
}
|
||
#endif /* no 68881. */
|
||
#endif /* no FIND_FRAME_SAVED_REGS. */
|
||
|
||
|
||
/* Things needed for making the inferior call functions.
|
||
It seems like every m68k based machine has almost identical definitions
|
||
in the individual machine's configuration files. Most other cpu types
|
||
(mips, i386, etc) have routines in their *-tdep.c files to handle this
|
||
for most configurations. The m68k family should be able to do this as
|
||
well. These macros can still be overridden when necessary. */
|
||
|
||
/* The CALL_DUMMY macro is the sequence of instructions, as disassembled
|
||
by gdb itself:
|
||
|
||
fmovemx fp0-fp7,sp@- 0xf227 0xe0ff
|
||
moveml d0-a5,sp@- 0x48e7 0xfffc
|
||
clrw sp@- 0x4267
|
||
movew ccr,sp@- 0x42e7
|
||
|
||
/..* The arguments are pushed at this point by GDB;
|
||
no code is needed in the dummy for this.
|
||
The CALL_DUMMY_START_OFFSET gives the position of
|
||
the following jsr instruction. *../
|
||
|
||
jsr @#0x32323232 0x4eb9 0x3232 0x3232
|
||
addal #0x69696969,sp 0xdffc 0x6969 0x6969
|
||
trap #<your BPT_VECTOR number here> 0x4e4?
|
||
nop 0x4e71
|
||
|
||
Note this is CALL_DUMMY_LENGTH bytes (28 for the above example).
|
||
We actually start executing at the jsr, since the pushing of the
|
||
registers is done by PUSH_DUMMY_FRAME. If this were real code,
|
||
the arguments for the function called by the jsr would be pushed
|
||
between the moveml and the jsr, and we could allow it to execute through.
|
||
But the arguments have to be pushed by GDB after the PUSH_DUMMY_FRAME is
|
||
done, and we cannot allow the moveml to push the registers again lest
|
||
they be taken for the arguments. */
|
||
|
||
#if defined (HAVE_68881)
|
||
|
||
#define CALL_DUMMY {0xf227e0ff, 0x48e7fffc, 0x426742e7, 0x4eb93232, 0x3232dffc, 0x69696969, (0x4e404e71 | (BPT_VECTOR << 16))}
|
||
#define CALL_DUMMY_LENGTH 28 /* Size of CALL_DUMMY */
|
||
#define CALL_DUMMY_START_OFFSET 12 /* Offset to jsr instruction*/
|
||
|
||
#else
|
||
|
||
#define CALL_DUMMY {0x48e7fffc, 0x426742e7, 0x4eb93232, 0x3232dffc, 0x69696969, (0x4e404e71 | (BPT_VECTOR << 16))}
|
||
#define CALL_DUMMY_LENGTH 24 /* Size of CALL_DUMMY */
|
||
#define CALL_DUMMY_START_OFFSET 8 /* Offset to jsr instruction*/
|
||
|
||
#endif /* HAVE_68881 */
|
||
|
||
/* Insert the specified number of args and function address
|
||
into a call sequence of the above form stored at DUMMYNAME.
|
||
We use the BFD routines to store a big-endian value of known size. */
|
||
|
||
#define FIX_CALL_DUMMY(dummyname, pc, fun, nargs, args, type, gcc_p) \
|
||
{ _do_putb32 (fun, (char *) dummyname + CALL_DUMMY_START_OFFSET + 2); \
|
||
_do_putb32 (nargs*4, (char *) dummyname + CALL_DUMMY_START_OFFSET + 8); }
|
||
|
||
/* Push an empty stack frame, to record the current PC, etc. */
|
||
|
||
#define PUSH_DUMMY_FRAME { m68k_push_dummy_frame (); }
|
||
|
||
extern void m68k_push_dummy_frame PARAMS ((void));
|
||
|
||
extern void m68k_pop_frame PARAMS ((void));
|
||
|
||
/* Discard from the stack the innermost frame, restoring all registers. */
|
||
|
||
#define POP_FRAME { m68k_pop_frame (); }
|
||
|
||
/* Offset from SP to first arg on stack at first instruction of a function */
|
||
|
||
#define SP_ARG0 (1 * 4)
|